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The error bound in probability between the approximate maximum likelihood estimator
(AMLE) and the continuous maximum likelihood estimator (MLE) is investigated for nonlinear
nonhomogenous stochastic system with unknown parameter. The rates of convergence of the
approximations for It6 and ordinary integral are introduced under some regular assumptions.
Based on these results, the in probability rate of convergence of the approximate log-
likelihood function to the true continuous log-likelihood function is studied for the nonlinear
nonhomogenous stochastic system involving unknown parameter. Finally, the main result which
gives the error bound in probability between the ALME and the continuous MLE is established.

1. Introduction

It is now well known that the parameter estimation is one of the foundational problems
in stochastic differential equations which are used to model practical systems that with
random influences. Since 1962, Arato et al. who first applied parameter estimation to a
geophysical problem in [1]. Various parameter estimation methods have been developed for
many advanced models with an increasing number of application to physical, biological and
financial systems. Over the past few decades, a lot of effective approaches have proposed
in this research area, see for example, [2-5]. In particular, maximum likelihood estimation
(MLE) gives a unified approach to estimation, which is well defined in the case of the
normal distribution and many other statistical models. Therefore the MLE technique has
been widely used for the parameter estimation problem of stochastic systems [6]. Byes
estimation (BE), which is a decision rule that minimizes the posterior expected value of a
loss function, has been developed in [7]. Since some inconvenience is encountered in the
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real-time application that location and scale parameters are not uniquely determined, M-
estimator has been studied toward the theory of robust estimation [8]. Other widely used
parameter estimation methods can be generally categorized as least squares estimation (LSE),
maximum probability estimation (MPE), minimum distance estimation (MDE), minimum
contrast estimation (MCE), and filtering method for parameter estimation, see for example,
[9-18] and the references therein.

In reality, nonhomogenous stochastic differential equations are useful for modeling
term structure of interest rates in finance and other fields. A large number of results have
been published in the literature on a variety of research topics including strong or weak
consistency and asymptotic efficiency as well as asymptotic normality on various parameter
estimators of nonhomogenous stochastic systems [19, 20]. On the other hand, recognizing
that nonlinearity is commonly encountered in engineering practice, the parameter estimation
problem for nonlinear nonhomogenous stochastic systems deserves more research attention
from both the theoretical and practical viewpoints and, accordingly, some promising results
have been reported. For example, weak consistency, asymptotic normality, and convergence
of moments of MLE and BE of the drift parameter in the nonlinear nonhomogenous It6
stochastic differential equations having nonstationary solutions have been studied in [21] for
the small noise asymptotic case. In [22], the martingale approach but under some stronger
regularity conditions has been used to study strong consistency and asymptotic normality
for nonlinear nonhomogenous stochastic system in the large sample case. It should be
pointed out that, so far, many parameter estimation methods and corresponding probability
properties have been widely investigated for nonlinear nonhomogenous Ito6 stochastic
differential equation with constant diffusion. Unfortunately, the parameter problem of
general nonlinear nonhomogenous system has gained much less research attention despite
its potential in practical application.

The stochastic processes which can be observed continuously over a specified time
period are first used to model real system for the most part [23, 24]. In practice, it is obviously
impossible to observe a process continuously over any given time period, due to the
limitations on the precision of the measuring instrument or to unavailability of observations
at every time point, and so forth. In other words, stochastic inference based on discrete
observations is of major importance in dealing with practical problems. Hence, parameter
estimation problem based on discrete observations has naturally become a hot topic in recent
years [25, 26]. An approximation method has been proposed based on the discretization of
the continuous time likelihood function in [27] for linear stochastic differential equation. A
numerical approximate likelihood method has been developed in [28] based on iterations of
the Gaussian transition densities emanating from the Euler scheme. [29] has used a specific
transformation of the diffusion to obtain accurate theoretical approximations based on the
Hermite function expansions and studied the asymptotic behavior of the approximate MLE.
Up to now, although some parameter estimation problems have been established based on
discretization scheme, how close are the discrete parameter estimator to the true continuous
one for general nonlinear nonhomogenous stochastic system has not been fully studied due
probably to the mathematical complexity, and this situation motivates our present paper.

Summarizing the above discussions, in this paper, we are motivated to study the
rate of convergence of the approximate maximum likelihood estimator (AMLE) to the true
continuous MLE for a class of general nonlinear nonhomogenous stochastic system with
unknown parameter. The main contributions of this paper lie in the following aspects. (1)
The Ité type approximation for the stochastic integral is introduced to obtain an approximate log-
likelihood function. (2) The rate of convergence of the approximation is investigated for It type
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integral. (3) The in probability rate of convergence of the approximate log-likelihood function is
established for the nonlinear nonhomogenous stochastic system involving unknown parameter. (4)
The error bound in probability of the ALME and the LME is studied for the nonlinear nonhomogenous
stochastic system. The rest of this paper is outlined as follows. In Section 2, the approximate
log-likelihood function is proposed and the problem under consideration is formulated. In
Section 3, several lemmas are given to analyze the rates of convergence of the approximations
for It6 and ordinary integral; furthermore, the main results are discussed to analyze the rate
of convergence of the approximate log-likelihood function and the error bound of the ALME
and the LME. Finally, we conclude the paper in Section 4.

2. Problem Formulation and Preliminaries

Consider the real valued diffusion process X;, t > 0 on (Q, ¥, {F}0, P) satisfying the
following stochastic differential equation:

dX, = 0f (t, Xy)dt + g(t, X,)dW,, (2.1)

where W;, t > 0 is a standard Wiener process adapted to ¥, t > 0 such that for 0 < s < ¢,
W — W, is independent of ¥;, 6 € © open in R is the unknown parameter to be estimated.
Let 6y be the true value of the parameter 6.

Throughout this paper C is a generic constant, we use following notations:

of o2 f o2 f o*f
= — = — = —_— = — = — 2.2
e A L I Ll A Ll 7o (22)

We assume the following condition:

(Al) f(-,-) and g(-,-) are Lipschitz continuous in X; € R uniformly in t € R, that is, there
exists a constant K > 0 such that

|f(t,X0) - f(EX2)|*V |8t X0) - g(t, X)|* < KIX1 - Xal, (2.3)

forany t € R; and Xj, X, € R.

(A2) f(-,-) and g(-,-) satisfy linear growth condition, that is, there exists a constant K > 0
such that

[fE&0P v gt < K(1+1aP), (24)

forany t € R, and x € R.

(A3)

: 2
[nf g°(t,X1) > 0. (2.5)
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(A4)

Vp>0, supE|f(t,Xe)|" <o, supE|g(t X)|" < co. (2.6)
(t.X) (t.X:) ’

(A5); f(:,-) and g(-,-) are continuously differentiable with respect to X; up to order j > 1
and

supIE|fx(t,Xt)|8 < o0, supI[~3|gx(t,Xt)|16 < oo,
0<I<T 0<t<T
2.7)

:s.lle]E|fxx(t,Xt)|8 < oo, sup E|gex(t, Xt)|16 < oo.
0<t<T 0<t<T

(A6), f(-,-) and g(-,-) are continuously differentiable with respect to t up to order k > 1

and
su1pIEl|ft(t,Xt)|4 < oo, supIE|gt(1?,Xt)|8 < oo,
0<t<T 0<t<T
) ) 2.8)
supE| fu(t, X))|" < oo, supE|gu(t, Xy)|" < oo.
0<t<T 0<t<T
(A7)
SUpE| fir (t, X0)|* <00,  supE|gi(t, Xi)|" < 0. (2.9)
0<<T 0<t<T
(A8)
E|Xo|® < o0. (2.10)

Remark 2.1. As (Al) and (A2) are established, it is well known that stochastic differential
equation (2.1) has a unique solution. Please see the details in [30].

Denote Xg ={X;, 0<t<T} Let PGT be the measure generated on the space (Cr, Br) of
the continuous functions on [0, T] with the associated Borel o-algebra Br generated under
the supremum norm by the process X] and P, be the standard Wiener measure. Under
assumptions (A3) and (A4), the measure PQT and POT are equivalent and the Randon-Nikodym
derivative of P} with respect to P is given by

0% (T f2(t, X))
Xy — — ————dty, 2.11
0 82(t/Xt) 2 0 gz(t/Xt) ( )

dPT T
9 —expl0 —f(t'Xt) d
ary
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along the sample path X/ Let

dry (T f(t,Xy) "X
Lr@) =log o =0 ) 500 -5 ) 2 X 212)

be the log-likelihood function. The maximum likelihood estimate (MLE) of 0 is defined as

B} 29 TrRex) )
Or = arg max Lr(0) {L 20, %) aX; L 2(,X) aty . (2.13)

Now, we study the approximation of the MLE 6r when stochastic X; is observed at the
discrete-time points 0 = tg) < t; <--- <t, =T witht; —ih, i =0,1,2,...,nsuch that h — 0
asn — oo. Itd approximation of the stochastic integral and rectangular approximation of the
ordinary integral in the log-likelihood (2.12) yields the approximate log-likelihood function:

1 IX 1 2 L ’X11
L0 -o{ S S x-S S e} e

1

The corresponding approximate maximum likelihood estimator (AMLE) is established as
follow:

-1
{Z ;((t; 11,})%1)) = Xii) }{Zé g 12 ; ti 1)} . (2.15)

The main purpose of this paper is to study the rate of the convergence of the
approximate log-likelihood functions and furthermore analyze the error bound in probability
between the AMLE and the continuous MLE.

3. Main Results

Firstly, let us give the following lemmas which will be used in the proof of our main results.

Lemma 3.1. Under the assumptions (A1)—(A4), (A5),, and (A6)1, one has

3
< CT—. (3.1)

1f_n2

fA(tia, Xicr) 1) o R Xt)
Z = ¢2(ti1, Xi- 1) fi1) = 0 §2(t, Xy)




6 Mathematical Problems in Engineering

Proof. By It6 formula we can derive that for t € [0, T],

2t Xe) B F2(tic, Xic1)
g2t X)) g2 (tie1, Xim)

_ J’t 2f (u, Xu) fu(, Xu) §* (4, Xu) —2f2(u,Xu)g(u,Xu)gu(u,Xu)du
tiq g4(urXu)

+J‘t Zf(u,Xu)fx(u,Xu)gz(u,Xu) —2f2(u,Xu)g(u,Xu)gx(u,Xu) 0f (1, X.)du

tia g (u, Xy)

+ ft [f)% (u/ Xu)gz(u/ Xll)+3f2(ur Xu)gazc(u/ Xll)_4f(u/ Xu)g(“/ Xu)fx (u/ Xu)gx(ur Xu)]du
b

t
[ X0 X0 o0, X0) = 20, X000, XD 0, X,

+J‘t Zf(u,Xu)fx(u,Xu)gz(u,Xu) —2f2(u,Xu)g(u,Xu)gx(u,Xu) AW
tia g*(u, Xu) !

t t
2 f F1<u,xu)du+f Fa(t, X)dW,,
i1

tiq

(3.2)
where

Fi(u,Xy) = Fui(u, Xy,) + Fio(u, Xy,) + Fi3(u, Xy) + Fua(u, Xy,),

Zf(u/ Xu)fu (u/ Xu)gZ(u/ Xu) - 2f2(u, Xu)g(u, Xu)gu(ul XM)

Fii(u, Xy) = (1, X0)

2f(u, Xy) fx(u, Xu)g2 (u, Xy) - 2f2(u, X)) g, Xy) g (1, Xy)

FlZ(urXu) = g4(u X )

6f (u, Xu),

Fis(u, Xy) = fa% (u, Xu)gz (u, Xy) + 3f2(u/ Xu)gjzc(u, Xu) —4f (u, X)) g(u, Xy) fr(u, Xu) gx (1, Xu),

Fia(u, X,) = f(u,Xu)gz(u,Xu)fxx(u,Xu) —fz(u,Xu)g(u,Xu)gxx(u,Xu).
(3.3)
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For Fi1(u,X,) and Fi3(u,X,), by assumption (A3), (A4), (A5)2, (A6);, and Holder’s
inequality, one has

f 2
E <J;H F11 (u, Xu)>

. f 21 (1, Xu) fut, X) (0, X,) = 201, X,)g 0, X810, X,) |\
ti g4(u/Xu)

t t t
< CEI fz(u, Xy)du + CE ffl (u, Xy,)du + CE gﬁ(u, Xy)du
ti1

ticq tig

<C,

¢ 2
E<L Fis(u, Xu>>

=E< t fr(u, X)) g% (u, Xu) + 3£ (u, Xu) g2 (1, X))

i
2
—4f(u, Xu)g(u/ Xu)fx(u/ Xu)gx (u, Xu)du>

t t t t
< CEI f4(u,Xu)du+CIEI g4(u,Xu)du+CE’[ fﬁ(u,Xu)du+CIEJ‘ gi(u, Xy)du
tia tiq ti1 tia

<C.
(3.4)

Similarly, we have

t 2 ‘ 2
E<J' FlZ(”rXu)> <C, E(J F14(u,Xu)> <C. (3.5)

This means

+ 2
E<f FH%XQ) <C. (3.6)
tiq
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Hence, it follows C, inequality that

&2 X TRwX) |
E ; g% (tio1, Xi- 1)( tit) = gz(t,Xt)dt

o[ A, X)) T F2(t,X0) 2
J U Ry .
’Zl L‘ 1 [g 2(tie1, Xi- 1)( 1) = 0 2t Xy) i
n_ i t ; )
=F ; L__1 Ut-_l Fi(u, X,)du + J;H F>(u, Xu)qu] dt

| N

ti

=E

(3.7)

2

t t
I J‘ F1 (u,X )du di’ +2E f Fz(u, Xu)qudt £ 2G1 + 2G2
tl 1 tl 1 tl 1

By assumptions (A3), (A4), (A5),, and (A6);, we obtain

2

t
J f Fi(u, X,,)dudt
tio Yt
n ti ot 2
<ED <f f Fl(u,Xu)dudt>
i=1 tiog J ti
n t; t t t
+E D (I f Fl(u,Xu)dudt> <I f Fl(u,Xu)dudt>
1=i#j \” tis1 7 tia tia J b

2

t
I Fi(u, Xy)dudt| dt

tiq

<]EZ(t —ti- 1)

tiq

n 4 ¢ 2 ; ; 2 1/2
+ 3 E(f f F1(u,Xu)dudt> E(f f Fl(u,Xu)dudt>
1=i#j tiog /i ti1 J tj

2
dt

Si(t _tl 1) E

ti1

2 » 2 1/2
{(t —tl 1)I <I F1(u,Xu)du> dt(tj—tj_l) Jt] E(It Fl(u,Xu)du> dt}

j-

t
f Fy(u, X,,)dudt

ti1

1/2 T3
(t -t 1) +C Z { i — ti_l)S(tj—t]'_l)B} <C—.
1=i#j
(3.8)
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Due to the orthogonality, It6 isomorphism, the Cauchy-Schwarz inequality, assumption (A3),
(A4), and (A5)1, we get

2
G, =E

t
f f Fa(u, X,) AW, dt
iy Vb

n 2
< Z<I f Fy(u, X,,)dW,, dt>
xl
n t; t tj t
+ Y ]E<f f Fz(u,Xu)qudt> <f j Fz(u/Xu)qudt>
1=i#j tig J b tia / tj

; 2
< Z(t —ti1) EI Fo(u, X,,)dW, dt| dt
tia ti (39)
<t [ [ ER X Paua
i=1 tii /b
n t;
SCY(ti—tia) | (t—tig)at
i=1 ti
n
< CZ (t; — i)’
i=1
T3
< Cﬁ‘
Obviously, it follows from bounds for G; and G, that
tis, Xi- 2(t, X T3
Z fA(tia, Xicr) 1) Sty - T A t)dt <ct. (3.10)
1 8 (tl 1, Xi- 1) 08 (t/Xt) n
The proof is now complete. O

Next, we will go on to analyze the rate of convergence of the approximations for It6
integral whose result will be used in the following theorems.

Lemma 3.2. Under the assumptions (A1)—(A4), (A5),, (A6)y, (A7), and (AS), one has

T3
th <C—. (3.11)

)

o f (i, Xe)
= g(tio, X, ,)

T f(t, Xy)

(Wii - Wtiq) - g(t/ Xt)
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Proof. Let o, be the partitionsr, =0 =ty <t <---<t, =T, t; =ih, i =0,1,...,n such that
h — 0. Define S and S,, as

T £2(t Xy)
0 §2(t Xy)

ftio, Xi,,)
— (W, — W,._,).
Zg(tl 1/Xt11) f t‘_l)

(3.12)

Let o}, be a partition which is finer than r,,, obtained by choosing the mid point #;_; from each
of the interval t;_; < f;.4 < t;,i=0,1,--- ,n. Let 0 = ty <ty <--- <t, =T be the points of
subdivision of the refined partition ur;,. Define the approximating sum S, as before. We take
two steps to prove the assertion in this lemma.

Step 1. We will first obtain the bounds on E|S,, — S, [*.

Let0 <% <t <t < T be three equally space points on [0,T] and let us denote Xi by
Xiand Wy by W;, i=0,1,...,n. Define

f<?0/X0 {f<N1/X1> f ?O,XO>
H=—- (W2 = Wy) - ~ (W — Wq) + —= (W1 — W)
g<t01X0> g( 1,X1> g(to,X0>
(3.13)
{f(FOIX()) f<~1,X1> }
= (W -Wy) - - — .
g(tO/XO) g( 1,X1>
Denote
i X0 4. (3.14)

fo g(t/ Xt)

Applying the Taylor expansion, one has

f(Bo.Xo)  f(B,X1)

Smx) s

=(Xo - Xl)f%gg_—zgxfcl,xo + (?0 —?1>ftgg+:tf(fl,xl>

2 _ _ _
. % (X, - x,2 o8 = gef )gg42(fxg 8:S)88x (o xo)
. 1(;0 ~ ;1>2 (fug® —guf)g —2(fig— gtf) g8 X7
2 g*
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(fixg = f&IX — fo&t — f18x) 8" +2f 8 Q18x
g4

= —(W1 - W() +1)%—2gJ<?1,X1> + <’{0 —?1)%—2gJ<?1,X1>

+ (io - ?1> (Xo - X1) (", X%)

2 (fix8” — 8xxf)8 — 2(fx8 — 8+f) 88~
g4
+ %(fo _ ’[1>2 (fug® - gnf)g ;42(ft8 - 8f)8s8

X)) (fixg = fQIX — fx&t — f18x) 8" + 2/ 8818«
g4

1
+5(Xo-X1) (,X")

(£, X)

+ <?0 - ?1) (XO - (t*/X*)/

(3.15)

where |X1 — X*| < |Xo - Xu|, |l -] < |fo - f1]-
Relations (3.15) to (3.13) show that

H=-(W,- Wl)If%:—zgxfcl,)Q) +(Wy - W1)<?0 —;1>ftgg+gtf<?lle>

72 (frx8” — 8uxf) 8~ 2(fx8 — 8xf)88x
g4
2(fug”—guf)8 —2(fig - &1 f)gs
g4
(fixg = f8tx — fu8t — f182) & +2f 818
g4

(", X")

+ (W2 - W1)%(X0 -Xi
(3.16)

+(W> _Wl)%(EO —?1> (t*,X*)

+ (Wo =Wy (B —F ) (Xo - X1) (,X").

Notice that H’s corresponding to different subintervals of [0,T]-generated by i, form a
martingale difference sequence. Observe that

E[H? = E(W, - Wl)zE{ - If"gg_—zg"f(a,xl) + (7o —?1)ftgg+’*f(a,xl)

2 _ _ —
.\ % (X — x,)2 S8 gxxf)gg42(fxg 8:S)88x 1o oy
. 1(;0 ~ ?1>2 (fug” —8nf)g—2(fig— gf)88 (X7
2 g*

) 2
+<;0 - ?1> (Xo - Xl)—(S)g . ifggtgx (", X%)
8
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ca(n-t) {E(Iﬂgg%ﬂa,xl)f (bR 5(EE5 ) )

2
.\ }L]E [(XO X! < (fx8® = gxxf)g;(fxg ~8:/)88x 0 X*)> ]

. 41;(?0 ~ ?1>4IE< (fitg” - 8nf)g —42(ft8 -8f)8s (t*,X*)>
8

2
+<}“0 _ ?1>2]E (Xo - X1)2 M(t*r)(*)
g
1/2

e _a>{ Jore(25287 1)) | ot m(BE28 ) )

g7 1/2
. le [E(XO _ X1)8E< (fix8® - gxxf)gg—f(fxg ~ 8:f)88x (t*,X*)> ]

. %(;0 ~ ?1>4E< (fitg” - 81f)g —42(ft8 - 81f)88 (t*,X*)>
8

47 1/2
+<?0 - ?1>2 E(Xo - X1)'E CF g+ 7.8 ifggtgx (t*, X*)
g

<a(h-F) { (ert) | (ere ()" + (Bgd(Rxa)) " (B (1)) ]
+ (B —?1)2c [(Eff(ﬁ,xl»l/z + (ng(?l,xl»l/z + (Ef4<f1,X1>>1/2]

+ 3 (B0 -x0%) | (Bt x) " + (ke x0)

1/2

1/2 1/2

+ <Ef8(t*,X*)> + <Ef,§(t*,x*))

+<]Ef;6 (t*,X*)>1/2] 1/2

1/2 1/2

+ %(?o - ?1>4C [(Efg(t*/x*)y/z . <ngt(t*,X*)> + <Eft4(t*,X*)>

1/2

+<Egt4(t*,X*)>1/2 N <Egt8(t*/X*)> ]
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« () [eca-x0"] | (Bre, X)) s (Bgher, x0)

(A0 X))+ (E(Ex))

(o (050)) "+ (msi () ] /}

(3.17)
where S denotes fixg — fQix — fx§t — fix-
By Theorem 4 of [31], for any 0 < s <t < T, there exists C > 0 such that
E(X; - X,)" < c(]EXgm + 1>(t —8)", m>1 (3.18)
Hence
E(X; - X,)® < C<IEX§ + 1>(t —s)4,
(3.19)

E(X; - X)* < C(Exg + 1) (t—s)™
Furthermore by (A2) and (A3), we have
LX)
EI*=FE ot
fo g(tr Xt)
h
< CE< i Xt)dt>
to

< CE<f (1+ |Xt|2>2dt> (3.20)

to

< C(ﬂ —?0>4sup]E<1 + |Xt|2>2

0<t<T

Thus

E(H)? < c(?2 - ?1) (?1 - ?0)2. (3.21)
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Using the property that H corresponding to different subintervals forms a martingale
difference sequence, it follows that

3
E|Sx, - Sr |* < C;‘:—, (3.22)

for some constant C > 0.
Step 2. We will show now the bounds on E|S,, — S 1.

Let ), p > 0 be the sequence of partitions such that 2

i+1) . .
ﬂ',(f ) is a refinement of T

by choosing the midpoint of the subintervals generated by x{". Note that ) = i, and
) = a;,. The analysis given above proves that

2 T3
E|Sx, (p) = Smpsn | < Copss P20, (3.23)

where S, (p) is the approximation corresponding to m',(lp )and S 7,(0) = S,
Therefore, applying the Holder inequality and the Minkovski inequality, one gets

E|Su, (0) = Srype|”

2
< E[Z(Sn‘n(k) - 57r,,<k+1>)]

k=0

M=

2
1/2
(EISm(k) = Sra(ks1) |2) ] (3.24)

IN
M-~
VRN

N Ee)
<
33
~_~
=
N
—_

forallp > 0. Letp — oo. Since the integral S exists, S, (p+1) convergesin £, to Sasp — co.

Note that .F,(,P+1), P > 0 is a sequence of partitions such that the mesh of the partition tends to

zero as p — oo for any fixed n.
Thus

3

2 T 3.25
E|S., - S| SC2,,—n2, p>0, (3.25)
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where

. T ft, Xt)
S=1mS,, = adw;. (3.26)
n—oo 0 g(t Xt)

The proof is now complete.

Theorem 3.3. Under assumptions (A1)-(A4), (A5),, (A6),, (A7), and (A8), one has

s o
ELyr(6) - Lr(O) < C,

(3.27)
! ! 2 T3
E|L,0) - L7(0)] <C .
Proof. By the analysis given above, one has
|Lu7(6) — Lz (6)
o f(tio1, X4 y) T f(t,X)
=10 — (X - X; ) - X
' [; gz(ti—llem)( ! tH) 0 gz(t/Xt) '
Tf2 (i, Xy, T £2(t,X ?
- Zfz( 1 tz—l)(ti_ti_l)_ f2( t)dt
2 i1 8 (ti—llXtifl) 08 (t/Xt) (328)
2(tii1, X 2(t, X,
Zf( 1 tll)(t—tm) J'f( t)t
18 (tl 1'th 1) £ Xi)
tii, Xi, t, X
+2922f( 1 t’)(W W) - T Xs) W
= g2(ti, Xi,,) 0 g2(t, X¢)
Hence, it follows from Lemmas 3.1 and 3.2 that
E|L,r(6) - Lr ()
9 frltio, X)) 1) ) J' 2, Xt) p
—tiq) -
<7 " 4 2(ti1, Xy, 1) 2(t, Xi)
f (i, X ) £t Xi) 029
L tig, Xy, t, Xy
+26°E L (W, . —I W
; 82(ti—1,Xti71)( Y g2 (t, Xy)
T3
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Next, note that

2
L,7(6) - L7(0)|

f(tlllthl)
(X; - Xi.,
'Zgull,xtll) %)

Ao, X)) 1) ~ F(tXy) T Xy ]I
Z = g2 (tig, Xi,. 1) i) - Uo g2(t, Xt)dX 0 £2(¢, Xt)dt]' (3.30)

T fZ(t/Xt) ?
(1-6)? (ti —ti1) — . —gz(t,Xt)dt

f (tl 1/Xt11)
Zg (tl 1/Xt,1)

Z SEuXi) oy, ) - f S6X0 g f

T 8 (b, X 82t Xi)
Similarly, by Lemmas 3.1 and 3.2, we obtain
2 T3
E|L,7(6) - Ly.(8)| < Cse (3.31)
The proof is now complete. O

Remark 3.4. The rate of convergence of the approximations for It6 and ordinary integral
have been investigated in Lemmas 3.1 and 3.2. Based on these analysis results, the rate
of convergence of the approximate log-likelihood function for nonlinear nonhomogenous
stochastic system with unknown parameter has been established in Theorem 3.3. It should
be pointed out that the corresponding approximate result gained in [27] is the special case
for linear stochastic differential equation, furthermore, the conclusions in [9] also can be
regarded as a special example under the result in Theorem 3.3 for nonlinear nonhomogenous
stochastic system with constant diffusion.

Finally, we will study the error bound in probability between the AMLE and the
continuous MLE for nonlinear nonhomogenous stochastic system with unknown parameter.

Theorem 3.5. Under assumption (A1)—(A4), (A5)2, (A6),, (A7), and (A8), one has
T3
E|6,r - 07> < C—. (332)
n

Proof. We know 6,17 and Or are the solutions of equations L;/T(G) = 0 and L3.(0) = 0,
respectively.
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Hence, one gets

|8n,T - 6T|2

S (f o, Xy ) / &2 (tim1, X)) (X — X, y) B foT (f(t, Xe)/ g(t, X)) dX; ’

Sl (P, X ) /82 (i, X)) (b= tion) 1 (28, X0)/ @2(E, Xo) )t

Z?:l (f(ti_l/Xtifl)/g(ti—llxtifl)) (Wti - Wtifl) _ Jg (f(t’ Xt)/g(t’ Xt))dwt ’

S (P, X))/ 82 (i, X)) (b= tion) [T (F2(E X0 / 28, X)) dt

S (b, Xo) / gkt X)) (Why = Wa) = J1 (F (6, X0) / (8, X)) dW,
Z?:l (f2(ti—1f Xti—l)/g2(ti_l’ Xti—l)) (ti - ti—l)

_foT(f(t/ Xi)/g(t, X)) dW, [ S (f2(tia, Xiy) / 82 (e, Xiy) ) (B — tim1) — 4] ’
[0 (F2 (b, Xoa) /82 (tit, X)) (b — £i1)] [y (F2(8 X0) /2 (E X0)) dlt

<2

S (f b, X)) /8 ki1, X)) (We, = Wi ) = fo (F(6,X0) /8 (8, X)) AW, ’
S (f2 (b1, X4, / 82 (bica, Xi ) ) (B — tica)

foT(f(t/ X1)/g(t, Xe)) AW [, (f* (b, Xey ) / 87 (b, Xiy)) (i = ticn) — A] ’
[y (f2(tier, Xy ) / &2 (bica, Xi ) ) (B — tio1) ] fOT (f2(t, Xe)/ g2(t, Xy) ) dt '

+2

(3.33)

As we know that 3" (f2(ti-1, X4, ,)/ > (tic1, Xi,,)) (ti — tic1) > 0, so there exists a
constant C > 0 such that

1
<
S (f2(tic1, Xi ) /8% (tie1, X)) (B = tio1) —

C. (3.34)

Therefore, applying It6 isomorphism, the Cauchy-Schwarz inequality, Lemmas 3.1 and 3.2,
we obtain

E|6,,1 — 07

Z?:l (f(ti—ll Xti—l)/g(ti_llxti—l)) (Wti - Wtifl) - foT (f(t/ Xt)/g(t/ Xf))dwt ’

< 2Kk
- S (f2 ki, Xiy) /82 (ki X)) (B = ia)

2

fOT (f(t, Xe)/ g(t, X)) AW, [ (f2(tim1, Xy ) / 2 (ti1, Xi ) ) (B — tica) — A
(X (f2 (i, Xy ) / 82 (i1, Xi ) (B = ti1)] foT (f2(t, X4)/ g2(t, Xy))dt

+ 2
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2

n T
S C]E Z(f(tiflfxfi-l)/g(ti—lrXfi—l)) (Wfi - Wti-l) - f (f(t/ Xt)/g(tr Xt))th
i=1 0
n T 2
+ CE| Y (f2(t0, X4,/ 82 (bt X)) (b = i) - f (£, X0/ g3t X)) dt
i=1 0
T3
S C;/
(3.35)
where o denotes _[OT(fz(t, X1)/ g (t, Xy))dt.
The proof is now complete. O

Remark 3.6. Up to present, the rate of the convergence of the approximate log-likelihood
functions and the error bound in probability between the AMLE and the continuous MLE
have been obtained for the nonlinear nonhomogenous stochastic system with unknown
parameter. As well, the corresponding results gained in [9, 27] are the direct conclusions
after applying Chebyshev’s inequality on (3.32).

4. Conclusions

In this paper, we have investigated the error bound in probability between the ALME and
the continuous MLE for a class of general nonlinear nonhomogenous stochastic system
with unknown parameter. The rates of convergence of the approximations for It6 and
ordinary integral have been derived under some regular assumptions. On the basis of these
analysis results, we have studied the in probability rate of convergence of the approximate
log-likelihood function to the true continuous log-likelihood function for the nonlinear
nonhomogenous stochastic system involving unknown parameter. Finally, the main result
which gives the error bound in probability between the ALME and the continuous MLE
has been established. It should be noted that one of the future research topics would be
to investigate the asymptotic normality of the ALME for the nonlinear nonhomogenous
stochastic system with unknown parameter mentioned in this paper.
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