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This study presents a mathematical model based on Fourier decomposition of a sequence of
internal signals generated in a complex system by a sequence of external pulses (time series) for
characterizing suddenly emerging phenomena as nonlinear transitions. Newly created temporal
patterns extracted from internal signal flow (mathematically represented as oscillations with long
period) interact as new entities in a multiplicative manner with subsequent pulses from the
external time series (already existing entities) in order to generate nonlinear transitions within
the system. Such effects are enhanced when the period of external pulses creating new patterns is
similar to the settling time of the complex system (this being the condition for an efficient external
action). For complex systems where both classical and quantum phenomena generated by external
time series are involved, this mathematical model can correctly explain the transition from classical
to quantum behaviour (corresponding to amore ordered structure) avoiding typical contradictions
generated by analysis performed on transient time intervals or by wave superposition.

1. Introduction

Nonlinear phenomena generated by an external time series represented by a sequence of
pulses applied upon a complex system can be noticed not just for physical structures, but
for biological and human systems also. For example, a set of medium-power shocks applied
as transverse force upon a crystalline material fixed at both ends can generate significant
deformations (possible breaking effect)which can not be always explained as a superposition
of individual effects of each pulse. In a similar manner, transitions generated by periodical
phenomena in biological systems cannot be analyzed using a linear model, since genetic
mutations are often involved (for this reason genetic algorithmswere developed). The human
behavior is also driven by basic concepts created by repetitive aspects from the environment.
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Some practical aspects were studied in [1], where it was mentioned that workers
using traditional tools apply some medium-power shocks (External Time Series) at certain
intervals upon a beam fixed at both ends, before the application of a final great-power shock
for breaking the material. Each medium-power shock generates specific damping vibrations
(Signal Flow) inside the material medium, and the subsequent shock has to be applied right
before the annihilation of these damping vibrations by the fluctuations of the external
medium (the Noise). Thus, a certain degree of Coherence for the effects of external pulses
could be achieved, for the maximum possible value of the amplitude of the fundamental
harmonic corresponding to the envelope of the generated vibrations. The mathematical
model in this study uses the fundamental harmonic as a factor in a Coherence Function acting
as a free term upon linear systems on extended time intervals. However, the practical aspects
regarding breaking phenomena require a mathematical model able to generate a certain high
intensity effect within a very short time interval, corresponding to just two or three external
pulses.

Similar aspects can be noticed at High-Ordered Low Scale phenomena, by analyzing
the wave functions with certain frequencies associated to particles represented as phonons
(representing the quanta of the harmonic lattice vibrations for high-ordered complex
materials). These wave functions can be represented as a sequence of pulses (a Time Series—
each pulse corresponding to an oscillation); through interaction they generate transitions
after a certain number of oscillations for thewave-trains of particles involved in interaction, as
a Suddenly-Emerging Effect. However, quantum transitions cannot be considered as instan-
taneous phenomena, because the frequency (an important physical quantity in quantum
dynamics theory) requires a certain time interval for an estimation. So it is important to
determine some expected values for their frequency and for their corresponding energy not
just in a stationary regime, but in a transient regime also (when supplementary vibrations are
just generated).

Linear differential equations are not suitable for modelling such aspects. Better
qualitative results were obtained using dynamical equations able to generate practical test
functions [2] (similar to wavelets [3]) for generating significant delayed pulses (when a free
term which corresponds to an external action is added) [4] and for justifying Spatial Patterns
appearing in a certain material medium [5]. However, this model cannot explain the effect
of a sequence of external pulses when the time interval between these pulses is large enough
so as the final effect not be considered a superposition of individual effects of each pulse. For
this reason, some specific differential equations based on the Coherence Function between the
generated deformation and an alternating cosine input have been taken into consideration
[1]. Since this coherence function vanishes if the output is equal to zero, the initial condition
should be set at a small nonzero value (the choice of this initial value being not justified).
This model has given good qualitative results for modelling the generation of oscillations
with different local maximum/minimum values (for second-order differential equations)
similar to wavelets analysis of solitary waves [6] and multiscale behaviour (for higher-order
differential equations) similar to multi-scale behavior of waves in materials [7]. However,
different initial values could lead to different temporal behavior, this being in contradiction
with practical aspects of Suddenly-Emerging Phenomena. Moreover, the π/2 phase of the
external alternating function sin (2πt + φ) = cos 2πt used in that mathematical model is not
justified.

For the above reasons, an improved mathematical model based on the Fourier
decomposition of internal signals generated in a system by a sequence of external pulses
is introduced in this paper. The model is suited for characterizing Suddenly-Emerging
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Phenomena as non-linear transitions in a newly created Quantum Environment, providing
conditions for an effcient external action. This model should be also be able to explain specific
features of quantum transitions on a very short (transient) time interval.

2. Carrier-Envelope Temporal Patterns Created by
External Time Series

For a better understanding of basic features of the proposed mathematical model, we analyse
the breaking effect of a set of medium-power shocks (External Time Series) applied as
transverse force upon a beam (a crystalline structure-High-Ordered System) fixed at both
ends when the time interval between these pulses is large enough cannot be explained as a
superposition of individual effects of each pulse.

The effect of each pulse in the middle of the beam can be usually represented as

y(t) = exp (−αt) sin (ω0t + φ
)

(2.1)

which corresponds to the output of a damped second-order system (both α and ω0 are
considered to be positive quantities).

The envelope generated by a single pulse is represented by

f(t) = exp (−αt). (2.2)

Since the effect of external shocks acting similar to Dirac functions upon the beam at certain
time intervals consists in a specific deformation generated inside the material within a very
short time interval, we will consider that the effect of different pulses cannot be superposed
(the effect of each pulse is cancelled by next one). For a preliminary analysis, the temporal
patterns generated by the long period envelope will be analyzed for a sequence of pulses
with period set to unity for α = 5, α = 1 and α = 10, respectively.

If the envelope is represented by

f(t) = exp (−5t) (2.3)

then the time interval beteween two succesive pulses will be approximately equal to the
settling time of this function. The long period envelope will be represented by a periodical
signal with a certain constant component and an alternating component, as in Figure 1.

If the time constant of the exponential function corresponding to the envelope is
increased, so as the envelope generated by a single pulse to be represented by

f(t) = exp (−t) (2.4)

then the same time interval beteween two succesive pulses will be smaller than the settling
time of the function. Thus the long period envelope will be represented by a sum of a greater
constant component and a smaller alternating component as in previous case, as in Figure 2.
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Figure 1: Long period envelope with Period ≈ Settling Time.
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Figure 2: Long period envelope with Period� Settling Time.

If the time constant of the exponential function corresponding to the envelope is
decreased, so as the envelope generated by a single pulse to be represented by

f(t) = exp (−10t) (2.5)

then the same time interval beteween two succesive pulses will be greater than the settling
time of the function. Thus the long period envelope will be represented by a sum of a
smaller constant component and a smaller alternating component as in previous case since
the function is approximately zero on large time intervals, as can be noticed in Figure 3.

It can be noticed from the very beginning that a greater alternating component can
be obtained for the case when the settling time of the system is comparable to the period
between two succesive external pulses.

A more rigorous analysis can be performed using the Fourier decomposition for
the long period envelope function. For this purpose, we denote by T the period of
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Figure 3: Long period envelope with Period� Settling Time.

the external pulses. The analysis will be performed on the time interval (0, 2π/T). The
constant component does not represent any interest for modellimg non-linear effects. More
important is the cosine component of angular frequency β = 2π/T , since transitions are
expected to occur when another external shock (usually a great-power shock, as was shown)
is applied—this means when the cosine function presents a maximum. The amplitude Acos

of this cosine component will be determined as

Acos =
1
T

∫T

0
exp (−αt) cos (βt)dt = β

2π
Re

∫2π/β

0
exp

[(−α + iβ
)
t
]
dt. (2.6)

It results

Acos =
β

2π
Re

{
1

−α + iβ
exp

[(−α + iβ
)
t
]∣∣∣

2π/β

0

}
(2.7)

then

Acos =
β

2π
Re

{−α − iβ

α2 + β2

(
exp

[
(−α + iβ

)2π
β

]
− 1

)}
(2.8)

and finally

Acos =
αβ

2π
(
α2 + β2

)
(
1 − exp

[−2πα
β

])
. (2.9)

By denoting the ratio between β and α as k and substituting β = kα in previous equation, it
results after simplifying certain factors

Acos =
k

2π(1 + k2)

(
1 − exp

[−2π
k

])
. (2.10)
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Figure 4: Amplitude of cosine function versus k.
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Figure 5: Amplitude of cosine function versus k-Details around k = 1.

This function has zero limit when k trends to zero and to∞, presenting a maximum value for
k ≈ 1. The graph of this function is represented in Figure 4, for k ∈ (0.5, 1.5) (the 2π factor at
denominator was not taken into consideration).

It can be noticed that the maximum value is reached for k ≈ 1. The value ofAcos varies
with less than 10% for a wide range of k(k ∈ (0.6, 1.5)). A more refined graph is presented in
Figure 5. It can be noticed that the value of Acos varies with less than 0.6% for (k ∈ (0.9, 1.1)).

The maximum value of Acos ≈ 0.499/2π corresponds to k ≈ 0.98 (the 2π factor has
been omitted in previous figures). This result was expected, since the factor k/(1 + k2) (with
a maximum for k = 1) is multiplied by 1 − exp(−2π/k) (a function increasing from 0 to 1
with a small slope for a wide range of values). The physical meaning of this result consists in
the fact that a high-amplitude cosine component is obtained when the time period T between
two subsequent pulses (depending on β as T = 2πβ ≈ 6.28β) is approximately equal to
the transient (settling) time Ttr of the damped second order system upon these pulses act
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(Ttr depending on α as Ttr = 4 . . . 6α, according to basic dynamical aspects of second order
linear systems). This means that short-period oscillations generated inside the system by an
external pulse are not completely damped when another external pulse is applied (usually
these short period oscillations are damped by friction phenomena or thermal interaction with
the environment).

A slightly different result would have been obtained if the ratio k is adjusted for a
maximum amplitude Asin for the sine component of period T for the long period envelope.
In a similar manner, it is determined as

Asin =
1
T

∫T

0
exp (−αt) sin (βt)dt = β

2πi
Im

∫2π/β

0
exp

[(−α + iβ
)
t
]
dt. (2.11)

It results

Asin =
β

2πi
Im

{
1

−α + iβ
exp

[(−α + iβ
)
t
]∣∣∣

2π/β

0

}
(2.12)

then

Asin =
β

2πi
Im

{−α − iβ

α2 + β2

(
exp

[
(−α + iβ

)2π
β

]
− 1

)}
(2.13)

and finally

Asin =
β2

2π
(
α2 + β2

)
(
1 − exp

[−2πα
β

])
. (2.14)

Substituting β = kα in previous equation, it results

Asin =
k2

2π(1 + k2)

(
1 − exp

[−2π
k

])
. (2.15)

The ratio between Acos and Asin equals 1/k. It corresponds to the phase Φ of the alternating
compoment of period T as

Φ = arctan
Acos

Asin
=

1
k
. (2.16)

For k ≈ 1 (as previously determined) the ratio will be around unity, so Acos ≈ Asin and
Φ ≈ π/4. The modulus A of the alternating component of period T can be determined as

A =
√
A2

cos +A2
sin =

k

2π
√
1 + k2

(
1 − exp

[−2π
k

])
. (2.17)

However, the transition created by this long period Carrier-Envelope Function is determined
(according to our previous assumption) by cosine function, since it is generated around
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zero moment of time (with time origin considered when an external pulse is applied). For
this reason the value of k corresponding to the maximum for Acos (k ≈ 1) and an angular
frequency β ≈ α (1/α being the time constant of the system subject to external pulses) should
be taken into consideration for modelling non-linear transitions. The cosine component of
this angular frequency could be considered as a Multiplicative Factor for the intensity Ipul of
an external pulse, generating a supplementary non-linear effect Enon-lin

Enon-lin = AcosIpul (2.18)

which is added to the linear effect Elin of a single (isolated) pulse

Elin = kIpul (2.19)

so as to result the global effect E of a subsequent pulse in a certain sequence as

E = Elin + Enon-lin = kIpul +AcosIpul = (k +Acos)Ipul. (2.20)

It can be noticed that this long period Carried-Envelope Function enhances a certain external
pulse generating the transition, for example, the third pulse in a sequence is Multiplied by
the envelope cosine component of period T = 2π/β generated by the effect of two previous
pulses. It results that an efficient external action consists in a set of external pulses (a time
series) with period similar to the transient time of the complex system where transitions
should be generated.

For more complex dynamical models based on Coherence Function where delayed
effects and multiscale phenomena appear [1, 8], the Fourier decomposition presented in this
paragraph justifies the amplitude of the alternating components generated by external pulses
taken into consideration for determining the Coherence Function.

3. Temporal Patterns Created and Self-Organization by
Fast-Varying External Signals in Low Scale Physical Systems:
Modelling Transition to Quantum Behaviour

The multiplicative model of long period Carrier-Envelope Function is suitable for modelling
and explaining a large class of phenomena in complex physical systems subject to fast-
varying external signals when the selection of classical or quantum approach is not obvious
for determining expected values through measurement procedures for certain physical
quantities.

First we analyze some aspects connected with field emission for charged particles
moving on repetitive closed-loop trajectories. When a beam of charged particles moves first
time along such a trajectory, then for the first part of the movement (before the particle
to return around its initial position) the trajectory should be considered as an open-loop
trajectory. According to basic electromagnetic aspects, the particle should radiate energy.
After a certain transient time, it can be considered that the particle is in a steady-state which
should be described by quantum physics laws, and thus no signal will be emitted anymore.
The multiplicative model of Carrier-Envelope Pattern is recommended for modelling the
particle behaviour on this transient time, determining expected values for measurement
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procedures in a more rigorous manner. It requires just a few periodical movements in order
for a certain amplitude of an alternating component to be determined—then it is multiplied
by the potential energy so as a specific term to be added in Schroedinger equation (the need
of external fields generating potential energy has been shown in [9] due to the paradox
of phase loss for a quantum particle moving in a quantified electrostatic potential). Thus
the system achieves a high-ordered structure by itself- through Self Organization based on
hiding dynamics and internal memory (see [10, 11] for more details about learning hiding
dynamics and [12] for systems with memory at biological level of organization). In a certain
point of space MS, we can consider that after a few periodical movements (when classical
laws for observable physical quantities are valid) the set of waves emitted by the particle
from different points of space Si along the steady-state trajectory will create also a very
low-amplitude Temporal Pattern (a low-amplitude Carrier-Envelope Function), since the
phase of received waves presents a circular uniform distribution (practically the coherent
waves cancel each other). Thus no emitted field can be detected when the particle is in a
steady-state (when the transient time has passed), according to quantum physics laws. This
aspect differs to reception of continuous signals based on well-known detection of Carrier-
Envelope Functions, where non-linear signal processing is achieved trough additional
devices (rectifier diodes, threshold circuits, memories). The use of advanced mathematical
aspects as multifractional formula [13], cyber-physical laws [14] and stochastic bound [15]
imply also the use of such additional devices for memory and decision.

In a similar manner, when the particle performs a transition from a steady-state to
another, a wave train corresponding to a photon is emitted. The wave-train corresponding to
this emitted photon is detected by a certain material medium as a non-linear phenomenon,
some alternances corresponding to the photon creating a Temporal Pattern enhancing the
effect of subsequent alternances and generating the quantum interaction with the receiving
material medium.

Some basic features of this model can be extended to analysis of light signals
propagating in fluctuating weak gravitational fields. As was shown in [16], in every point
in a space, at a certain moment of time should be defined a certain material reference system
which acts upon a received light wave-train through Lorentz transformation (thus determinig
expected values for space-timemeasurements based on light wave-trains). In case of vacuum,
the last material medium that light has passed through should be taken into consideration.
When the light passes near great material bodies, it interacts with the significant gravitational
field of that body and thus the reference system of this material body should be taken into
consideration. Yet in the limit case, when the gravitational field is approximately zero, some
fluctuations created by different material bodies still exist. So the propagating wave can be
considered as subject to a great number of Lorentz transformations which could scatter the
wave, and the wave should vanish within a short space-time interval (considered at the scale
of cosmic systems). Applying the Carrier-Envelope Model, it results that the stochastic low-
amplitude variations of the gravitational field around the null value creates a null temporal
pattern which does not allow an influence upon a propagating wave-train (low-amplitude
vectors with different directions cancel each other). This is in accordance with the fact that,
according to Conformal Field Theory, all quantum field theories are only effective over some
range of length and energy scales, and those used in particle physics are nomore fundamental
than in condensed matter.

Dynamical relativistic aspects can be also justified by a Multiplicative Model. The
factor 1−v2/c2 appearing at denominator inmass formula can be obtained just bymultiplying
(c − v)/c and (c + v)/c—as two functions are multiplied. For a movement along Ox axis, it
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can be easily understand that when v equals c no interaction between wave and particle
occur and thus the mass seems to be infinite (no result of the wave action upon the particle
being noticed, so the particle seems to be out of the range of any possible external command).
However, according to well-known mass formula the same result is valid when v = −c, this
means when the particle is moving with light speed c in the opposite direction as related
to the received wave. This aspect cannot be explained as lack of interaction between wave
and particle (or, generally speaking, as lack of interaction between an external command
and the system upon this command acts), and thus a model based on a multiplication of
certain functions is necessary. In an intutive manner, these two functions can be put in
correspondence with a direct and a reverse wave which interact in the point of space where
the particle with massm is situated (the system and the external command interacts in a more
complex manner, as in a sequence action-reaction defined on a very short time interval).

4. Conclusions

This study has presented a mathematical model based on Fourier decomposition of internal
signals created in a complex environment by a sequence of external pulses for justifying
suddenly-emerging phenomena as non-linear transitions. Newly created temporal patterns
(mathematically represented as long period oscillations) interact in a multiplicative manner
(as a Carrier-Envelope Function) with subsequent pulses, generating supplementary effects
which can be noticed both at macroscopic and quantum (microscopic) scale, for physical,
biological and human systems. Such effects are enhanced when the period of external pulses
is similar to the settling time for the environment, justifiying the amplitude of alternating
components used in more elaborated mathematical models based on Coherence Function for
simulating suddenly-emerging phenomena. Adding phase aspects, this mathematical model
can explain transitions between classical and quantum behaviour in a complex material
environment in a correct manner, avoiding contradictions generated by analysis performed
on transient time intervals or by wave superposition.
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