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The study of open channel flowmodelling often requires an accurate representation of the channel
bed topography to accurately predict the flow hydrodynamics. Experimental techniques are
the most widely used approaches to measure the bed topographic elevation of open channels.
However, they are usually cost and time consuming. Free surface measurement is, on the other
hand, relatively easy to obtain using airborne photographic techniques. We present in this work
an easy to implement and fast to solve numerical technique to identify the underlying bedrock
topography from given free surface elevation data in shallow open channel flows. The main
underlying idea is to derive explicit partial differential equations which govern this inverse
reconstruction problem. The technique described here is a “one-shot technique” in the sense
that the solution of the partial differential equation provides the solution to the inverse problem
directly. The idea is tested on a set of artificial data obtained by first solving the forward
problem governed by the shallow-water equations. Numerical results show that the channel bed
topographic elevation can be reconstructed with a level of accuracy less than 3%. The method is
also shown to be robust when noise is present in the input data.

1. Introduction

The study of open channel flows requires an understanding of the hydrodynamics of the flow
in order to accurately capture its main characteristics. Designing and studying engineering
structures on rivers, understanding the hydraulic phenomena of the watercourse for water
quality control, and prediction of exceptional natural events associated with water flow
constitute the three main objectives of the study of open channel flow simulation, [1].
All modelling studies of such applications require well-established governing equations
along with the predefined parameters, boundary conditions, and initial conditions. Previous
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studies show that there has been tremendous progress in the field of hydraulic modelling
of open channel flows. However, the representation of accurate channel bed topography is
still a challenge, [2–4]. Parameters such as bedrock topographic elevation and roughness
coefficients are required prior to the simulation of open channel flows. The level of
discrepancy in these data will have a direct effect on the quality of the simulation results.
Thus in order to accurately predict the hydrodynamics of open channel flows, precise bedrock
topographic elevation data and other hydraulic parameters are required. In [5] and references
therein, it is argued that some hydrological models contain conceptual parameters that
usually cannot be accessed by in-situ data measuring techniques. On the contrary, some
models only use measurable parameters from field surveys. But the procedure is often long
and expensive because it is difficult to determine parametric values at each computational
grid points.

There have been significant developments in experimental techniques tomeasure river
bathymetry and flow depths. Examples of these techniques for river bathymetry include
interferometric synthetic aperture radar (SAR) digital photogrammetry [4, 6] used for the
North Ashburton River, New Zealand; airborne laser altimetry (LiDAR); ground survey
[2] used for the Yakima and Trinity River Basins in the USA to assess its ability to map
bathymetry. However, most experimental techniques to identify the bed rock elevation are
time consuming [4, 7] and expensive [2, 5] especially for wide, gravel bed, and long reach
rivers.

On the other hand, many numerical techniques have been developed to simulate
open channel flows. The characteristics of the numerical methods differ depending on the
particular problem it addresses: methods suitable for studying hydraulic jumps; methods
suitable to study dam break problems; methods to study flood plain flows; methods to study
steady flows and methods suitable for high Froude numbers are relevant scenario worthy of
mention. A detailed review of the relevant numerical techniques on the forward problem is
beyond the scope of this study.

Comparatively, very little has been studied on the numerical reconstruction of the
bedrock elevation data of open channel flows. Previous studies have shown that there are
mainly two approaches that can be implemented to solve such an inverse problem: the
direct numerical approach and optimization-based iterative methods. The former method
was previously implemented by the authors of this work, [8–10] to infer the bedrock
topography from a known free surface data in one-dimensional shallow water flows and
by [11–13] to infer the substrate topography and the corresponding flow field [14] from free
surface data in thin film flows. This paper extends to three-dimensional shallow-water flows
the methodology presented in [8–10] which only dealt with planar flows only dealt with
planar flows. In [15], a numerical bedrock reconstruction approach from known free surface
elevation data is presented for zero-inertia two-dimensional shallow-water flows, while the
optimization-based reconstruction approach has been implemented by many authors who
tried to minimize a cost functional iteratively, see [16, 17].

In the following the forward problem refers to the simulation of open channel flows
for the prediction of the water surface elevation, the velocity field, and flood coverage
from known hydraulic parameters such as bedrock elevation distribution and the roughness
coefficient. Conversely, we call the inverse problem when the bedrock elevation data
is inferred from the given free surface elevation data and other hydraulic parameters.
Section 2 introduces the shallow water equations and the respective discretization technique
for the forward problem. Section 3 presents a set of forward problem benchmark test
cases. Following Section 3, the inverse problem governing equations and the corresponding
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Figure 1: Two-dimensional shallow-water flow orientation.

discretization technique and the respective inverse problem test cases are presented in
Section 4. In Section 5, we present the concluding remarks.

2. Governing Equations

Shallow-water flows are three dimensional in nature, but the three-dimensional Navier-
Stokes equation can be simplified to a set of two-dimensional equations by considering
vertically averaged quantities. This is done by integrating the Navier-Stokes equations over
the flow depth for an incompressible fluid. While depth averaging, the two-dimensional
shallow-water equations are derived with the following assumptions. (a) the pressure
distribution is hydrostatic over the flow depth, (b) the angle of inclination of the channel
is small such that flow depths measured along the vertical and normal to the channel bed
directions are approximately the same, (c) the length in the vertical direction of the flow is
smaller than that in the main flow direction, and (d) the Coriolis and wind stress effects are
neglected, [18]. The hydrostatic pressure distribution assumption is valid for the case of long
and shallow waves, (wave length is much larger than the depth of the flow), in which the
vertical acceleration of fluid elements during the wave passage stays small. The solution of
shallow water equations may not accurately represent open channel flows with short or high
waves, because the hydrostatic pressure assumption will be violated for such flows, [18]. A
general two-dimensional flow orientation is shown in Figure 1.

Thus, the two-dimensional governing equations can be written in conservative form
[18] as

Ht + Ex + Fy + S = 0,
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(2.1)
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where u(x, y, t) is the velocity component in x direction; v(x, y, t) is the velocity component
in y direction; h(x, y, t) is the depth of the flow; Co is dimensional constant: Co = 1 for SI
unit system; n is the Manning’s roughness coefficient; z(x, y) is bed topography; g is the
acceleration due to gravity. The free surface function, ψ(x, y, t) = h(x, y, t) + z(x, y), is
the measure of the water surface elevation, and the corresponding depth of the flow is the
difference between the water surface and the channel bed elevations.

2.1. Discretization of the Governing Equations of the Forward Problem

The discretization of the governing equations is one of the most important steps in
the numerical solution of partial differential equations in engineering and science. Many
discretization techniques have been developed to suit specific problems. In the context
of this work, the MacCormack explicit numerical scheme is implemented for the forward
problem. It has been chosen because it is a standard technique which is reasonably easy to
implement and which produces reliable results. This discretization technique has a predictor
and a corrector stage coupled with sequential solution methodology. Backward differencing
numerical technique is implemented in the predictor stage, while forward differencing is
used in the corrector stage. The flow variables are known at time step k, and their values at
k + 1 are to be determined, [18]. Then, for grid point (i, j), the approximate equation can be
written as the following.

Predictor Stage:

H∗
i,j = H

k
i,j −

Δt
Δx

∇xE
k
i,j −

Δt
Δy

∇yF
k
i,j −ΔtSki,j

{
2 ≤ i ≤N,

2 ≤ j ≤M.
(2.2)

Corrector Stage:

H∗∗
i,j = H

k
i,j −

Δt
Δx

ΔxE
∗
i,j −

Δt
Δy

ΔyF
∗
i,j −ΔtS∗

i,j

{
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1 ≤ j ≤M − 1,

(2.3)

in which H∗and H∗∗ are intermediate values of H. The new values of the vector H at time
k + 1 are obtained from

H
k+1

i,j =
1
2

(
H

∗
i,j +H

∗∗
i,j

)
. (2.4)

As mentioned above the scheme first uses backward space differencing (∇x and ∇y) to
predict an intermediate solution from the known information at time step k. Then the forward
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differences (Δx and Δy) are used in the corrector stage to correct the predicted values. The
finite difference operators (∇) and (Δ) are defined as

∇xHi,j = Hi,j −Hi−1,j ,

ΔxHi,j = Hi+1,j −Hi,j .
(2.5)

The subscripts in the operators show the direction of differencing. Substituting the flux terms
as U = uh and V = vh, the final form of the discretized equations can be written as the
following.
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Corrector Stage:
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The new values at time step k + 1 are then calculated from the intermediate values which are
determined from the predictor and corrector steps:
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1
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)
, (2.8)

whereas the primitive variables will be determined from the computed values ofU and V in
each time step:

h
k+1

i,j = h
k+1

i,j ; u
k+1

i,j =
U

k+1

i,j

h
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i,j

; v
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i,j

h
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. (2.9)

Reflective wall boundary is implemented at the side walls. This can be implemented by
replacing the fictitious point in the solid wall by its mirror point in the flow domain while
changing the sign of the normal component of velocity.

However, the inlet and the outlet boundary conditions are handled depending on the
type of the flow. For subcritical flow the depth of the flow at the outlet boundary condition
is defined with the flow rate at the upstream boundary. On the contrary, the depth and the
flow rate at the upstream boundary are defined for supercritical flows. However, supercritical
and transcritical flow test cases are not included in this study because of the limitation of the
proposed approach. On the other side of the defined boundary conditions, it is assumed
that the gradient of the parameters along the flow direction is zero. The transverse velocity
component at the inlet is defined also as zero.

3. The Forward Problem

The governing equations of the forward problem along with its discretization are presented
in the above section. The parameters that will be determined from the forward problem are
the free surface elevation, the velocity components of the flow, and the depth of the flow. For
this purpose some hydraulic parameters are required prior to the computation. These include
bed topography elevation, roughness coefficient, flow rate, and the depth of the flow at the
boundary depending on the flow regime. In the following, the results of the forward problem
test cases are presented, and these results will be used as input data for the validation and
assessment of the inverse problem methodology.

3.1. Test Case I: One-Dimensional Steady Subcritical
Flow over a Frictionless Channel

A 1mwide 25m long channel is considered to test subcritical flow over a bump. The channel
bed is assumed to have a rectangular cross section and frictionless with a bump. The bed
topography is defined by

z =

{
0 x < 8, x > 12,
0.2 − 0.05(x − 10)2 8 ≤ x ≤ 12.

(3.1)
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Figure 2: Free surface and bedrock topographies.
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Figure 3: Depth of the flow.

The depth at downstream boundary condition of the flow is set as h = 2m, and the water
inflow conditionQ = 4.42m3/s is imposed for the computation of results. This test case is the
most common canonical test case used by different authors, [19–21] for example, in order to
validate their numerical techniques for the convergence of the solution towards steady state
and the conservation of discharge along the channel. The Froude numbers for this test case
range from 0.496–0.635 showing that the flow is subcritical in the entire domain.

The results are in a good agreement with the results presented in the above references
and with the respective analytical solution presented in [22]. As can be seen in Figures 2
and 3, the existence of the obstacle creates significant change on the free surface and depth
profiles.
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Figure 4: Centreline bed and free surface elevation variation (a) along the length and (b) along the
transverse direction.

3.2. Test Case II: Three-Dimensional Flow over a Three-Dimensional Bump

In this test case, an artificial bed topography with a bump having three-dimensional
characteristics is considered to simulate three-dimensional shallow water flows. Thus
variation of the bed along the longitudinal and the transverse direction is considered in a
computational domain of size 100m by 100m. The bump is defined by

z = 0.2 exp
(
−
(
x − xmax

2

)2 1
α12

−
(
y − ymax

2

)2 1
α22

)
− 0.001x, (3.2)

where xmax and ymax are the length scales of the domain in x and y directions. In this test
case xmax = ymax = 100m and α1 = 6 α2 = 10 are constants. A spatial grid size Δx = 1m
and the temporal grid size Δt = 0.1 s are implemented. The flow rate Q = 2m3/s per unit
width is defined at the inlet boundary. A Manning’s roughness value n = 0.02 is chosen
to account for the effect friction. A subcritical flow is considered such that at the outlet a
depth is 1.0m is imposed along the transverse direction. Steady solution is generated from
the transient governing equation and steady boundary conditions. The Froude numbers for
this test case range from 0.56–0.92 showing that the flow is subcritical in the entire domain. In
the following, plots of the bedrock elevation along the centre lines and the respective depth
of the flow for forward problem are presented.

From the given bedrock topographic elevation, steady flow rate, roughness coefficient,
and boundary conditions, the steady flow results are generated. The free surface variation
along the centreline is given in Figure 4.
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As can be seen from Figures 4 and 5, the existence of the bump at the centre of flow
domain creates a three-dimensional variation in the free surface elevation. The underlying
hypothesis of this work is that the shape of this free surface with known boundary conditions
contains sufficient information to reconstruct the underlying bedrock. This will be discussed
in detail in the inverse problem analysis section. The free surface elevation data of this test
case will be used as a known parameter along with other boundary conditions for the inverse
problem analysis.

3.3. Test Case III: Three-Dimensional Flow over Number of
Three-Dimensional Bumps

In order to investigate the effect of a more complex bedrock topography on the free surface,
four bumps are considered in the computational domain. In this test case α1 = 6 α2 = 10
values in the bed topography function are considered. The flow rate Q = 4.42m3/s per
unit width defined at the inlet boundary along with a depth of 2.0m at the outlet boundary
is imposed along the transverse direction. Grid sizes and Manning’s roughness coefficient
values considered here are similar to that of test case II. The free surface elevation is generated
for the inverse problem analysis by solving numerically (2.6), (2.7), (2.8), and (2.9). The
bedrock topography is given by

z = 0.2 exp

(
−
(
x − xmax

3

)2 1
α12

−
(
y − ymax

2

)2 1
α22

)
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3
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2
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(3.3)
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From Figures 6 and 7, it can be seen that each bump introduced on the bed has its own
effect on the free surface. The undulations on the free surface are the manifestations of the
bump on the bedrock, and these free surface undulations, if accurately captured, can provide
sufficient information of the bedrock and other parameters. The Froude numbers for this test
case range from 0.49–0.6 showing that the flow is subcritical in the entire domain. The free
surface generated in this test case will also be used as input data for the respective inverse
problem test case.
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4. The Inverse Problem

Unlike the forward problem the inverse problem analysis will be dealing with identifying
hydraulic parameters from the known fields and parameters. The shallow-water equations
will be rearranged and used for the inverse problem analysis. However, there is a difference
between the known and unknown parameters. The governing equation of the inverse
problem can be rewritten after substituting a free surface function by ψ(x, y) = z(x, y) +
h(x, y)

Ht + Ex + Fy + S = 0,
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⎛
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h
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⎠ F =

⎛
⎝

vh
uvh
v2h

⎞
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0
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)

⎞
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√
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Coh4/3
,

Sψx = −∂ψ
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∂y

,

(4.1)

where ψ(x, y) is the free surface elevation function.
The discretization of the inverse problem governing equations differs from the forward

problem in such a way that only backward differencing explicit numerical scheme is
implemented. This approach has stability restriction but is easy to implement and fast to
provide a solution:
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(4.2)

The boundary condition is implemented in a similar way as that of the forward problem. The
new values at time step k + 1 are calculated from the previous time step values.

In this analysis, the expression used to find the new values differs from the forward
problem approach. This is because, in the inverse problem, unlike to the forward problem
analysis, no information is transferred from downstream to upstream direction making the
backward difference approach a suitable choice. As the backward differencing scheme is
implemented, the definition of the outlet boundary condition does not affect the solution
of the problem in the upwind direction as there is no upstreamwave propagation. Thus, inlet
boundary condition is implemented. The primitive variables will be determined from the
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Figure 8: Reconstructed bed: subcritical test case.

computed values ofU and V in each time step. Once the values of the primitive variables are
determined the bed topography elevation will be evaluated by a simple subtraction for the
depth of the flow from the free surface elevation function:

z
k+1

i,j = ψ
k+1

i,j − hk+1

i,j . (4.3)

The results of the inverse problem will be counterchecked with the forward problem results
in order to identify the capability of the algorithm in reconstructing the bed topographic
elevation. Thus similar test cases will be considered for the numerical experiment of the
algorithm.

4.1. Test Case I: Steady One-Dimensional Subcritical Flow over a Bump in
a Frictionless Channel

The free surface elevation obtained from the forward problem analysis is used as an input
parameter for the inverse problem. This includes the free surface profile and the boundary
and initial conditions along with the steady inflow rate. Unlike the depth at the downstream
boundary in the case of the forward problem, the inverse problem requires boundary
conditions at the inlet boundary. A depth at the upstream boundary h = 2m and the water
inflow rate Q = 4.42m3/s are imposed. A time step of 0.05 sec and spatial grid size of 0.5m
are used in the computation.

Figure 8 shows the comparison of the reconstructed and the actual bed forms. In
Figure 9 the reconstructed and the actual depth of the flow are compared. The results
show that there is a perfect agreement between the reconstructed and the forward problem
parameters. Relative to the results presented in [16], this approach has a capability to
overcome the constant shift of the reconstructed bed topography. This confirms that the
algorithm can be used for bedrock reconstructions of open channel flows of one-dimensional
nature.
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4.2. Test Case II: Steady Three-Dimensional Flows over a Bump in
a Rectangular Channel

This test case is used to test the algorithm for its capability to reconstruct the unknown
bed topographic elevation from known free surface elevation data which was generated in
the forward test case II. In the respective forward test case, the effect of bed slope, friction
coefficient, and local bed elevation was implemented to generate the free surface profile
which we use as input parameter. Along with the free surface profile, depth variation and
flow rate at the inlet boundary are used. For the inverse problem analysis, a spatial grid size
Δx = 1m and the time step Δt = 0.05 sec are implemented. The flow rate of Q = 2m3/s per
unit width and depth at the upstream boundary which is imported from the forward problem
are used. AManning’s roughness value n = 0.02 is used as in the case of the forward problem.
A total computation time of 100 seconds was sufficient to generate steady reconstructed
parameters.

As can be seen from Figure 10, the bedrock is successfully reconstructed with a
very good agreement with the actual bed used in the forward problem. The bump is
well reconstructed along with the bed slope showing that the methodology used can use
the signal from the free surface to successfully identify its cause. Quantitatively the bed
topography is reconstructed with 3% maximum deviation. The sensitivity of the algorithm
to the introduction of noise in the free surface data was also tested on ranges of noise
magnitude with respect to the signal on the free surface. Noise magnitudes ranging from 1–
5% of the “peak-to-peak” free surface deviations are considered. In Figure 11, a reconstructed
bed topography from a 1% noise is shown, and it is evident that the noise is not amplified in
the reconstructed bed.

4.3. Test Case III: The Reconstruction of Bed Topography Used in Test Case
III of the Forward Problem

Like the above inverse problem test cases, the free surface topographic data is used as input
parameter to reconstruct the corresponding bed topographic elevation. Additionally a flow
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Figure 10: Comparison of original and reconstructed bed forms.
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Figure 11: Reconstructed bed form from noisy free surface data.

rate of Q = 4.42m3/s per unit width and depth (h = 2m) at the upstream boundary are
imported from the corresponding forward problem. The reconstructed bed along with the
free surface profile is shown in Figure 12.

As can be seen from Figure 12, the four bumps in the original bump are successfully
reconstructed. However, there is an apparent but small difference, downstream of the bumps,
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Figure 12: Reconstructed bed topographic elevation.
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Figure 13: Comparison of the reconstructed and original bed forms.

between the reconstructed and the original bed. The comparison of the bed topography along
the centreline is presented in Figure 13.

As can be seen in Figure 13, the reconstructed and original bed forms are in good
agreement with each other. The difference between the original and the reconstructed bed
lies below 0.5%.

Like test case II, the reconstruction algorithm is tested for its applicability to infer
the channel bed topography from noisy free surface elevation data. The magnitude of the
noise introduced is 1% of the signal of the free surface variation, and the results (Figure 14)
show that the bed topography is reconstructed without the amplification of the noise in the
reconstructed bed elevation.

The above test cases are all based on numerical results with smooth free surfaces which
are used as input variable. However, in practice it is difficult to get a smooth free surface
from field measurements. Often the measured free surface elevation includes noise. Thus,
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Figure 14: Comparison of the original and bed reconstructed forms from noisy free surface data.

to identify the capability of the algorithm to handle noisy input data, we introduce 1, 2.5,
and 5% noise in the free surface data of all of the previous test cases. The noise is based
on the signal on the free surface. A Savitzky-Golay smoothing filter is used in MATLAB to
smooth the 2D noisy free surface data before the computation. The reconstruction of the bed
topographies from the noisy data revealed that the level of discrepancy in the reconstructed
bedrock elevation is in the range of 1%, 5%, and 9.5%, respectively.

The algorithm used for the inverse reconstruction of the bedrock topography from the
free surface elevation data is fast and easy to implement. It has the ability to reconstruct the
bed from noisy free surface data with the help of smoothing techniques. The methodology
requires the values of the steady flow rate, depth of the flow at inlet boundary, and the
roughness coefficient in addition to the free surface data. The flow in all test cases is subcritical
as it is shown by the calculated ranges of the Froude number. Similar analysis indicated
that the proposed approach is not suitable for transcritical and supercritical flows because
hydraulic jumps and surges are not accommodated by the solution approach; thus it requires
further developments to perform bedrock reconstruction in the cases of such flows.

The presented methodology works well with steady flows of subcritical nature. The
effect of a flux change in the flow will have local effect on the free surface which will send
a wrong signal to the algorithm in the reconstruction process. Thus scope of this study is
therefore limited to steady shallow open channel flows.

5. Conclusion

The study of open channel flow modelling calls for input parameters like bed topography
and roughness coefficient in order to accurately predict the hydrodynamics of the flow. A
methodology based on an explicit finite difference scheme is used to reconstruct the bedrock
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elevation from the free surface data. The methodology requires a steady flow, the knowledge
of the roughness coefficient, and the depth of the flow at the inlet boundary.

The algorithm is tested on a set of benchmark test cases, and encouraging results
are found. The bed topography is well reconstructed with a deviation of 3% or less. The
numerical methodology is easy to implement and fast to produce a solution but has a CFL
restriction because of its explicit nature. This approach is suitable for steady open channel
flows for which the shallow-water approximation holds where the signal due to the existence
of the underlying bed topography is captured by the free surface measurement technique.

In practice, the measured free surface contains noise. The presented methodology is
found to be capable of reconstructing the channel bed topography from noisy data. When
tested on a set of noisy numerical data, the methodology was found to introduce no noise
amplification in all test cases considered.

References

[1] J. A. Cunge, F. M. Holly, and A. Verwey, Practical Aspects of Computational River Hydraulics, Pitam
Publishing, London, UK, 1980.

[2] R. Hilldale and D. Raff, “Assessing the ability of airborne LiDAR to map river bathymetry,” Earth
Surface Processes and Landforms, vol. 33, pp. 773–783, 2008.

[3] K. Marks and P. Bates, “of high-resolution topographic data with floodplain flowmodels,” Integration
Hydrological Processes, vol. 14, pp. 2109–2122, 2000.

[4] R. M. Westaway, S. N. Lane, and D. M. Hicks, “The development of an automated correction
procedure for digital photogrammetry for the study of wide, shallow, gravel-bed rivers,” Earth Surface
Processes and Landforms, vol. 25, pp. 209–225, 2000.

[5] H. Roux and D. Dartus, “Estimating hydraulic parameters and geometric characteristics of a river
from remote sensing data using optimization methods,” in Proceedings of the 2nd International
Conference on Fluvial Hydraulics, A. A. BALKEMA, Napoly, Italy, 2004.

[6] R. M. Westaway, S. N. Lane, and D. M. Hicks, “Remote sensing of clear-water, shallow, gravel-bed
rivers using digital photogrammetry,” Photogrammetric Engineering & Remote Sensing, vol. 67, no. 11,
pp. 1271–1281, 2001.

[7] Y.Hirose and Y. Imai, “Airborne remote sensing for river environmental assessment,” The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences:, vol. 37, pp. 1149–1152,
2008.

[8] A. F. Gessese, M. Sellier, E. Van Houten, and G. Smart, “Inferring channel bed topography from
known free surface data,” in Proceedings of the 34th World Congress of the International Association for
Hydro-Environment Engineering and Research (IAHR ’11), Brisbane, Australia, June 2011.

[9] A. F. Gessese, M. Sellier, E. Van Houten, and G. Smart, “Reconstruction of river bed topography from
free surface data using a direct numerical approach in one-dimensional shallow water flow,” Inverse
Problems, vol. 27, no. 2, 2011.

[10] A. F. Gessese, G. Smartc, C. Heiningd, andM. Sellier, “One-dimensional bathymetry based on velocity
measurements,” Inverse Problems in Science and Engineering, pp. 1–17, 2012.

[11] M. Sellier, “Substrate design or reconstruction from free surface data for thin film flows,” Physics of
Fluids, vol. 20, no. 6, Article ID 062106, 2008.

[12] C. Heining and N. Aksel, “Bottom reconstruction in thin-film flow over topography: steady solution
and linear stability,” Physics of Fluids, vol. 21, no. 8, Article ID 083605, 10 pages, 2009.

[13] M. Sellier and S. Panda, “Beating capillarity in thin film flows,” International Journal for Numerical
Methods in Fluids, vol. 63, pp. 431–448, 2009.

[14] C. Heining, M. Sellier, and N. Aksel, “The inverse problem in creeping film flows,” Acta Mechanica,
vol. 223, no. 4, pp. 841–847, 2012.

[15] A. Gessese, K. M. Wa, and M. Sellier, “Bathymetry reconstruction based on thezero-inertia shallow
water approximation,” Theoretical and Computational Fluid Dynamics. In press.

[16] W. Castaings, D. Dartus, M. Honnorat, F.-X. Le Dimet, Y. Loukili, J. Monnier et al., “Automatic
differentiation: a tool for variational data assimilation and adjoint sensitivity analysis for flood
modelling,” Lecture Notes in Computational Science and Engineering, vol. 50, pp. 249–262, 2006.



18 Mathematical Problems in Engineering

[17] M. Honnorat, J. Monnier, and F.-X. Le Dimet, “Lagrangian data assimilation for river hydraulics
simulations,” Computing and Visualization in Science, vol. 12, no. 5, pp. 235–246, 2009.

[18] M. H. Chaudhry, Open-Channel Flow, Springer, New York, NY, USA, 2nd edition, 2007.
[19] X. Ying, A. A. Khan, and S. S. Y. Wang, “Upwind conservative scheme for the Saint Venant equations,”

Journal of Hydraulic Engineering, vol. 130, no. 10, pp. 977–987, 2004.
[20] Q. Liang and A. G. L. Borthwick, “Adaptive quadtree simulation of shallow flowswith wet-dry fronts

over complex topography,” Computers & Fluids, vol. 38, no. 2, pp. 221–234, 2009.
[21] Y. Xing and C.-W. Shu, “High order finite difference WENO schemes with the exact conservation

property for the shallow water equations,” Journal of Computational Physics, vol. 208, no. 1, pp. 206–
227, 2005.

[22] F. M. Henderson, Open Channel Flow, Macmillan, New York, NY, USA, 1966.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


