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This paper presents a precision fault reconstruction scheme for a class of nonlinear systems involv-
ing unknown input disturbances. First, using the coordinate transformation algorithm, the distur-
bances and faults of the system are fully decoupled. Therefore, it is possible to eliminate the influ-
ence of disturbances to the system, namely, better disturbances robustness. On this basis, the design
of a sliding mode state observer makes the most genuine reconstruction realizable, instead of esti-
mation of faults. Furthermore, with the equivalent principle of sliding mode variable structure, the
precision reconstruction of arbitrary nonlinear faults is achieved. Finally, the applications of fault
reconstruction in a third-order nonlinear theoretical model with disturbances and in a single-link
robot system, respectively, have demonstrated the validity of the proposed scheme.

1. Introduction

Fault detection and isolation (FDI) has been studied for more than three decades, and many
approaches have been proposed to solve this problem for nonlinear systems [1, 2]. Among
themodel-based FDI approaches, the observer-based technique [3] is themost popular. Many
different models have been used to generate the so-called residual vector that provides amea-
sure of the deviation between estimated and measured signals. In general, a fault is declared
if the length of the residual vector exceeds a certain threshold value [4, 5]. A useful alternative
to residual generation is fault reconstruction, which not only detects and isolates the fault, but
also provides an estimate of the fault so that its shape and magnitude can be better under-
stood [6, 7]. A consequence of fault reconstruction is that more precise corrective action can
be taken. This approach is very useful for incipient faults and slow drifts, which are very
difficult to detect. Also, the detail of the fault’s shape, obtained from fault reconstruction,
can significantly facilitate the fault tolerant control (FTC) design. The notion of fault
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reconstruction has been considered inmany papers andmuch pioneering research in this area
has been published [8–11]. It should be emphasized that fault reconstruction is still very chal-
lenging for many nonlinear systems, especially considering model uncertainties, noise, and
other types of disturbances. Therefore, it is necessary to design a scheme so that the recon-
struction is robust to disturbances in nonlinear systems.

It is well known that sliding mode control exhibits high robustness to system distur-
bances [12], thus the sliding mode observer (SMO) for linear uncertain systems has been
extensively studied. Recently, attention on SMO has shifted to that for nonlinear uncertain
systems [13, 14]. Moreover, sliding mode techniques have been successfully used for FDI [9,
15, 16] and have been shown to be effective for fault reconstruction. Edwards et al. [6] imple-
mented fault reconstruction by means of SMO but with no explicit consideration of the dis-
turbances. In contrast, an observer-based fault reconstruction algorithm has been presented
[17]which minimizes the L2 gain from disturbances using linear matrix inequalities. Floquet
et al. [18] and Ng et al. [19] have also presented their fault reconstruction solutions with
consideration of disturbances. Chen et al. [20] have presented new diagnosis observer tech-
nology for nonlinear systems by the integration of Thau observer and SMO. Yan and Edwards
[21] have proposed a sensor fault reconstruction method for nonlinear systems based
on slidingmode variable structure, in which the size of convergence domain is determined by
the bound of disturbances.

The higher the reconstruction precision of fault is, the more comprehensive and
accurate the acquired fault information will be, which lays a good foundation for realization
of high accuracy FTC. However, the results of SMO-based fault reconstruction generally can
only be used for estimation of the fault signal when considering disturbances. How to per-
form precise fault reconstruction in nonlinear systems with disturbances has become a more
challenging method compared with all other methods above mentioned. The goal of the so-
called precise robust fault reconstruction has been described to make the systems not only
reconstruct any form of fault signals with any required precision, but also be insensitive
to disturbances [6, 8]. Pertinent references have been published about this goal. A precise
fault reconstruction approach based on the equivalent output error injection concept has been
proposed, considering only linear systems with no disturbances [22]. A robust actuator fault
reconstruction scheme has been presented [8] using the characteristics of the uncertain struc-
ture and fault distribution. Jiang et al. [23] have proposed a fault-estimation scheme for a class
of systems with disturbances. A robust fault-detection method for nonlinear systems with
disturbances has been proposed [24]. It should be noted that almost all the mentioned
approaches involving disturbances are actually concerned with fault estimation instead of
precise reconstruction. An exception has been proposed based solely on the assumption that
the disturbance is an unknown constant parameter [25].

Disturbance decoupling techniques have also been used in robust fault diagnosis in
recent years. Two fault reconstruction schemes based on these techniques considering only
linear systems have been proposed [10, 26]. Under geometric conditions, Yang et al. [27] have
presented robust FTC schemes. In the FTC, nonlinear system is transformed into two subsys-
tems, which are suitable for both the observer and the design of FTC law. Other schemes
have been proposed with unknown input observers (UIOs) and eigenvector assignment
[28, 29]. As a disturbance decoupling method, coordinate transformation has obtained good
results in robust fault diagnosis. Marino and Tomei [30] have presented this method for non-
linear systems with the design of related adaptive observers. Corless and Tu [31] and Chen
and Chowdhory [31, 32] have presented the disturbance decoupling method for linear
systems with disturbances, respectively, first considering state and input estimation area,
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then considering fault diagnosis. It’s easy to say that all the FDI proposals depend on the
analytical redundancy method to detect and isolate the faults [28–32].

Building on the work of Corless and Tu about the coordinate transformationmethod in
[31] and considering a class of nonlinear systems with uncertain mode and disturbances, this
paper innovatively presents precisely the fault reconstruction method based on disturbance
and fault complete decoupling. To fulfill the above scheme, the first step is making one of the
subsystems free from disturbances, which lays a foundation for the realization of the decou-
pling of disturbances and faults. The second step is designing SMO for the two subsystems,
respectively, by the use of equivalent principles, with which the precise reconstruction of
faults can be realized. The efficiency of this proposed two-step algorithm has been illustrated
in this paper by simulation examples.

This paper is organized as follows: Section 2 describes the considered nonlinear sys-
tem, Sections 3 and 4 investigate and present the coordinate transformation method and the
design of SMO for the given nonlinear system, respectively, Section 5 proposes themethod for
reconstruction of faults, and finally Section 6 shows two examples of application and draws
the conclusion of this paper.

Notation. Throughout this paper the notation ‖ · ‖ is used to represent the Euclidean
norm for vectors and spectral norm for matrices. λmax(·) and λmin(·) refer to the largest and
the smallest eigenvalues of (·).

2. Description

Consider a nonlinear system described by

ẋ(t) = Ax(t) + f(x, u, t) + E
(
y, u

)
fa(t) +Dd(t) + Bu(t), (2.1)

y(t) = Cx(t), (2.2)

where x(t) ∈ Rn is an immeasurable state vector, u(t) ∈ Rm and y(t) ∈ Rp are measurable
input and output vectors, respectively, f(x, u, t) ∈ Rn is a known nonlinear function, and
d(t) ∈ Rq is an unknown nonlinear function representing unknown input disturbances in
the system, such as nonlinearities, unmodeled dynamics, or uncertainties. D ∈ Rn×q is the
known distribution matrix of disturbance. fa(t) is an unknown nonlinear function represent-
ing actuator fault, and E(y, u) ∈ Rn is the known distribution matrix of actuator fault. A ∈
Rn×n, B ∈ Rn×m, and C ∈ Rp×n are known matrices, where n > p > q.

Throughout, the following assumption will be made.

Assumption 2.1. D is a column full rank matrix, and rank(CD) = rank(D).

Remark 2.2. For the disturbance distribution matrix D, if being a column full rank matrix
condition cannot be met, for example, rank(D) = q1 < q, then a rank decomposition Dd(t) =
D1D2d(t) can be applied, where D1 is a column full rank matrix and d1(t) = D2d(t) can
be considered as a new unknown input disturbance. Note that for satisfying the condition
rank(CD) = rank(D), the number of rows of matrix C must not be less than the number of
the columns of matrix D, which is also a common assumption of the fault diagnosis method
of UIO [1, 33, 34]. For a scalar input and output system, this condition is equivalent to the
requirement that the transfer function G(s) = C(sI −A)−1D has relative degree equal to one
[31].
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Assumption 2.3. (A,C) is observable.

Assumption 2.4. Fault in the system is a bounded function such that ‖fa(t)‖ ≤ γ2, where γ2 is
a known function.

The objective of this paper is to precisely reconstruct fault of actuator fa(t) by
measurable output vectors y(t) and measurable input vectors u(t).

3. Coordinate Transformation

The purpose of coordinate transformation is to decouple unknown input disturbances and
fault under certain geometric conditions.

Assumption 2.1 ensures the existence of two transform matrixes Tand S [31, 32] such
that

x(t) = T−1z(t) = T−1
[
z1(t)
z2(t)

]
, y(t) = S−1

[
v1(t)
v2(t)

]
(3.1)

and system (2.1) and (2.2) can be accordingly transformed as

ż(t) =
[
ż1(t)
ż2(t)

]
= TAT−1z(t) + Tf(x, u, t) + TEfa(t) + TDd(t) + TBu(t), (3.2)

v(t) =
[
v1(t)
v2(t)

]
= SCT−1z(t), (3.3)

where C22 is the invertible matrix

SCT−1 =

[
C11 0
0 C22

]

. (3.4)

By using the matrix blocks on (2.1), we get

ẋ(t) =
[
ẋ1(t)
ẋ2(t)

]
=
[
A11 A12

A21 A22

][
x1(t)
x2(t)

]
+
[
f1(x, u, t)
f2(x, u, t)

]
+
[
E1

E2

]
fa(t) +

[
D1

D2

]
d(t) +

[
B1

B2

]
u(t), (3.5)

where x1(t) ∈ Rn−q, x2(t) ∈ Rq, A11 ∈ R(n−q)×(n−q), A12 ∈ R(n−q)×q,A21 ∈ Rq×(n−q), A22 ∈ Rq×q,
D2 ∈ Rq×q, E1 ∈ Rn−q, E2 ∈ Rq.

D2 can be designed as a nonsingular matrix sinceD is a column full rank matrix. Then
each matrix in (3.2) is

TAT−1 = A =

[
A11 A12

A21 A22

]

, TB = B =

[
B1

B2

]

, TD = D =

[
0
D2

]

,

TE = E =

[
E1

E2

]

, Tf(x, u, t) = f(x, u, t) =

[
f1(x, u, t)
f2(x, u, t)

]

.

(3.6)
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A nonsingular transformation matrix T is selected as

T =
[
In−q −D1D

−1
2

0 Iq

]
, (3.7)

where In−q is an (n − q) × (n − q) identity matrix and Iq is a q × q one [32, 35].
System (3.2) can be rewritten in a condensed form:

[
ż1(t)
ż2(t)

]
= Az(t) + f(x, u, t) + Efa(t) +Dd(t) + Bu(t), (3.8)

where A11 = A11 − D1D
−1
2 A21, A12 = (A11 − D1D

−1
2 A21)D1D

−1
2 + A12 − D1D

−1
2 A22, A21 = A21,

A22 = A21D1D
−1
2 + A22, f1(x, u, t) = f1(x, u, t) −D1D

−1
2 f2(x, u, t), f2(x, u, t) = f2(x, u, t), E1 =

E1 − D1D
−1
2 E2, E2 = E2,D2 = D2, B1 = B1 −D1D

−1
2 B2, B2 = B2.

Systems (2.1) and (2.2) can be decomposed into the following two subsystems accord-
ing to systems (3.3) and (3.8):

ż1(t) = A11z1(t) +A12z2(t) + f1(x, u, t) + E1fa(t) + B1u(t),

v1(t) = C11z1(t),
(3.9)

ż2(t) = A21z1(t) +A22z2(t) + f2(x, u, t) + E2fa(t) +D2d(t) + B2u(t),

v2(t) = C22z2(t),
(3.10)

where z1 ∈ Rn−q, z2 ∈ Rq, A11 ∈ R(n−q)×(n−q), A12 ∈ R(n−q)×q, A21 ∈ Rq×(n−q), A22 ∈ Rq×q,C11 ∈
R(p−q)×(n−q), C22 ∈ Rq×q, A21 ∈ Rq×(n−q),A22 ∈ Rq×q, C11 ∈ R(p−q)×(n−q), C22 ∈ Rq×q, E1 ∈
Rn−q, E2 ∈ Rq, v1 ∈ Rp−q, v2 ∈ Rq, E1 is a nonzero matrix.

Using the above transformation, the original system is converted into two subsystems.
One of the subsystems shown in subsystem (3.9), which is decomposed from systems (2.1)
and (2.2) by coordinate transformation, contains only fault fa(t) explicitly but no distur-
bances d(t). The effect of disturbances d(t) on subsystem (3.9) is transferred away from the
subsystem by state vector z(t), and the effect on the subsystem can also be eliminated by the
following proposed observer design scheme, thus the complete decoupling of disturbances
and fault is realized.

4. Design of Observer

Prior to presenting the observer design, the following assumptions shall be made to the trans-
formed systems (3.9) and (3.10).

Assumption 4.1. (A11, C11) and (A22, C22) are observable [32].
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Assumption 4.2. For functions f1(x, u, t) and f2(x, u, t), there exist two positive constants γ3
and γ4 such that

∥
∥
∥f1(x, u, t) − f1(x̂, u, t)

∥
∥
∥ ≤ γ3‖z − ẑ‖,

∥
∥
∥f2(x, u, t) − f2(x̂, u, t)

∥
∥
∥ ≤ γ4‖z − ẑ‖. (4.1)

Remark 4.3. Assumption 4.1 is not a very strict condition. The engineering examples given
in [32] and an actual single-link robot system described in the subsequent Example 6.2 can
meet this condition. Assumption 4.2 is the known Lipschitz condition, which is typically
required in the literature on FDI for nonlinear systems, for example, [2, 14, 23]. Indeed, this
global condition is strong, and globally Lipschitz nonlinear systems are only a limited class
of nonlinear systems. However, since some kind of nonlinearity can be treated as unknown
input disturbances [36], system (2.1) could represent a broader class of nonlinear systems
than it first appears.

For subsystems (3.9) and (3.10), two SMOs are designed, respectively, as follows:

˙̂z1(t) = A11ẑ1(t) +A12ẑ2 + f1

(
T−1ẑ, u, t

)
+ B1u(t) + E1w1(t) + L1(v1(t) − v̂1(t)),

v̂1(t) = C11ẑ1(t),
(4.2)

˙̂z2(t) = A21ẑ1(t) +A22ẑ2(t) + f2

(
T−1ẑ, u, t

)
+ B2u(t) + E2w2(t) + L2(v2(t) − v̂2(t)),

v̂2(t) = C22ẑ2(t),
(4.3)

where superscript “Λ” indicates estimate value, andw1(t),w2(t) represents the input signals
of SMOs, whose expressions are

w1(t) =

⎧
⎨

⎩
−ρ1 F1(v̂1(t) − v1(t))

‖F1(v̂1(t) − v1(t))‖ if v̂1(t) − v1(t)/= 0

0 if v̂1(t) − v1(t) = 0,
(4.4)

w2(t) =

⎧
⎨

⎩
−ρ2 F2(v̂2(t) − v2(t))

‖F2(v̂2(t) − v2(t))‖ if v̂2(t) − v2(t)/= 0

0 if v̂2(t) − v2(t) = 0,
(4.5)

where matrices F1, F2, which are the observer gains, and ρ1, ρ2, which are the two positive
scalars, are all to be designed.

From Assumption 4.1 we know that there exist matrices L1 and L2 which make A01

and A02 stable matrices:

A01 = A11 − L1C11, A02 = A22 − L2C22. (4.6)

There also exist the following two Lyapunov equations:

AT
01P1 + P1A01 = −Q1, AT

02P2 + P2A02 = −Q2, (4.7)

where P1, Q1, P2, and Q2 are all symmetric positive definite (SPD)matrices.
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Assumption 4.4. The matrices P1, P2, F1, and F2 have to be chosen such that

P1E1 = C
T

11F
T
1 , P2E2 = C

T

22F
T
2 . (4.8)

Remark 4.5. Assumption 4.4 is a quite general assumption of SMO [6, 33]. The sufficient
condition of existing matrix Pi is that transfer function Gi(s) = FiCii(sI − A0i)

−1Ei is strictly
positive real (SPR). A known necessary condition for making Gi(s) an SPR is that (Aii, Cii) is
observable andCiiEi is a column full rankmatrix. It should be noted thatCiiEi being a column
full rank matrix is a standard assumption for fault isolation problems [2, 34], where i = 1, 2.

Assumption 4.6. d(t) represents the matching bounded disturbance, that is, D2d(t) = E2d(t),
‖d(t)‖ ≤ γ1, where γ1 is a known scalar function.

Define e1(t) = ẑ1(t)−z1(t), e2(t) = ẑ2(t)−z2(t) as the state estimation errors and ev1(t) =
v̂1(t) − v1(t) = C11e1(t), ev2(t) = v̂2(t) − v2(t) = C22e2(t) as the output estimation errors. Based
on (3.9), (3.10), and (4.2) and (4.3), the corresponding observation-error dynamic equations
are given by

ė1(t) =
(
A11 − L1C11

)
e1(t) +A12e2(t) + f1

(
T−1ẑ, u, t

)
− f1

(
T−1z, u, t

)
+ E1

(
w1(t) − fa(t)

)
,

(4.9)

ė2(t) =
(
A22 − L2C22

)
e2(t) +A21e1(t) + f2

(
T−1ẑ, u, t

)
− f2

(
T−1z, u, t

)

+ E2w2(t) − E2fa(t) −D2d(t).
(4.10)

Prior to presenting the lemma, we give the following notations:

μ1 = λmin(Q1) − 2γ3λmax(P1), μ2 = λmin(Q2) − 2γ4λmax(P2),

μ3 = λmax(P1)
(
γ3 +

∥∥∥A12

∥∥∥
)
, μ4 = λmax(P2)

(
γ4 +

∥∥∥A21

∥∥∥
)
.

(4.11)

The convergence of the above observer is guaranteed by the following lemma.

Lemma 4.7. Consider the system described by the subsystems (3.9), (3.10) and its observer described
by the SMOs (4.2) and (4.3). Under Assumption 2.4 and Assumptions 4.1–4.6, if μ1 > 0,μ2 > 0,√
μ1μ2 > μ3 + μ4 and the parameters of the observer are selected according to the following criteria:

ρ1 > γ2, (4.12)

ρ2 > γ1 + γ2, (4.13)

then the two observers, SMOs, (4.2) and (4.3) are asymptotically convergent, that is,

lim
t→∞

e1(t) = 0, lim
t→∞

e2(t) = 0. (4.14)
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Proof. Consider the following Lyapunov function:

V1(t) = eT (t)Pe(t), (4.15)

where P =
[
P1 0
0 P2

]
, P1 and P2 are given by (4.7), and e(t) =

[
e1(t)
e2(t)

]
.

Along the trajectory of systems (4.9) and (4.10), the derivative of the Lyapunov
function with respect to time is

V̇1(t) = eT1 (t)
(
AT

01P1 + P1A01

)
e1(t)

+ 2e1(t)TP1

(
A12e2(t) + f1(ẑ, u, t) − f1(z, u, t) + E1

(
w1(t) − fa(t)

))

+ eT2 (t)
(
AT

02P2 + P2A02

)
e2(t)

+ 2e2(t)TP2

(
A21e1(t) + f2(ẑ, u, t) − f2(z, u, t) + E2w2(t) − E2fa(t) −D2d(t)

)
.

(4.16)

It follows from (4.16) that

V̇1(t) ≤ −(λmin(Q1) − 2γ3‖P1‖
)‖e1(t)‖2 + 2‖P1‖

(
γ3 +

∥∥∥A12

∥∥∥
)
‖e1(t)‖ · ‖e2(t)‖

+ 2e1(t)TP1E1
(
w1(t) − fa(t)

) − (
λmin(Q2) − 2γ4‖P2‖

)‖e2(t)‖2

+ 2‖P2‖
(
γ4 +

∥∥∥A21

∥∥∥
)
‖e1(t)‖ · ‖e2(t)‖ + 2e2(t)TP2

(
E2w2(t) − E2fa(t) −D2d(t)

)

≤ −(√μ1‖e1(t)‖ −
√
μ2‖e2(t)‖

)2 − 2
(√

μ1μ2 −
(
μ3 + μ4

))‖e1(t)‖ · ‖e2(t)‖
− 2

(
ρ1 − γ2

)‖F1ev1(t)‖ − 2
(
ρ2 −

(
γ1 + γ2

))‖F2ev2(t)‖
< −2α‖e(t)‖,

(4.17)

where (4.12) and (4.13) have been used to obtain the last inequality.

α = min
{(

ρ1 − γ2
)∥∥∥F1C11

∥∥∥,
(
ρ2 −

(
γ1 + γ2

))∥∥∥F2C22

∥∥∥
}
. (4.18)

Thus V̇1(t) < 0 as long as e(t)/= 0, so that e(t) = 0 is a globally asymptotically stable
equilibrium point. This completes the proof.

Remark 4.8. Lemma 4.7 implies that e1(t), e2(t) are bounded; that is, there exists a Tf , when
t ≥ Tf

sup
Tf≤t<∞

(‖e1(t)‖) ≤ δ1, sup
Tf≤t<∞

(‖e2(t)‖) ≤ δ2, (4.19)

where δ1, δ2 are two finite positive scalars that, when time tends to be infinite, are close to
zero.
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Consider a sliding mode surface

σ1(t) = F1(v̂1(t) − v1(t)) (4.20)

and define

μ5 =
∥
∥
∥F1C11

∥
∥
∥
((∥∥

∥A11 − L1C11

∥
∥
∥ + γ3

)
δ1 +

(∥∥
∥A12

∥
∥
∥ + γ3

)
δ2
)
+ γ2

(
E
T

1P1E1

)
. (4.21)

Lemma 4.7 implies that the sliding mode dynamics of the error systems (4.9), (4.10)
associated with the sliding surface (4.20) is stable. According to the sliding mode theory,
observer stability will be guaranteed upon proving that the error system can be driven to the
sliding mode surface in finite time by choosing an appropriate gain of ρ1 for the input signals
(4.4). In view of this, the conclusion is presented by the following lemma.

Lemma 4.9. If inequality (4.19) holds, then the error systems (4.9), (4.10)will be driven to the sliding
mode surface (4.20) when ρ1 from input signals (4.4) satisfies

ρ1 ≥
μ5 + η1

(
E
T

1P1E1

) , (4.22)

where η1 is a positive constant.

Proof. From (4.20) we can further obtain that

σ1(t) = F1(v̂1(t) − v1(t)) = F1C11e1(t). (4.23)

From (4.9), it follows that

σ̇1(t) = F1C11

((
A11 − L1C11

)
e1(t) +A12e2(t) + f1

(
T−1ẑ, u, t

)

−f1

(
T−1z, u, t

)
+ E1

(
w1(t) − fa(t)

))
.

(4.24)

Choose Lyapunov function as

Vσ1(t) =
1
2
σT
1 (t)σ1(t). (4.25)

From (4.25)

V̇σ1(t) = σ1(t)TF1C11

((
A11 − L1C11

)
e1(t) +A12e2(t) + f1

(
T−1ẑ, u, t

)

−f1

(
T−1z, u, t

)
+ E1

(
w1(t) − fa(t)

))

≤
∥∥∥σ1(t)T

∥∥∥
(
μ5 − ρ1

(
E
T

1P1E1

))
.

(4.26)
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Then, it follows from (4.22) and (4.26) that

V̇σ1(t) ≤ −η1‖σ1(t)‖. (4.27)

This means that the reachability condition of sliding mode is satisfied [33]. Conse-
quently, according to sliding mode equivalent principle [22], a sliding motion will take place
on the sliding mode surface after finite time ts:

σ1(t) = σ̇1(t) = 0, ∀t > ts. (4.28)

The proof is complete.

Remark 4.10. Lemma 4.7 shows that the selection of SMO parameter ρ1 mainly depends on
γ2, which is the upper bound of fault. The Lemma 4.7 also shows that δ1, δ2 tends to be zero
when time tends to be infinite. On the overall consideration of the above facts and inequalities
(4.12), one can draw that any value which is sufficiently larger than γ2 can be selected as ρ1.

The advantage of SMC is that after arrival of sliding mode surface, it has better invari-
ant than that of robustness with regard to uncertainties such as modeling errors, parameter
variations, and disturbances. Therefore, SMO has greatly improved the robustness of the fault
diagnosis system.

5. Fault Reconstruction

In this section, the precise reconstruction algorithm for fault is presented, in which the recon-
struction signals are based only on the available system input and output information and
can be calculated on-line.

Theorem 5.1. Let the observer be described by SMOs (4.2) and (4.3). The actuator fault fa(t) can be
reconstructed at any required precision by

f̂a(t) = −ρ1 F1(v̂1(t) − v1(t))
‖F1(v̂1(t) − v1(t))‖ + δ3

, (5.1)

where δ3 is a small positive scalar.

Proof. From Lemma 4.9, it follows that a sliding mode motion takes place in finite time and
during the sliding motion

σ1(t) = σ̇1(t) = 0. (5.2)

Thus, from (4.24) there is

F1C11

((
A11 − L1C11

)
e1(t) +A12e2(t) + f1(ẑ, u, t) − f1(z, u, t) + E1

(
weq1(t) − fa(t)

))
= 0,

(5.3)
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where weq1(t) is the equivalent output error injection representing the average behavior of
the discontinuous function w1(t) defined by (4.4), which is necessary to maintain an ideal
sliding mode motion [33].

From Lemma 4.7 and Assumption 4.4, we can further obtain that

fa(t) = weq1(t) = −ρ1 F1(v̂1(t) − v1(t))
‖F1(v̂1(t) − v1(t))‖ .

(5.4)

Therefore, construct the following fault observer

f̂a(t) = wσ1(t), (5.5)

wσ1(t) = −ρ1 F1(v̂1(t) − v1(t))
‖F1(v̂1(t) − v1(t))‖ + δ3

. (5.6)

In order to reduce the chattering, one can replace the equivalent output error injection
in (5.4)with a sigmoid-behaved function in (5.6) [21]. Moreover, the term v̂1(t) − v1(t) being
measurable implies that wσ1(t) is on-line computable.

From (5.4) and (5.5), the fault estimation error equation can be got in the form of

f̂a(t) − fa(t) = wσ1(t) −weq1(t) = ρ1
F1(v̂1(t) − v1(t))

(‖F1(v̂1(t) − v1(t))‖ + δ3)‖F1(v̂(t)1 − v1(t))‖ · δ3.
(5.7)

It is clear that ‖wσ1(t)−weq1(t)‖ can be made arbitrary small by the choice of δ3 which
indicates that the reconstruction of actuator fault fa(t) can be at any required precision.

Remark 5.2. From the proof it can be seen that the fault reconstruction scheme is proposed
without any restriction on the fault type; that is, it is applicable for abrupt faults, incipient
faults, and any other type of faults.

6. Examples

Two examples are given in this section to demonstrate the effectiveness of the designed
scheme. A theoretical model of nonlinear system and an actual single-link robot system are
used, respectively, as the application objects in the two examples.

Example 6.1. Consider the following third-order nonlinear system:

⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
0 1 −0.9
4.9 −2 1
−0.1 0 −1

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ +

⎡

⎣
−0.2x2

0.2|x1 + x2| + 0.5 sinx3

0.5 sinx3

⎤

⎦ +

⎡

⎣
5
1

−14

⎤

⎦fa +

⎡

⎣
0
1
1

⎤

⎦d +

⎡

⎣
1
1
1

⎤

⎦u,

[
y1

y2

]
=
[
0 1 0
0 0 1

]
⎡

⎣
x1

x2

x3

⎤

⎦.

(6.1)
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Refering to (2.1) and (2.2), individual parameter of (6.1)will be

A =

⎡

⎣
0 1 −0.9
4.9 −2 1
−0.1 0 −1

⎤

⎦, f(x, u, t) =

⎡

⎣
−0.2x2

0.2|x1 + x2| + 0.5 sinx3

0.5 sinx3

⎤

⎦, E =

⎡

⎣
5
1

−14

⎤

⎦,

D =

⎡

⎣
0
1
1

⎤

⎦, B =

⎡

⎣
1
1
1

⎤

⎦, C =
[
0 1 0
0 0 1

]
.

(6.2)

Let input signal be

u(t) = 0.5 sin(t) − 15y1 (6.3)

and let unknown input disturbances be

d(t) = 4 sin(5t) + sin(50t). (6.4)

With two transformation matrixes T and S which are

T =

⎡

⎣
1 0 0
0 1 −1
0 0 1

⎤

⎦, S =
[
1 −1
0 1

]
(6.5)

the original system of (6.1) can be transformed into the following two subsystems:

[ż1] =
[
ż11
ż12

]
=
[
0 1
5 −2

][
z11
z12

]
+
[
0.1
0

]
z2 +

[ −0.2(z12 + z2)
0.2|z11 + z12 + z2|

]
+
[
5
15

]
fa +

[
1
0

]
u,

v1 = z12,

ż2 = −z2 − 0.1z11 + 0.5 sin z2 − 14fa + d + u,

v2 = z2.

(6.6)

It is easily seen that both systems presented in (6.1) and the two subsystems stated in
(6.6) are observable. Moreover, let matrix L1 = [6 8]T such that the two poles of the matrix
A01 are all located at −5 and matrix L2 = [1] such that the poles of the matrix A02 are at
−2. Select P1 = [0.3 − 0.1;−0.1 0.1] from (4.7), Q1 an identity matrix, P2 = [0.5], Q2 = [2].
Therefore, choose the parameters of the observer as ρ1 = 10, ρ2 = 10, F1 = [1], F2 = [−7],
δ3 = 0.01, δ4 = 0.1 and let the system initial conditions be x(0) = [−1 0 3]T and x̂(0) = 0.
Now all of the assumptions are satisfied in this example. The state observers for subsystems
(6.6) are defined as

[ ˙̂z11
˙̂z12

]
=
[
0 1
5 −2

][
ẑ11
ẑ12

]
+
[
0.1
0

]
ẑ2 +

[ −0.2(ẑ12 + ẑ2)
0.2|ẑ11 + ẑ12 + ẑ2|

]
+
[
1
0

]
u +

[
5
15

]
wσ1 +

[
6
8

]
(v1 − v̂1),
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v̂1 = ẑ12,

wσ1 = −10 (v̂1 − v1)
|(v̂1 − v1)| + δ3

,

˙̂z2 = −ẑ2 − 0.1ẑ11 + 0.5 sin ẑ2 + u − 14wσ2 + v2 − v̂2,

v̂2 = ẑ2,

wσ2 = −10 −7(v̂2 − v2)
|−7(v̂2 − v2)| + δ4

.

(6.7)

Define the fault reconstruction algorithm as

f̂a(t) = wσ1 = −10 (v̂1 − v1)
|(v̂1 − v1)| + δ3

. (6.8)

With the above simulation parameters, we use three kinds of faults to verify the effectiveness
of the proposed method. In the first case, a nonlinear signal with small amplitude is chosen to
simulate the fault, that is, fa(t) = sin(u(t)). Assume that fa(t) begins at time instant of 2 sec-
onds, and fa(t) = 0 when t < 2 seconds. Figures 1, 2, 3, 4, 5, and 6 show the estimation results
of the three state vectors and the corresponding estimation error. The results imply that
the observers converge quickly, which lay the foundation for fault reconstruction.

Figures 7 and 8 show the results of the fault reconstruction and the corresponding
reconstruction error. From the simulation results we can see that nonlinear fault can be
precisely reconstructed.

In the second case, a low-frequency sinusoidal signal is selected to illustrate that the
fault detection is sensitive to incipient faults, that is, fa(t) = sin(0.5t). The associated sim-
ulation results in Figures 9 and 10 verify that the proposed approach can be applied to recon-
struct an incipient fault rapidly.

In the third case, let the fault be a divergence function, that is, fa(t) = 0.5 exp(0.25t)
sin(10t). The associated simulations are shown in Figures 11 and 12. The simulations show
that, within a certain range, f̂a(t) reconstructs the fault perfectly even if the fault destroys the
stability of system.

Example 6.2. Consider a single-link robotic arm with a revolute elastic joint rotating in a
vertical plane whose motion equations are [37]

Jlq̈1 + Flq̇1 + k
(
q1 − q2

)
+mgl sin q1 = 0,

Jmq̈2 + Fmq̇2 − k
(
q1 − q2

)
= u,

(6.9)

where q1 and q2 are the link displacement and the rotor displacement, respectively. The link
inertia Jl, the motor rotor inertia Jm, the elastic constant k, the link mass m, the gravity con-
stant g, the center of mass l, and the viscous friction coefficients Fl, Fm are all positive constant
parameters. The control u is the torque delivered by the motor. When handling different
objects, the loading of robot will change. In addition the friction coefficient of the joint will
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Figure 1: The first state x1 (solid) and its estimation x̂1 (dotted).
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Figure 2: The second state x2 (solid) and its estimation x̂2 (dotted).
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Figure 3: The third state x3 (solid) and its estimation x̂3 (dotted).

also change with time. Here we unify all of these factors to be unknown input disturbances
and express themwith a function d(t), moreover expressing malfunction for robot with fa(t).
Assume that x1, x3, and x4 are measurable, and let x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2. Thus,
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Figure 4: The first state estimation error.
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Figure 5: The second state estimation error.
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Figure 6: The third state estimation error.
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Figure 7: The fault fa (solid) and its reconstruction f̂a (dotted).
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Figure 8: The fault fa reconstruction error.

the single joint robot model with unknown input disturbances and actuator faults is pre-
sented in the following fourth-order nonlinear form:

⎡

⎢⎢
⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 1 0 0
−k
Jl

−Fl

Jl

k

Jl
0

0 0 0 1
k

Jm
0

−k
Jm

−Fm

Jm

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

x1

x2

x3

x4

⎤

⎥⎥
⎦ +

⎡

⎢⎢⎢⎢
⎣

0
−mgl

Jl
sinx1

0
0

⎤

⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢
⎣

0
0
0
1
Jm

⎤

⎥⎥⎥⎥
⎦
u + Efa +Dd,

y = C
[
x1 x2 x3 x4

]T
.

(6.10)

The simulation experiments are performed with the following robot parameters (in SI
units): k = 2, Fm = 1, Fl = 0.5, Jm = 1, Jl = 2, m = 0.15, g = 9.8, l = 0.3.
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Figure 9: The fault fa (solid) and its reconstruction f̂a (dotted).
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Figure 10: The fault fa reconstruction error.

Referring to (2.1) and (2.2), parameter matrixes of (6.10) shall be

A =

⎡

⎢⎢
⎣

0 1 0 0
−1 −0.25 1 0
0 0 0 1
2 0 −2 −1

⎤

⎥⎥
⎦, B =

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ C =

⎡

⎣
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎦,

f(x, u, t) =

⎡

⎢⎢
⎣

0
−0.2205 sinx1

0
0

⎤

⎥⎥
⎦, E =

⎡

⎢⎢
⎣

2.929
3.814
4
1

⎤

⎥⎥
⎦, D =

⎡

⎢⎢
⎣

0
1
0
0.5

⎤

⎥⎥
⎦.

(6.11)

Since incipient faults normally have small amplitude and change slowly at the early
stage, it is difficult to figure out them by the monitoring system. However, the earlier they are
found, the easier it is to avoid severe consequence. Therefore, one of the important tasks of
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Figure 11: The fault fa (solid) and its reconstruct f̂a (dotted).
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Figure 12: The fault fa reconstruction error.

fault reconstruction is the early diagnosis of incipient faults. For further effective demon-
stration of the proposed scheme, the following sinusoidal wave is used to simulate incipient
faults:

fa(t) =

{
0 t < 2s
sin(3t) t ≥ 2s.

(6.12)

While unknown input disturbances of system are assumed to be d(t) = 2 sin(5t) and the input
to the system is given by u(t) = 8 sin(t/3), two transformation matrixes T and S are chosen,
respectively, to be

T =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 −2
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦, S =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦. (6.13)
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Hence, (6.10) can be decomposed to be the following two subsystems by the transformation
matrixes above mentioned:

ż1 =

⎡

⎣
ż11
ż12
ż13

⎤

⎦ =

⎡

⎣
0 1 0
−5 −0.25 5
0 0 0

⎤

⎦

⎡

⎣
z11
z12
z13

⎤

⎦ +

⎡

⎣
2
1.5
1

⎤

⎦z2 +

⎡

⎣
0

−0.2205 sin(z11)
0

⎤

⎦ +

⎡

⎣
2.929
1.814
4

⎤

⎦fa +

⎡

⎣
0
−2
0

⎤

⎦u,

v1 =
[
1 0 0
0 0 1

]
⎡

⎣
z11
z12
z13

⎤

⎦,

ż2 =
[
2 0 −2]

⎡

⎣
z11
z12
z13

⎤

⎦ − z2 + fa + 0.5d + u,

v2 = z2.

(6.14)

The initial conditions of the system are chosen to be x(0) = [−5 − 8.5 3 6]T and
x̂(0) = 0. Moreover, we set the observer parameters ρ1 = 8, ρ2 = 25, δ3 = 0.1, δ4 = 0.02, F1 =
[1 1], F2 = [1], L1 = [10.75 0; 2.313 5 : 0 10], L2 = [199]. Similarly, construct state observer
for (6.14), then we get

˙̂z1 =

⎡

⎣
˙̂z11
˙̂z12
˙̂z13

⎤

⎦ =

⎡

⎣
0 1 0
−5 −0.25 5
0 0 0

⎤

⎦

⎡

⎣
ẑ11
ẑ12
ẑ13

⎤

⎦ +

⎡

⎣
2
1.5
1

⎤

⎦ẑ2

+

⎡

⎣
0

−0.2205 sin(ẑ11)
0

⎤

⎦ +

⎡

⎣
0
−2
0

⎤

⎦u +

⎡

⎣
2.929
1.814
4

⎤

⎦wσ1 + L1(v1 − v̂1),

v̂1 =
[
1 0 0
0 0 1

]
⎡

⎣
ẑ11
ẑ12
ẑ13

⎤

⎦,

wσ1 = −ρ1 F1(v̂1 − v1)
‖F1(v̂1 − v1)‖ + δ3

,

˙̂z2 =
[
2 0 −2]

⎡

⎣
ẑ11
ẑ12
ẑ13

⎤

⎦ − ẑ2 + u +wσ2 + L2(v2 − v̂2),

v̂2 = ẑ2,

wσ2 = −ρ2 F2(v̂2 − v2)
‖F2(v̂2 − v2)‖ + δ4

.

(6.15)

Hence, the algorithm of fault reconstruction is

f̂a(t) = wσ1 = −ρ1 F1(v̂1 − v1)
‖F1(v̂1 − v1)‖ + δ3

. (6.16)
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Figure 13: The fault fa (solid) and its reconstruct f̂a (dotted).
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Figure 14: The fault reconstruction error.

In order to highlight the robustness of the methodology presented in this paper with respect
tomeasurement noise, we add a uniformly distributed randomnoise to the original measured
signal y(t). Figures 13 and 14 show the results of fault reconstruction and the corresponding
reconstruction error.

From the results we conclude that the decoupling of unknown input disturbances
and faults is realized by transforming the system model into two subsystems using matrix
of a linear transformation, although high nonlinearity still exists in the system and faults.
Note that the suggested precise reconstruction algorithm can handle the faults with arbitrary
nonlinearity, which makes the work applicable to a wider class of systems. By contrast, the
proposals of adaptive observers, UIO, SMO, and the others presented in [2, 3, 6, 38], can only
reconstruct some certain faults, for example, constant faults or the faults time-varying at a
limited rate.

7. Conclusion

This paper has presented a scheme to meet the challenge of performing precision fault recon-
struction in nonlinear systems with disturbances. The use of coordinate transformation
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transforms the nonlinear systems into two subsystems and one of them is free from unknown
input disturbances. Based on the scheme, the designed sliding mode state observer keeps the
reconstruction system with better disturbance robustness, but also has higher faults sensiti-
vity. The use of the equivalence control method enables the system to reconstruct arbitrary
form of fault signals with any required precision. Two examples are employed to illustrate the
effectiveness of the proposed design approach.
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