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The aim of this study is to deal with a minimum cost network flow problem (MCNFP) in a large-
scale construction project using a nonlinear multiobjective bilevel model with birandom variables.
The main target of the upper level is to minimize both direct and transportation time costs. The
target of the lower level is to minimize transportation costs. After an analysis of the birandom
variables, an expectation multiobjective bilevel programming model with chance constraints is
formulated to incorporate decision makers’ preferences. To solve the identified special conditions,
an equivalent crisp model is proposed with an additional multiobjective bilevel particle swarm
optimization (MOBLPSO) developed to solve the model. The Shuibuya Hydropower Project is
used as a real-world example to verify the proposed approach. Results and analysis are presented
to highlight the performances of the MOBLPSO, which is very effective and efficient compared to
a genetic algorithm and a simulated annealing algorithm.

1. Introduction

Network flow optimization is a large part of combinatorial optimization. The minimum cost
network flow problem (MCNFP) is made up of a wide category of problems [1, 2]. MCNFP
plays a very important role in many real-world applications such as communications [3, 4],
informatics [5], and transportation [6]. Other well-known problems like the shortest path
problem and the assignment problem are considered to be special MCNFP cases [7].

In recent decades, the MCNFP has been well researched with many models and algo-
rithms being developed, for example, [8–13]. These studies, however, have not often taken
carrier type selection and transportation time into account when looking at the transportation
network. Yet, both cost and time control are important in construction projects, especially in
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large-scale construction projects where transportation costs are largely based on the rates
charged by carriers, which have a significant influence on transportation time. In real condi-
tions, there is increasing pressure to shorter transportation time to reduce or eliminate extra
project expenses, with the early arrival of materials shortening the completion time of the
construction project and improving construction efficiency. In these cases, it is necessary to
include both the carrier type selection or transportation time in the transportation network
analysis. In this paper, amultiobjective bilevelMCNFP is studied. On the upper level, the con-
struction contractor determines the material flow of each transportation network path with
the criteria being the minimization of both direct costs and total transportation time costs. On
the lower level, the transportation manager controls each carrier’s flow so that total transpor-
tation costs are minimized.

The research presented previously has a common foundation in that they were all
based on a deterministic transportation network. However, transportation systems are often
complex, so decision makers inevitably encounter uncertain parameters when making a
decision.Within the last two decades the use of multimodels with uncertain parameters in the
study of network flow problems has been increasingly exploited. For example, Watling [14]
studied a user equilibrium traffic network assignment problem with stochastic travel times
and a late arrival penalty. Chen and Zhou [15] developed an α-reliable mean-excess traffic
equilibriummodel with stochastic travel times. Lin [16] constructed a revised stochastic flow
network to model a realistic computer network in which each arc has a lead time and a
stochastic capacity. Sumalee et al. [17] dealt with a reliable network design problem which
was looked at uncertain demand and total travel time reliability. In actual analyses, ran-
domness is considered one important source of uncertainty. Yet with MCNFP randomness is
seen to be increasingly complex because of the often incomplete or uncertain information.
To date, there has been little research which considers multilevel twofold uncertainty coeffi-
cients for MCNFP. Therefore this research concentrates on the problem under a birandom
environment with the logic behind this choice of birandom variables illustrated in Section 2.

The MCNFP proposed in this paper is a multiobjective bilevel programming problem,
first introduced by Geoffrion and Hogan [18], and consequently developed by researchers
such as Tarvainen and Haimes [19], Osman et al. [20], Zhang et al. [21], and Calvete and
Galéb [22]. Multiobjective bilevel programming has been greatly improved in both the
theoretical and practical areas. While these studies have significantly contributed to a variety
of applications, to the best of our knowledge, there is still no known research considering the
modeling for the MCNFP. With bilevel programming problems being intrinsically difficult,
it is not surprising that most exact algorithms to date have focused on the simplest cases of
bilevel programs, that is, problems with relatively easy to determine properties such as linear,
quadratic, or convex objective and/or constraint functions [23]. Since the proposed bilevel
MCNFP model is nonlinear, nonconvex, and nondifferentiable, it follows that the search for
exact algorithms which are formally efficient is all but futile and it is necessary instead to
search for effective heuristic algorithms to solve the MCNFP. Determining the global optimal
solution is of great importance in MCNFP. Specifically, this paper deals with the multiple
objectives by employing the concept of nondominated solutions instead of applying
weighted sum scalarization. In this study, an effort is made to develop amultiobjective bilevel
particle swarm optimization (MOBLPSO) to solve a real world MCNFP in the Shuibuya
Hydropower Project.

The remainder of this paper is structured as follows. In Section 2, an introduction to
the bilevel MCNFP is presented along with the motivation for employing birandom variables
in the problem. An expectation multiobjective bilevel programming model with chance
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constraints under a birandom environment is established in Section 3, for which the equi-
valent crispmodel is derived in Section 4. In addition, anMOBLPSO is illustrated in Section 5.
In Section 6, an application to earth-rock work transportation in a large construction project
is given in order to show the validity and efficiency of the proposed models and algorithms.
Concluding remarks and further discussion are in Section 7.

2. Problem Statement

In construction projects, and especially in large-scale construction projects, the MCNFP is
becoming increasingly important. Here we discuss amultiobjective bilevelMCNFP in a large-
scale construction project. In order to establish the model, a description is given.

2.1. Bilevel Problem Description

The MCNFP discussed considers both the construction contractor and the transportation
manager as the two participants. In a large-scale construction project, material often has
supply (origin) and receipt (destination) nodes, with the construction contractor generally
assigning a specialized Transportation Company. The bilevel model considers the construc-
tion contractor and the transportation manager in the specialized Transportation Company
concurrently, gives priority to contractor benefit, and considers the influence of the contrac-
tor’s decision making on the flow distribution of the transportation manager’s carriers. As
both cost and time control are important in construction projects, their effectiveness needs to
be considered. The construction contractor assigns the flow of material to each transportation
path to minimize direct costs and transportation time costs, while the transportation manager
aims to minimize transportation costs by making decisions about flow of material by each
carrier through the transportation path based on the construction contractor’s decision
making, which in turn influences contractor’s decision-making through adjustments to the
flow of material by each carrier along the transportation path.

Therefore, the MCNFP in this paper can be abstracted as a bilevel programming prob-
lem. To model the problem conveniently, the involved transportation network is considered
a bipartite network represented by a graph with sets of nodes and arcs. In the network,
a node represents the facilities in the network, for instance, a station or a yard, and an arc re-
presents a line between two adjacent facilities. The model structure of the MCNFP is in
Figure 1.

2.2. The Motivation for Considering Birandom Environment in the MCNFP

The birandom environment has been successfully studied and applied in many areas, such as
flow shop scheduling problem [24], portfolio selection [25], and vendor selection [26]. These
studies show the necessity of considering birandom environment in practical problems. There
is a strong motivation for considering birandom environment for the MCNFP.

In real conditions, the transportation plan is usually made before the occurrence
of any transportation activity; thus the determined values of some parameters cannot be
obtained in advance; so there is a strong need to consider uncertainty in transportation
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Figure 1: Model structure for MCNFP.

problems. An MCNFP in a large-scale construction project is considered in this paper, which
may be subjected to twofold randomness with incomplete or uncertain information. For
example, the transportation time in an arc of the project is not fixed because of the effect of
the transportation environment which includes many uncertainties such as traffic accidents,
traffic congestion, vehicle breakdowns, bad weather, natural disasters, and special events
[27]. Therefore, it is often subject to a stochastic distribution. Generally, transportation time
approximately follows a normal distribution expressed asN(μ̃, σ2) [28–30], whereas the nor-
mal distribution has to be truncated to avoid negative values. However, the expected value of
transportation time μ̃ is also uncertain because it is determined by the carrier’s speed, which
in turn is influenced by such uncertainties as vehicle condition. It is possible to specify a real-
istic distribution (e.g., normal distribution) for the parameter μ̃ through statistical methods
or related expertise and other knowledge. When the value of μ̃ is provided as a random
variable which approximately follows a normal distribution, the pattern of overlapping
randomness is said to be birandom as illustrated in Section 3.1. The flowchart of transporta-
tion time as a birandom variable is in Figure 2.

The situation is similar with transportation costs. However, the mean values of trans-
portation costs are considered as approximately following normal distributions due to the
fluctuation of gasoline prices over time, which results in the birandomness of the transporta-
tion costs. From the previous description, the birandom variable is employed to take account
of the hybrid uncertainty and obtain a more feasible network flow scheme.
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Figure 2: Flowchart of transportation time as a birandom variable.

3. Modelling

In this section, the relevant assumptions and notations are first outlined, some basic know-
ledge about the birandom variable is introduced, and then the nonlinear multiobjective bi-
level MCNFP model under a birandom environment is formulated.

3.1. Problem Assumptions

The mathematical model described has the following assumptions.

(1) The proposed transportation network is a single material transportation network
composed of nodes and road sections.

(2) The capacities of the different arcs are satisfactorily independent, and the total flow
of carriers on each arc cannot exceed its capacity.

(3) Flows on all transportation paths between OD pairs satisfy the feasible flow
conservation [31].

(4) All transportation paths in the network are known.

(5) The transportation cost of every road section and transportation time are consider-
ed birandom variables, with the attributes determined from available statistics and
historical data as well as forecast transportation environments. They are considered
to be independent.

(6) The demand at every reception node must be met on schedule. The material has
a given transportation duration. If the transportation time exceeds the given dura-
tion, then a delay cost is added.
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3.2. Notations

The following mathematical notations are used to describe the MCNFP.

Subscripts and Sets

o: index of origin node;

d: index of destination node;

Ψ: set of carriers, k ∈ Ψ is an index;

Φ: set of arcs in the transportation network, i ∈ Φ is an index;

Ω: set of paths in the transportation network, j ∈ Ω is an index;

E: set of origin-destination (OD) pairs, (o, d) ∈ E;

Aj : set of arcs in transportation path j;

Pod: set of paths from origin node o to destination node d.

Certain Parameters

ri: maximal passing capacity of arc i;

wk: weight for carrier k in the transportation network;

vk: volume capacity of carrier k;

Tj : transportation time constraint represents the time of transportation path j in Tj
units in which the material demand between all OD pairs has to be transported;

γ
j

i : a binary variable equal to 1 if and only if arc i is a segment of transportation path j
for carrier k;

Qod: transportation demand of the material from origin node o to destination node d;

cj : direct cost of unit volume material using transportation j;

� � : ceiling operator rounding upward to integer.

Uncertain Parameters

˜e
k

i : unit transportation cost of material flow on arc ai for carrier k;

˜t
k

i0: free transportation time of material flow on arc i for carrier k;

˜t
k

i : transportation time of material flow on arc ai for carrier k.

Decision Variables

xj : volume of material flow on transportation path j, which is the decision variable of
the upper level;

ykj : volume of material flow transported by carrier k through path j, which is the
decision variable of the lower level.
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3.3. Birandom Variable

The birandom variable, proposed by Peng and Liu [32], can be used to explain the proposed
problem. Some basic knowledge about birandom variable is as follows.

Definition 3.1 (see [32]). A birandom variable ξ is a mapping from a probability space
(Ω,A,Pr) to a collection S of random variables such that for any Borel subset B of the real
line � the induced function Pr{ξ(ω) ∈ B} is a measurable function with respect to ξ.

For each given Borel subset B of the real line �, the function Pr{ξ(ω) ∈ B} is a random
variable defined on the probability space (Ω,A,Pr).

From Definition 3.1, a birandom variable is a mapping from a probability space to
a collection of random variables. Roughly speaking, a birandom can be seen as a random
variable with random parameter(s). Here we give three examples of birandom variable.

Example 3.2. Let Ω = {ω1, ω2, . . . , ωm}, and Pr{ω1} + Pr{ω2} + · · · + Pr{ωm−1} + Pr{ωm} = 1.
Assume that ξ is a function on (Ω,A,Pr) as follows:

ξ(ω) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˜ξ1, if ω = ω1,

˜ξ2, if ω = ω2,

...

˜ξm−1, if ω = ωm−1,

˜ξm, if ω = ωm,

(3.1)

where ˜ξ1 is a uniformly distributed random variable on [0, 1], ˜ξ2, . . . , ˜ξm−1 are normally
distributed random variables with a mean 1 and a standard variance 0.5, and ˜ξm is a standard
normally distributed random variable with a mean 0 and a standard variance 1, that is,
˜ξ1 ∼ U[0, 1], ˜ξ2 ∼ N[1, 0.5], . . . , ˜ξm−1 ∼ N[1, 0.5], and ˜ξm ∼ N[0, 1]. From Definition 3.1, ξ
is clearly a birandom variable as shown in Figure 3.

Example 3.3. Assume that a and b are two random variables defined on (Ω′,A′,Pr′), and for
any ω∗ ∈ Ω′, b(ω∗) ≥ a(ω∗) holds; then random variable ξ ∼ N[a(ω∗), b(ω∗)] is a birandom
variable.

Example 3.4. Let ξ be a random variable defined on the probability space (Ω,A,Pr) satisfying
ξ ∈ N(μ̃, σ2), where μ̃ is also a normally distributed random variable on (Ω′,A′,Pr′)with the
mean μ and variance σ∗2. Then ξ is a birandom variable.

Definition 3.5. A birandom variable ξ is said to be normal, if for each ω, ξ(ω) is a random
variable with the following probability density function:

φ(x) =
1

σ(ω)
√
2π

exp

(

−
(

x − μ(ω)
)2

2σ(ω)2

)

, (3.2)

where the number of random variable of μ(ω) and σ(ω) is not less than one. The normal
birandom variable is denoted byN(μ(ω) and σ(ω)).
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Figure 3: Representation of a Birandom variable in Example 3.2.

3.4. Bilevel Model Formulation

In this section, the expectation multiobjective bilevel programming model with chance con-
straints under a birandom environment based on the philosophy is proposed: decisions are
selected by optimizing the expected values of the objective functions subject to chance
constraints with some predetermined confidence levels given by the actual decision makers.

3.4.1. Lower Level Model for the Bilevel MCNFP

The problem posed on the lower level is how to make decisions on material flow by each type
of carrier on transportation path ykj while satisfying all capacity constraints, with the main
objective being to minimize expected total transportation cost.

(1) Objective Functions of the Lower Level

The total transportation cost of the material is calculated by taking the sum of the carriers
of each arc’s transportation cost and the number of carriers needed to transport the material
across the network. In real conditions, it is desirable that each service carrier be fully loaded,

so the numbers of carrier k through path j can be denoted by �ykj/vk�. Since ˜e
k

i is considered
a birandom variable, the total transportation cost of material is considered under a
birandom environment. Generally, it is difficult to completely minimize total transportation
costs because of the birandom variables. Because decision-makers expect minimal cost,
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the expected value of the total transportation cost is the objective of the lower level. Denote
the expected total transportation cost of material as C(ykj); then the objective function of the
lower level model can be formulated as

minC
(

ykj

)

= E

⎡

⎣

∑

k∈Ψ

∑

j∈Ω

∑

i∈Φ
γ
j

i
˜e
k

i

⌈

ykj

vk

⌉

⎤

⎦. (3.3)

Generally, a path can be represented by a sequence of adjacent arcs. A binary variable
γ
j

i is introduced to determine whether an arc i is a segment of path j for carrier k:

γ
j

i =

⎧

⎨

⎩

1, if i ∈ Aj, j ∈ Ω,

0, otherwise.
(3.4)

(2) Constraints of the Lower Level

For transportation time, each carrier requires the transport of material from the source to the

destination on schedule Tj . If not, a delay cost is applied.
∑

i∈Φ γ
j

i
˜t
k

i represents the total travel

time of carrier k on transportation path j, in which ˜t
k

i is usually represented by a non-
decreasing function (i.e., Bureau of Public Roads (BPR) function) [33] as follows:

˜t
k

i = ˜t
k

i0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
, i ∈ Φ, k ∈ Ψ, (3.5)

where α and β are user-defined parameters and, in this problem, are set to 0.15 and 2.0,
respectively.

Technically, it is not possible to strictly ensure that the random event
∑

i∈Φ γ
j

i
˜t
k

i does

not exceed Tj because of the birandom variable ˜t
k

i0. In practical problem, the decision makers
often provide an appropriate budget Tj in advance, to ensure that the restriction is, to a certain

extent, satisfied, that is to maximize the probability of the random event Pr{∑i∈Φ γ
j

i
˜t
k

i0(ω)[1+

α(
∑

j∈Ω
∑

k∈Ψ γ
j

i �ykj/vk�/ri)
β
] ≤ Tj} under a given confidence level, which can be written as

follows:

Pr

⎧

⎪

⎨

⎪

⎩

ω | Pr

⎧

⎪

⎨

⎪

⎩

∑

i∈Φ
γ
j

i
˜t
k

i0(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
≤ Tj

⎫

⎪

⎬

⎪

⎭

≥ θ

⎫

⎪

⎬

⎪

⎭

≥ δ, j ∈ Ω, k ∈ Ψ.

(3.6)

Here the decision makers’ aspiration level is indicated as θ, so we use a “Pr” to ensure that
the constraint holds at the predetermined confidence level. Additionally, based on probability
theory, a further “Pr” is needed to describe the random elements presented in Section 2,
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which guarantee the establishment of a certain confidence level δ, resembling the P-model
(probability maximization model) presented in [34].

The transportation flow may exceed some arcs’ capacity because of uncertainties such
as the condition of the construction project road. Such conditions may require the manager
to select another path. Thus, the total amount of capacity on arc i cannot exceed the maximal
capacity of the arc i, which produces the following constraint:

∑

j∈Ω

∑

k∈Ψ
γ
j

i

⌈

ykj

vk

⌉

≤ ri, i ∈ Φ. (3.7)

Actually, it is difficult to ensure that each service carrier is fully loaded; so the sum
of all flows transported by all kinds of carriers through each path cannot be less than the
material flow assigned to it; thus the following constraint is obtained:

∑

k∈Ψ
ykj ≥ xj , j ∈ Ω. (3.8)

The path flow in path j used by carrier k should not be negative, such that

ykj ≥ 0, j ∈ Ω, k ∈ Ψ. (3.9)

3.4.2. Upper Level Model for the Bilevel MCNFP

The problem the construction contractor on the upper level faces is how to assign material
flow among the transportation paths across the complete transportation network, that is, how
to decide the material flow xj through transportation path j. Thus, the decision variable on
the upper level is xj .

(1) Objective Functions of the Upper Level

For large-scale construction projects, cost and time control are both important, so minimizing
total direct costs and total transportation time costs is the two objectives of the upper level
model. The two objectives of the upper level can be described as follows.

Firstly, the upper level decisionmaker attempts tominimize the direct costs of the com-
plete network by assigning the flow of the material to each transportation path to achieve a
system optimized flow pattern; thus, the total direct cost is the sum of all transportation costs
from different transportation paths. The first objective function of the upper level model can
be formulated as follows

C
(

xj , ykj

)

=
∑

(o,d)∈E

∑

j∈Pod

cjxj . (3.10)

In real conditions, there is increasing pressure to shorter transportation time to reduce
or eliminate extra project expenses, with the early arrival of materials shortening the
completion time of the construction project and improving construction efficiency. Thus, the

total transportation time for carrier k in each path can be described as
∑

i∈Φ γ
j

i
˜t
k

i , and, since
˜t
k

i
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is a birandom variable,
∑

i∈Φ γ
j

i
˜t
k

i can be regarded as a special birandom variable. Similarly,
the expected value of the total transportation time cost is one of the objectives on the

upper level. Different carriers are given different weights, and ˜t
k

i = ˜t
k

i0[1 +

α(
∑

j∈Ω
∑

k∈Ψ γ
j

i �ykj/vk�/ri)
β
], so the second objective function of the upper level can be

described as follows:

T
(

xj , ykj

)

= E

⎡

⎢

⎣

∑

k∈Ψ
wk

∑

j∈Ω

∑

i∈Φ
γ
j

i
˜t
k

i0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

⎤

⎥

⎦
. (3.11)

(2) Constraints of the Upper Level

According to the basic assumptions in Section 3.1, it is stipulated that the demands between
all OD pairs should be satisfied. Thus,

∑

j∈Pod

xj = Qod, (o, d) ∈ E. (3.12)

The following constraint ensures that the sum of the weights is equal to 1:

∑

k∈Ψ
wk = 1. (3.13)

In order to describe the nonnegative variables, the constraints in (3.14) are presented:

xj ≥ 0, j ∈ Ω. (3.14)

3.4.3. Global Model for the Bilevel MCNFP

Based on the previous discussion, by integrating (3.3)–(3.14), the following global model for
the nonlinear multiobjective bilevel programming with birandom variables is formulated for
the MCNFP in a large-scale construction project:

minC
(

xj , ykj

)

=
∑

(o,d)∈E

∑

j∈Pod

cjxj ,

min T
(

xj , ykj

)

= E

⎡

⎢

⎣

∑

k∈Ψ
wk

∑

j∈Ω

∑

i∈Φ
γ
j

i
˜t
k

i0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

⎤

⎥

⎦
,
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∑

j∈Pod

xj = Qod, (o, d) ∈ E,

∑

k∈Ψ
wk = 1,

xj ≥ 0, j ∈ Ω,

minC
(

ykj

)

= E

⎡

⎣

∑

k∈Ψ

∑

j∈Ω

∑

i∈Φ
γ
j

i
˜e
k

i

⌈

ykj

vk

⌉

⎤

⎦,

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Pr

⎧

⎪

⎨

⎪

⎩

ω | Pr

⎧

⎪

⎨

⎪

⎩

∑

i∈Φ
γ
j

i
˜t
k

i0(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
≤ Tj

⎫

⎪

⎬

⎪

⎭

≥ θ

⎫

⎪

⎬

⎪

⎭

≥ δ,

j ∈ Ω, k ∈ Ψ,

∑

j∈Ω

∑

k∈Ψ
γ
j

i

⌈

ykj

vk

⌉

≤ ri, i ∈ Φ,

γ
j

i =

⎧

⎨

⎩

1, if i ∈ Aj, j ∈ Ω,

0, otherwise,
∑

k∈Ψ
ykj ≥ xj , j ∈ Ω,

ykj ≥ 0, j ∈ Ω, k ∈ Ψ.

(3.15)

4. Equivalent Crisp Model

Problem (3.15) is an expectation multiobjective bilevel programming model with chance
constraints which has clear nonlinear objectives and constraints. However, this is also difficult
to solve with complete confidence because the measures E{·} and Pr{·} are difficult to obtain.
In the following section, the normal birandom variables are focused on and the equivalent
crisp model of (3.15) is presented.

Definition 4.1 (see [35]). Let ξ be a random variable on the probability space (Ω,A,Pr). Then
the expected value of ξ is defined by

E[ξ] =
∫+∞

0
Pr{ξ ≥ r}dr −

∫0

−∞
Pr{ξ ≤ r}dr. (4.1)

Note that the terms expected value, expectation, and mean value can be used inter-
changeably.

Definition 4.2 (see [36]). Let ξ be a birandom variable on the probability space (Ω,A,Pr); then
the expected value of birandom variable ξ can be defined as follows:

E[ξ] =
∫+∞

0
Pr{ω ∈ Ω | E[ξ(ω)] ≥ t}dt −

∫0

−∞
Pr{ω ∈ Ω | E[ξ(ω)] ≤ t}dt, (4.2)

provided that at least one of the aforementioned two integrals is finite.
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Lemma 4.3 (see [32]). Let ξ be a birandom variable on the probability space (Ω,A,Pr). If the
expected value E[ξ(ω)] of the random variable ξ(ω) is finite for each ω, then E[ξ(ω)] is a random
variable on (Ω,A,Pr).

Remark 4.4. It should be noted that the expected value operator E, which appears on both
sides of the previous definition of E[ξ], is overloaded. In fact, symbol E represents different
meanings. That is to say, overloading allows us to use the same symbol E for different
expected value operators, because we can deduce the meaning from the type of argument.

Lemma 4.5. Let ˜t
k

i0(ω) be a normal birandom variable, subject to a normal distribution
N(μ̃tki0

(ω), σ2
1tki0

(ω)) where μ̃tki0
∼ N(μtki0

, σ2
2tki0

). Then the objective function in (3.15)

T
(

xj , ykj

)

= E

⎡

⎢

⎣

∑

k∈Ψ
wk

∑

j∈Ω

∑

i∈Φ
γ
j

i
˜t
k

i0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

⎤

⎥

⎦
(4.3)

is transformed into the following equivalent objective function:

T
(

xj , ykj

)

=
∑

k∈Ψ
wk

∑

j∈Ω

∑

i∈Φ
γ
j

i μtki0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
. (4.4)

Proof. From the assumption, for any ω ∈ Ω, ˜t
k

i0(ω) ∼ N(μ̃tki0
(ω), σ2

1tki0
(ω)) is an independent

random variable, where μ̃tki0
∼ N(μtki0

, σ2
2tki0

). From Definition 4.2,

E

[

˜t
k

i0

]

=
∫+∞

0
Pr
{

ω ∈ Ω | E
[

˜t
k

i0(ω)
]

≥ t

}

dt −
∫0

−∞
Pr
{

ω ∈ Ω | E
[

˜t
k

i0(ω)
]

≤ t

}

dt, (4.5)

since ˜t
k

1i0(ω) ∼ N(μ̃tki0
(ω), σ2

tki0
(ω)), and by Definition 4.1, function (4.5) is transformed as

follows:

E

[

˜t
k

i0

]

=
∫+∞

0
Pr
{

μ̃tki0
(ω) ≥ t

}

dt −
∫0

−∞
Pr
{

μ̃tki0
(ω) ≤ t

}

dt = μtki0
, (4.6)

and then
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T
(

xj , ykj

)

= E

⎡

⎢

⎣

∑

k∈Ψ
wk

∑

j∈Ω

∑

i∈Φ
γ
j

i
˜t
k

i0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

⎤

⎥

⎦

= T
(

xj , ykj

)

=
∑

k∈Ψ
wk

∑

j∈Ω

∑

i∈Φ
γ
j

i E

[

˜t
k

i0

]

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

=
∑

k∈Ψ
wk

∑

j∈Ω

∑

i∈Φ
γ
j

i μtki0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
.

(4.7)

This completes the proof.

Let ˜e
k

i (ω) be a normal birandom variable subject to a normal distribution
N(μ̃eki

(ω), σ2
1eki

(ω)) where μ̃eki
∼ N(μeki

, σ2
2eki

). Then similarly the objective function of the

lower level is transformed into crisp equivalents:

C
(

ykj

)

=
∑

k∈Ψ

∑

j∈Ω

∑

i∈Φ
γ
j

i μeki

⌈

ykj

vk

⌉

. (4.8)

Lemma 4.6. Assume that ˜t
k

i0(ω) ∼ N(μ̃tki0
(ω), σ2

1tki0
(ω)) is a normal birandom variable, where μ̃tki0

is

a normal distributed random variable characterized by μ̃tki0
∼ N(μtki0

, σ2
2tki0

); then
∑

i∈Φ γ
j

i μ̃tki0
(ω)[1 +

α(
∑

j∈Ω
∑

k∈Ψ γ
j

i �ykj/vk�/ri)
β
] − Tj ∈ N(μr, σ

2
r ) is also a random variable, where

μr =
∑

i∈Φ
γ
j

i μtki0
(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
− Tj ,

σr =

√

√

√

√

√

√

∑

i∈Φ

(

γ
j

i

)2
σ2
2tki0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

2

.

(4.9)

Then the following constraint for the first constraint is derived in (3.15):

Pr

⎧

⎪

⎨

⎪

⎩

ω | Pr

⎧

⎪

⎨

⎪

⎩

∑

i∈Φ
γ
j

i
˜t
k

i0(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
≤ Tj

⎫

⎪

⎬

⎪

⎭

≥ θ

⎫

⎪

⎬

⎪

⎭

≥ δ, (4.10)

being equivalent to the following equation:
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Φ−1(θ)

√

√

√

√

√

√

∑

i∈Φ

(

γ
j

i

)2
σ2
1tki0

(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

2

+ μr + σrΦ−1(δ) ≤ 0.

(4.11)

Proof. From the assumption, it is known that for any ω ∈ Ω, ˜t
k

i0(ω) ∼ N(μ̃tki0
(ω), σ2

1tki0
(ω)) is an

independent random variable, so it follows that

∑

i∈Φ
γ
j

i
˜t
k

i0(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
− Tj ∼ N

(

μ̃r(ω), σ̃2
r (ω)

)

(4.12)

is also a normally distributed random variable, where

μ̃r(ω) =
∑

i∈Φ
γ
j

i μ̃tki0
(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
− Tj ,

σ̃2
r (ω) =

∑

i∈Φ

(

γ
j

i

)2
σ2
1tki0

(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

2

.

(4.13)

Then

Pr

⎧

⎪

⎨

⎪

⎩

∑

i∈Φ
γ
j

i
˜t
k

i0(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
≤ Tj

⎫

⎪

⎬

⎪

⎭

≥ θ

⇐⇒ Pr

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

∑

i∈Φ γ
j

i
˜t
k

i0(ω)
[

1 + α
(

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

/ri
)β
]

− Tj

)

− μ̃r(ω)

σr(ω)
≤ −μ̃r(ω)

σ̃r(ω)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≥ θ

⇐⇒ Φ
(−μ̃r(ω)

σ̃r(ω)

)

≥ θ ⇐⇒ μ̃r(ω) ≤ −Φ−1(θ1r1)σ̃r(ω)

⇐⇒
∑

i∈Φ
γ
j

i μ̃tki0
(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
− Tj

≤ −Φ−1(θ)

√

√

√

√

√

√

∑

i∈Φ

(

γ
j

i

)2
σ2
1tki0

(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

2

.

(4.14)
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Since μ̃tki0
∼ N(μtki0

, σ2
2tki0

), then
∑

i∈Φ γ
j

i μ̃tki0
(ω)[1 + α(

∑

j∈Ω
∑

k∈Ψ γ
j

i �ykj/vk�/ri)
β
] − Tj ∈

N(μr, σ
2
r ), where

μr =
∑

i∈Φ
γ
j

i μtki0
(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
− Tj ,

σr =

√

√

√

√

√

√

∑

i∈Φ

(

γ
j

i

)2
σ2
2tki0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

2

,

(4.15)

for given confidence levels θ, δ ∈ [0, 1], so,

Pr

⎧

⎪

⎨

⎪

⎩

ω | Pr

⎧

⎪

⎨

⎪

⎩

∑

i∈Φ
γ
j

i
˜t
k

i0(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
≤ Tj

⎫

⎪

⎬

⎪

⎭

≥ θ

⎫

⎪

⎬

⎪

⎭

≥ δ

⇐⇒ Pr

⎧

⎪

⎨

⎪

⎩

ω |
∑

i∈Φ
γ
j

i μ̃tki0
(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
− Tj ≤ M

⎫

⎪

⎬

⎪

⎭

≥ δ

⇐⇒ Pr

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ω |
∑

i∈Φ γ
j

i μ̃tki0
(ω)

[

1 + α
(

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

/ri
)β

]

− Tj − μr

σr
≤M − μr

σr

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≤ δ

⇐⇒M ≥ μr + σrΦ−1(δ)⇐⇒Φ−1(θ)

√

√

√

√

√

√

∑

i∈Φ

(

γ
j

i

)2
σ2
1tki0

(ω)

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦

2

+ μr + σrΦ−1(δ) ≤ 0,
(4.16)

where M = −Φ−1(θ)

√

∑

i∈Φ (γji )
2
σ2
1tki0

(ω)
∑

[1 + α(
∑

j∈Ω
∑

k∈Ψ γ
j

i �ykj/vk�/ri)
β
]
2
.

The proof is completed.

Based on Lemmas 4.3 and 4.5, it is determined that the expectation multiobjective
bilevel programmingmodel with chance constraints (3.15) is equivalent to the following crisp
nonlinear multiobjective bilevel programming problem:
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minC
(

xj , ykj

)

=
∑

(o,d)∈E

∑

j∈Pod

cjxj ,

min T
(

xj , ykj

)

=
∑

k∈Ψ
wk

∑

j∈Ω

∑

i∈Φ
γ
j

i μtki0

⎡

⎢

⎣
1 + α

⎛

⎝

∑

j∈Ω
∑

k∈Ψ γ
j

i

⌈

ykj/vk

⌉

ri

⎞

⎠

β
⎤

⎥

⎦
,

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

j∈Pod

xj = Qod, (o, d) ∈ E,

∑

k∈Ψ
wk = 1,

xj ≥ 0, j ∈ Ω,

minC
(

ykj

)

=
∑

k∈Ψ

∑

j∈Ω

∑

i∈Φ
γ
j

i μeki

⌈

ykj

vk

⌉

,

s.t

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Φ−1(θ)

√

√

√

√

√

√

∑

i∈Aj

(

γ
j

i
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2
and θ and δ are predicted confidence

levels specified by the DM.
When (4.17) is used to make decisions, the upper level decision maker first makes a

decision xj , then the lower decisionmaker reacts ykj according to the cost, and the upper level
decision maker makes a proper adjustment based on the lower level feedback, finally making
the upper level objective optimal. Thus, the upper programming and the lower programming
influence and restrict each other in bilevel programming.

5. Solution Approach

To obtain an analytical optimal solution for a bilevel programming problem (BLPP) is
difficult, yet there is theoretical evidence supporting these observations since BLPP is in fact
NP-hard even in its linear form [37]. Moreover, this problem is nonlinear and nondifferen-
tiable, and the MCNFP in a large-scale construction project has various nodes and links.
On the other hand, the nondifferentiable piecewise objective functions and constraints
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presented in the MCNFP bring computational difficulties. Thus, the possibility of finding
a solution to the complexity is increased, and it is difficult to solve with any exact algorithm.
Therefore, here, an MOBLPSO is proposed to solve the MCNFP in a large-scale construction
project. Because particle swarm optimization (PSO) is computationally tractable compared
with other heuristic algorithms, it is easy to implement, and does not require any gradient
information for an objective function but the value.

PSO is a population-based self-adaptive search stochastic optimization technique pro-
posed by Kennedy and Eberhart [38], which was inspired by the social behaviour of animals
such as fish schooling and birds flocking. Similar to other population-based algorithms, such
as evolutionary algorithms, PSO can solve a variety of difficult optimization problems but
has shown a faster convergence rate than other evolutionary algorithms on some problems
[39]. PSO is influenced little by the continuity of the objective function; it just uses the
primary math operators and receives good results in static, noisy, and continuously changing
environments [40]. Another advantage of PSO is that it has very few parameters to adjust,
which makes it particularly easy to implement. Since PSO can be implemented easily and
effectively, it has been applied in solving real-world optimization problems in recent years,
such as [41–45]. In PSO, the following formulas [38] are applied to update the position and
velocity of each particle:

vl
d(τ1 + 1) = w(τ)vl

d(τ1) + cpr1
[

pl,best
d (τ) − pld(τ)

]

+ cgr2
[

gl,best
d (τ) − pld(τ)

]

,

pld(τ1 + 1) = pld(τ) + vl
d(τ + 1),

(5.1)

where vl
d
is the velocity of lth particle at the dth dimension in the τth iteration, w(τ) is the

inertia weight, pl
d
(τ) is the position of lth particle at the dth dimension, r1 and r2 are random

numbers in the range [0, 1], cp and cg are personal and global best position acceleration
constants, respectively, while, pl,best

d
(τ) is personal best position of the lth particle at the dth

dimension, and gl,best
d (τ) is the global best position at the dth dimension.

As mentioned before, it is very difficult to solve the bilevel model, especially when
the model is nonlinear. The contribution of this paper is that a universal effective algorithm
for solving the bilevel model is put forward, which is based on the hierarchical iteration. The
key idea of the algorithm is that the optimum of the bilevel model can be approached step by
step through repeatedly iterative calculations between the upper and lowermodels. Themain
body of the proposed approach is a type of PSO—multiobjective PSO (MOPSO)with Pareto-
Archived Evolution Strategy (PAES)—which is designed only to cope with the upper level
programming problem based on the follower’s optimal response. Another type of improved
PSO—PSO with passive congregation (PSOPC)—is embedded to deal with the lower level
programming problem and obtain the optimal response of the follower for each given
decision variable of the upper level programming. The follower’s optimal reaction is then
returned to upper level programming problem as the implementation base for the MOPSO.
The algorithm is called the MOBLPSO, the notations of which for the MCNFP are listed as
follows:

τ1, τ2: iteration index of the upper and lower level, τ1 = 1, 2, . . . , T1 and τ2 = 1, 2,
. . . , T2;

l1, l2: particle index of the upper and lower level, l1 = 1, 2, . . . , L1 and l2 = 1, 2, . . . , L2;

j: index of transportation path, j = 1, 2, . . . , J ;
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k: index of carrier, k = 1, 2, . . . , K;

r1, r2, r3, r4, r5: uniform distributed random number within [0,1];

w1(τ1): inertia weight in the τ1th iteration of the upper level;

w2(τ2): inertia weight in the τ2th iteration of the lower level;

Rl2
kj
(τ2): particle selected randomly from the swarm at the kjth dimension in the

τ2th iteration;

c1p, c1g : personal and global best position acceleration constant of the upper level;

c2p, c2g : personal and global best position acceleration constant of the lower level;

cpc: passive congregation coefficient of the lower level;

p1max, p1min: maximum and minimum position value of the upper level;

Pl1(τ1): vector position of the l1th particle in the τ1th iteration, Pl1(τ1) = [pl11 (τ1),
pl12 (τ1), . . . , p

l1
J (τ1)];

Pl2(τ2): vector position of the l2th particle in the τ2th iteration, Pl2(τ2) = [pl21 (τ2),
pl22 (τ2), . . . , p

l1
KJ(τ2)];

V l1(τ1): vector velocity of the l1th particle in the τ1th iteration, V l1(τ1) = [vl1
1 (τ1),

vl1
2 (τ1), . . . , v

l1
J (τ1)];

V l2(τ2): vector velocity of the l2th particle in the τ2th iteration, V l2(τ2) = [vl2
1 (τ2),

vl2
2 (τ2), . . . , v

l2
KJ(τ2)];

Pl1,best(τ1): vector personal best position of the l1th particle in the τ1th iteration,
Pl1,best(τ1) = [pl1,best1 (τ1), p

l1,best
2 (τ1), . . . , p

l1,best
J (τ1)];

Pl2,best(τ1): vector personal best position of the l2th particle in the τ2th iteration,
Pl2,best(τ2) = [pl2,best1 (τ2), p

l2,best
2 (τ2), . . . , p

l2,best
J (τ2)];

Gbest(τ2): vector global best position in the τ2th iteration, Gbest(τ2) = [gbest
1 (τ2),

gbest
2 (τ2), . . . , gbest

KJ (τ2)];

ARC: the positions of the particles that represent nondominated vectors in the
repository;

F(Pl1(τ1)): fitness value of Pl1(τ1); and

F(Pl2(τ2)): fitness value of Pl2(τ2).

5.1. Multiobjective Methods for the Upper Level Programming

Researchers are also seeing PSO as a very strong competitor to other algorithms in solving
multiobjective optimal problems [46] and it has been proved to be especially suitable for mul-
tiobjective optimization [47]. The method applied here to deal with the upper level problem
is a multiobjective method which combines a MOPSOwith PAES. The PAES [48] is one of the
Pareto-based approaches to update the best position. The methods use a truncated archive
to store the elite individuals. This approach uses leader selection techniques based on Pareto
dominance. The basic idea is to select as leaders to the particles that are nondominated with
respect to the swarm.
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Procedure The updating of the best position in the subsequent iterations
generate an initial random solution pl1 ,bestj (τ1) and add it to the archive;

update pl1 ,bestj (τ1) to produce pl1j (τ1 + 1) and evaluate pl1j (τ1 + 1);

If (pl1 ,bestj (τ1) dominates pl1j (τ1 + 1)) then discard pl1j (τ1 + 1);

else if (pl1j (τ1 + 1) dominates pl1 ,bestj (τ1)) then replace pl1 ,bestj (τ1)with pl1j (τ1+1), and add pl1j (τ1 + 1)

to the archive pl1 ,bestj (τ1 + 1) = pl1j (τ1 + 1);

else if (pl1j (τ1 + 1) is dominated by any member of the archive) then discard plj(τ1 + 1);

else apply test (pl1 ,bestj (τ1), pl1j (τ1 + 1), archive) to determine which becomes the new current

solution and whether to add pl1j (τ1 + 1) to the archive;
until a termination criterion has been reached, return to line 2.

Algorithm 1

Procedure Test
if the archive is not full;

add pl1j (τ1 + 1) to the archive;

if (pl1j (τ1 + 1) is in a less crowded region of the archive than pl1 ,bestj (τ1));

accept pl1 ,bestj (τ1 + 1) = pl1j (τ1 + 1);

else maintain pl1 ,bestj (τ1 + 1) = pl1 ,bestj (τ1);
else

If (pl1j (τ1 + 1) is in a less crowded region of the archive than pl1 ,bestj (τ1) for some

member pl1 ,bestj (τ1) on the archive);

add pl1j (τ1 + 1) to the archive, and remove a member of the archive from the most
crowded region;
if (pl1j (τ1 + 1) is in a less crowded region of the archive than pl1 ,bestj (τ1));

accept pl1 ,bestj (τ1 + 1) = pl1j (τ1 + 1);

else maintain pl1 ,bestj (τ1 + 1) = pl1 ,bestj (τ1);
else

if (pl1j (τ1 + 1) is in a less crowded region of the archive than pl1 ,bestj (τ1));

accept pl1 ,bestj (τ1 + 1) = pl1j (τ1 + 1);

else maintain pl1 ,bestj (τ1 + 1) = pl1 ,bestj (τ1).

Algorithm 2

The details for the PAES procedure, test procedure, and selection procedure are stated
hereinafter (Algorithms 1 and 2), in which Pl1,best(τ1) is initially set equal to the initial position
of particle l1.

The repository that stores the positions of the particles that represent nondominated
vectors is denoted by ARC; then the velocity of each l1th particle of the upper level is updated
using the following equations:

vl1
j (τ1 + 1) = w1(τ1)v

l1
j (τ1) + c1pr1

[

pl1,bestj (τ1) − pl1j (τ1)
]

+ c1gr2
[

ARCh(τ1) − pl1j (τ1)
]

, (5.2)

where ARCh(τ1) is a solution randomly selected from the repository in iteration τ1, which
can improve significantly the ability of global convergence by avoiding being trapped in
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a stagnant state in finite iterations [49, 50]. The index h is selected in the following way:
the hypercubes containing more than one particle are assigned a fitness equal to the result
of dividing any number into the number of particles they contain. This aims to decrease the
fitness of those hypercubes that contain more particles which is seen as a form of fitness
sharing [51]. Then, a roulette-wheel selection is applied using these fitness values to select
the hypercube from which the corresponding particle is taken. Once the hypercube has been
selected, a particle is selected randomly within the hypercube.

5.2. PSOPC for the Lower Level Programming

From the previous description, because there are many constraints in the lower level, the
standard PSO can easily fall into premature convergence, so a PSOPC based on the standard
PSO is adopted to solve the lower level problem. He et al. [52] proved that PSOPC can avoid
the premature convergence problem, in the running of the PSO algorithm by adding a passive
congregation coefficient to the standard PSO, as this helps the algorithmmove out of the local
optimal solution improving the convergence of the algorithm, and thus improving the global
search ability. The following equation is adopted to update the velocity of each l2th particle
of the lower level:

vl2
kj(τ2 + 1) = w2(τ2)v

l2
kj(τ2) + c2pr3

[

pl2,bestkj (τ2) − pl2kj(τ2)
]

+ c2gr4
[

gbest
kj (τ2) − pl2

kj(τ2)
]

+ cpcr5
(

Rl2
kj(τ2) − pl2

kj(τ2)
)

.

(5.3)

5.3. Framework of the Proposed MOBLPSO for the MCNFP

In our proposed algorithm, solving multiobjective bilevel programming is transformed to
solve the upper level and lower level programming problem interactively while determining,
respectively, the decision variable of the upper level or the lower level. To be mentionable,
the PSOPC for the lower level is nested in the MOPSO for the upper level, and the MOPSO
is the main body of the MOBLPSO. The solution information is exchanged between the two
types of PSO, and the output of one algorithm is the input of another algorithm, namely,
y, the output of PSOPC for lower level programming is the input of the MOPSO for upper
level programming; and x, the output of the MOPSO for the upper level programming is the
input of PSOPC for the lower level programming. These form a hierarchical and sequential
framework.

Parameter Selection

In order to guarantee the convergence of MOBLPSO, the parameters are selected on the basis
of empirical results that are carried out to observe the behaviour of the algorithm in different
parameter settings. By comparing several sets of parameters, including population size, iter-
ation number, acceleration coefficients, and inertia weight, the empirical results have shown
that the constant acceleration coefficients with c1p = c1g = 1.5 for the upper level, c2p = 1,
c2g = 2, and cpc = 1.5 (i.e., passive congregation coefficient [52]) for the lower level, and
the adaptive inertia weights [53] provide good convergent behaviour in this study, which
is in accordance with the results provided by Eberhart and Shi [54]. The adaptive inertia
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weights for the upper level (i.e., e = 1) and lower level (i.e., e = 2) are set to be varying with
iteration as follows:

we(τe) = we(Te) − τe − Te
1 − Te

[we(1) −we(Te)], (5.4)

where the iteration numbers are T1 = 500 (i.e., for the upper level) and T2 = 100 (i.e., for the
lower level), andwe(1) = 0.9 andwe(Te) = 0.1 (for e = 1, 2). Since the probability of becoming
trapped in the stagnant state can be reduced dramatically by using a large number of particles
[49], the population sizes are set to be 300 for the upper level and 100 for the lower level.

Initialize

In the upper level, set iteration τ1 = 1. For l1 = 1, 2, . . . , L1, generate the position of the particle
l1 with an integer random position (note that every particle in the upper level consists of j
dimensions in this study). In the lower level, set iteration τ2 = 1. For l2 = 1, 2, . . . , L2, generate
the position of the particle l2 with an integer random position (note that every particle in the
lower level consists of k × j dimensions in this study).

Decode Particles into Solutions

Decode particles into solutions: for l1 = 1, 2, . . . , L1, decode pl1(τ1) to a solution as pl1j (τ1) =

xj(τ1). For l2 = 1, 2, . . . , L2, decode pl2(τ2) to a solution as pl2
kj
(τ2) = ykj(τ2). Mapping

between one potential solution for the upper and lower level of the MCNFP and particle
representation is shown in Figure 4.

Check the Feasibility

All particles of the upper level satisfy the constraints of the upper level. All particles of the
lower level satisfy the constraints of the lower level. Then, the particles are feasible.

Fitness Value

The fitness value used to evaluate the particle is the value of objective function in each level.
There are two objectives in the upper level; particle Pl1(τ1)’s fitness value F(Pl1(τ1)) is a 1 × 2
matrix, namely,

F
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The fitness value of the particle in the lower level is

F
(

Pl2(τ2)
)

=
∑

k∈Ψ
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j∈Ω

∑

i∈Φ
γ
j

i μeki

⌈
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⌉

. (5.6)
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Figure 4: Decoding method and mapping between PSO particles and solutions of two levels.

Figure 5 shows the schematic procedure for the MOBLPSO to generate solutions
for the proposed multiobjective bilevel model. Such a repeated interaction and cooperation
between two types of PSO reflects and simulates the decision process of multiobjective bilevel
programming and is able to solve multiobjective bilevel programming sequentially.

6. Practical Application

6.1. Project Description

In this section, an earth-rock work transportation project in a large-scale water conservancy
and hydropower construction project is taken as an example for our optimization method.
The Shuibuya Hydropower Project was conducted in Badong County, which is located in the
middle reaches of Qingjiang River in Sichuan province, China. The project is the first cascaded
project on the Qingjiang main stream and the third important project following Geheyan and
Gaobazhou in China. Once completed, it will provide a major power source to meet the peak
load demand in the Central China Power Grid. The installed capacity and annual output of
Shuibuya Power Plant are 1,600MW and 3.92GWh, respectively. The project has a powerful
regulating ability with a normal pool level of 400m and reservoir capacity of 4.58 × 109 m3.
The project consists of a concrete-faced rock fill dam (CFRD), underground power house, a
chute spillway on the left bank, and the sluice tunnel on the right bank. The dam is 233m
high and is the tallest of its kind in the world at present with a total volume of 15.64× 106 m3.
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Figure 5: Schematic diagram of MOBLPSO for MCNFP.

6.2. Data Collection

All detailed data for the Shuibuya Hydropower Project were obtained from the Hubei
Qingjiang Shuibuya Project Construction Company. In a large-scale construction project,
especially in a large water conservancy and hydropower construction project, earth-rock
work is usually a primary material, and earth-rock work transportation occurs every day in
excavation projects, borrow areas, filling projects, dumpling sites, and stockpile areas as it is
turned over and needs to be replaced frequently (see Figure 6). In the Shuibuya Hydropower
Project, there are 4 excavation projects, 2 borrow areas, 3 stockpile areas, and 2 dumpling sites,
The location and detailed information of borrow areas, dumpling sites, and stockpile areas,
of the Shuibuya Hydropower Project is illustrated in Figure 7.

Three types of dump trucks (carriers) in the construction project are considered, which
transport earth-rock work along different paths connecting the OD pairs, with the destination
nodes having the practical demand of timeliness. All necessary data for every kind of carrier
were calculated as shown in Table 1, and Table 2 shows the details of the paths in the whole
road network.
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Figure 6: Earth-rock work transportation relations in large-scale construction project.

The transportation network in the project includes an internal road network and an
external road network. In this case, only the internal road network is considered. The internal
road network is composed of 20 trunk roads located on the left and right banks, with 11 on the
left and 9 on the right, with a cross-river bridge connecting the left and right banks.
Therefore, 21 links are considered in this paper. In order to apply the proposed methods more
conveniently, adjacent roads of the same type have been combined and road shapes have been
ignored. An abstracted transportation network is illustrated in Figure 8. For each link in the

transportation network, there are a free flow birandom travel time ˜t
k

i0 and birandom trans-

portation cost ˜e
k

i . The corresponding data of which are stated in Table 3. In order to collect
the data of transportation time and costs, investigations and surveys were made to obtain
historical data from the financial department and experienced engineers of construction
team in Hubei Qingjiang Shuibuya Project Construction Company. Since the transportation
time and costs for each arc of the path change over time, the data are classified into
different parts based on different periods. Both transportation time and costs are assumed
to approximately follow normal distributions for each period, and the two parameters
(expected value and variance) for the normal distributions are estimated by using maximum
likelihood estimation, which justified by a chi-square goodness-of-fit test. By comparing
the normal distributions for the same transportation time and costs in different periods,
it can be found that the expected values of the aforementioned normal distributions also
approximately follow a similar random distribution pattern, which has also been justified
using a chi-square goodness-of-fit test. It should be noted that since the variance fluctuations
are quite insignificant, the median values of the variances in different periods are selected as
the variance for the previous normal distribution. The predicted confidence levels given by
the decision maker are, respectively, θ = 0.9 and δ = 0.85.
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Borrow area 1
(Gongshanbao borrow area)
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(Xiaqiaogou stockpile area)

Figure 7: Layout of borrow areas, dumpling sites and stockpile areas of Shuibuya Hydropower Project.

Table 1: Information of carriers in Shuibuya Hydropower Project.

Carrier Kind index k Type (heaped capacity; maximum payload) Weightwk

Dump truck
1 K30N-8.4 (16m3; 26 t) 0.3

2 Terex TA28 (17m3; 28 t) 0.3

3 Perlini DP366 (20m3; 36 t) 0.4

#6

#1 #5

#8

#7

#9

#12

#11#16

#15

#14

#10

#13

#2 #4

#3

Node

Arc

Figure 8: Illustrations of road network of Shuibuya Hydropower Project.
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6.3. Computational Results

To verify the practicality and efficiency of the MCNFP optimization model under a birandom
environment presented previously, the proposed MOBLPSO was implemented to determine
the flow assignment amongst the transportation paths and amongst the carriers over a certain
period using actual data from the Hubei Qingjiang Shuibuya Project Construction Company.
After running the proposed MOBLPSO using MATLAB 7.0, the computational results were
obtained and the efficiency of the proposed algorithm was proven.

The computer running environment was an intel core 2 Duo 2.26GHz clock pulse
with 2048MB memory. The problem was solved using the proposed algorithm with satisfac-
tory solutions within 21 minutes on average, and the optimal solutions for lower level
programming and the Pareto optimal solution set for upper level programming were worked
out.

The red dots in Figure 9 show the Pareto optimal solutions, while the blue dots show
the best position of particles in this iteration. The decisionmaker can choose a plan from these
Pareto optimal solutions depending on their preference. For example, if the decision makers
feel that the total direct cost objective is more important, they may sacrifice transportation
time for more economical scheme. Thus they choose the absolute left of the Pareto optimal
solution in the minimum cost network flow plan in Table 4. On the contrary, if decision
makers feel that the transportation time objective is more important, they may choose
minimum total transportation time cost and sacrifice more costs for the MCNFP, choosing the
lowest of the Pareto optimal solutions. The minimum transportation time plan is in Table 5.

6.4. Model Comparison to an MCNFP with Single Randomness

To highlight the advantages of our mathematical model (4.17), additional computational
work was done using the proposed MOBLPSO to solve a similar MCNFP under a different
uncertain environment, that is, the random environment. To carry out comparisons under
a similar circumstance, analyses were conducted based on results from running the test
problem 10 times. A detailed analysis follows.

In order to guarantee a fair comparison between the MCNFP model with birandom-
ness (denoted by MCNFP-birm) and a model just considering single randomness (denoted
byMCNFP-rm), the randomdistribution for each related uncertain parameter in theMCNFP-

rm was selected in the following way. Take the transportation cost ˜e
1
1 (i.e., ˜e

1
1 ∼ N(μ, 0.64),

with μ ∼ N(5.2, 0.10)), for example. The stochastic nature of the expected value μ in the
normal distribution N(μ, 0.64) was ignored by using its expectation 5.2 as a representation
while the variance 0.64 was retained. Thus, for the MCNFP-rm, the birandomness of the
transportation cost ˜e

1
1 degenerated to a single randomness, in which the distribution of the

transportation cost could be expressed as N(5.2, 0.64). Since the variance of the random
variable μwas sufficiently small (i.e., 0.1 � 1), the expectation of the random variable μ essen-
tially reflected themost possible value over time. Thus, it was reasonable to selectN(5.2, 0.64)
as the normal distribution for the transportation cost in the MCNFP-rm to compare with that
in the MCNFP-birm. The transformation of the other related uncertain parameters followed
a similar pattern. Thus the model for the MCNFP-rm was formulated and solved using the
proposed MOBLPSO 10 times.

As shown in Table 6, the best, the worst, and the average results for the random type
are higher than their counterparts for the MCNFP-birm. It is worth noting that the gaps



Mathematical Problems in Engineering 31

Ta
b
le

4:
T
he

m
os
tc

os
t-
eff

ec
ti
ve

pl
an

fo
r
M
C
N
FP

in
Sh

ui
bu

ya
ca
se
.

Tr
an

sp
or
ta
ti
on

pa
th

j
1

2
3

4
5

6
7

8
9

10
11

M
at
er
ia
lv

ol
um

e
x
j

95
0.
00
0

54
3.
76
3

16
72
.4
88

25
6.
31
7

17
7.
43
2

17
00
.0
00

76
6.
64
6

14
11
.9
58

57
.9
66

63
.4
30

12
79
.6
75

M
at
er
ia
lv

ol
um

e
y
1j

42
6.
43
2

30
9.
72
3

57
6.
20
6

71
.0
20

93
.8
74

50
5.
16
1

37
1.
88
5

44
9.
94
3

36
.2
24

46
.7
15

52
0.
47
7

M
at
er
ia
lv

ol
um

e
y
2j

41
3.
34
5

10
7.
51
4

58
7.
05
1

92
.5
21

44
.3
60

62
0.
74
3

26
7.
58
5

52
1.
37
8

42
.1
72

48
.5
36

36
4.
22
5

M
at
er
ia
lv

ol
um

e
y
3j

36
9.
91
2

15
9.
46
7

50
9.
23
0

52
.7
41

12
7.
02
5

57
4.
09
6

28
5.
79
2

44
0.
63
7

34
.1
54

48
.5
42

39
4.
97
4

Tr
an

sp
or
ta
ti
on

pa
th

j
12

13
14

15
16

17
18

19
20

21
1

22
M
at
er
ia
lv

ol
um

e
x
j

37
0.
32
5

16
1.
35
7

13
18
.6
43

13
80
.0
00

17
00
.0
00

34
6.
38
4

90
3.
61
6

11
50
.0
00

13
00
.0
00

74
7.
34
9

51
2.
65
1

M
at
er
ia
lv

ol
um

e
y
1j

14
4.
94
7

43
.3
73

48
7.
11
9

39
8.
45
7

65
0.
26
3

15
8.
87
4

42
7.
93
1

38
1.
46
2

38
2.
51
5

36
3.
82
7

63
.1
58

M
at
er
ia
lv

ol
um

e
y
2j

19
5.
90
1

42
.6
86

42
1.
53
2

47
6.
33
9

59
8.
63
4

11
1.
61
8

20
0.
38
8

43
0.
26
2

44
6.
54
5

26
4.
17
2

80
.9
90

M
at
er
ia
lv

ol
um

e
y
3j

15
5.
66
2

46
.6
72

40
9.
99
2

50
5.
20
4

45
1.
10
3

17
1.
53
9

32
5.
55
8

33
8.
27
6

47
0.
94
0

37
3.
28
4

48
4.
42
6



32 Mathematical Problems in Engineering

Ta
b
le

5:
T
he

m
os
tt
im

e-
sa
vi
ng

pl
an

fo
r
M
C
N
FP

in
Sh

ui
bu

ya
ca
se
.

Tr
an

sp
or
ta
ti
on

pa
th

j
1

2
3

4
5

6
7

8
9

10
11

M
at
er
ia
lv

ol
um

e
x
j

95
0.
00
0

10
13
.5
17

75
8.
50
7

82
0.
24
7

57
.7
35

17
00
.0
00

94
8.
76
2

10
56
.1
85

25
3.
39
2

41
.6
61

64
7.
44
4

M
at
er
ia
lv

ol
um

e
y
1j

26
5.
78
3

35
4.
50
0

30
8.
79
0

32
9.
11
5

45
.1
11

57
3.
57
5

49
2.
09
2

42
2.
10
6

15
7.
70
7

21
.3
22

36
3.
27
7

M
at
er
ia
lv

ol
um

e
y
2j

42
7.
95
2

32
4.
08
8

40
0.
51
0

47
6.
40
3

39
.0
31

52
3.
95
3

35
4.
16
8

40
5.
05
4

48
.4
91

28
.7
44

22
2.
92
1

M
at
er
ia
lv

ol
um

e
y
3j

29
3.
73
5

33
4.
92
9

39
0.
00
5

43
2.
16
5

38
.5
71

60
2.
47
2

39
8.
62
7

31
5.
83
1

56
.6
96

39
.2
24

19
9.
71
7

Tr
an

sp
or
ta
ti
on

pa
th

j
12

13
14

15
16

17
18

19
20

21
22

M
at
er
ia
lv

ol
um

e
x
j

10
02
.5
56

20
0.
43
5

12
79
.5
65

13
80
.0
00

17
00
.0
00

10
57
.0
49

19
2.
95
1

11
50
.0
00

13
00
.0
00

50
0.
30
6

75
9.
69
4

M
at
er
ia
lv

ol
um

e
y
1j

48
9.
99
6

10
0.
61
4

33
7.
17
7

41
7.
54
7

55
2.
80
7

27
4.
88
8

12
7.
42
3

33
7.
06
8

37
7.
97
7

27
4.
46
7

36
9.
14
3

M
at
er
ia
lv

ol
um

e
y
2j

40
2.
29
7

10
9.
07
8

53
5.
58
9

45
4.
31
5

53
9.
65
7

49
3.
53
1

13
1.
39
9

45
1.
60
3

52
5.
48
8

25
5.
82
2

29
9.
62
6

M
at
er
ia
lv

ol
um

e
y
3j

26
5.
07
4

31
.3
14

40
6.
79
9

50
8.
13
7

60
7.
53
6

43
9.
66
0

47
.4
52

36
1.
32
9

39
6.
53
5

65
.1
38

33
1.
52
5



Mathematical Problems in Engineering 33

The total direct cost
3.2 3.4 3.6 3.8 4

12.8

12.81

12.82

12.83

T
he

 tr
an

sp
or

ta
ti

on
 ti

m
e (Iteration 1)

×104 The total direct cost
3.2 3.4 3.6 3.8 4

12.8

12.81

12.82

12.83

T
he

 tr
an

sp
or

ta
ti

on
 ti

m
e (Iteration 100)

×104

The total direct cost

3.2 3.4 3.6 3.8 4
12.8

12.81

12.82

12.83

T
he

 tr
an

sp
or

ta
ti

on
 ti

m
e (Iteration 200)

×104 The total direct cost

3.2 3.4 3.6 3.8 4
12.8

12.81

12.82

12.83

T
he

 tr
an

sp
or

ta
ti

on
 ti

m
e (Iteration 300)

×104

The total direct cost

3.2 3.4 3.6 3.8 4
12.8

12.805

12.81

12.815

12.82

T
he

 tr
an

sp
or

ta
ti

on
 ti

m
e (Iteration 400)

×104 The total direct cost

3.2 3.4 3.6 3.8 4
12.8

12.805

12.81

12.815

12.82
T

he
 tr

an
sp

or
ta

ti
on

 ti
m

e (Iteration 500)

×104

Figure 9: Pareto optimal solutions of upper level programming for Shuibuya Hydropower Project.

between the best and the worst and between the best and the average solutions for MCNFP-
rm are wider than the gaps of their counterparts for the birandom type. This shows that
randomness creates a much larger solution space when uncertainty is introduced. Fortu-
nately, the widened solution space with a further stochastic nature in the MCNFP-birm
provides better solutions and they were successfully located by MOBLPSO, evidenced by the
narrower gaps between the best and theworst and between the best and the average solutions
found for the MCNFP-birm. This suggests that MOBLPSO is an effective and relatively
efficient approach for solving the MCNFP under a birandom environment.

6.5. Algorithm Evaluation

Since the PSOPC for the lower level is nested in the MOPSO for the upper level, and the
MOPSO is the main body of the proposed MOBLPSO, the evaluation of the MOPSO was
mainly paid attention to. In the MOPSO, a multiobjective method is introduced to derive
the Pareto optimal solution set for the upper level programming. This provides effective and
nondominated alternate schemes for the construction contractor. Compared to the weight-
summethod dealing with multiobjectives in [21], the solutions here are confirmed to be more
practical.
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Table 7: Algorithm evaluation by metrics of performance for Pareto optimal sets.

Iteration The average distance metric The distribution metric The extent metric
1 0.0781 0.1474 48.6227
100 0.0738 0.3460 58.1423
200 0.0878 0.4031 61.1722
300 0.0526 0.6967 69.2970
400 0.0554 0.8082 64.7773
500 0.0435 0.8938 68.8648

Comparing different optimization techniques experimentally always involves the
notion of performance. In the case of multiobjective optimization, the definition of quality is
substantially more complex than for single-objective optimization problems. There are many
metrics of performance to measure the distance of the resulting nondominated set to the
Paretooptimal front, the distribution of the solution found, and the extent of the obtained
nondominated front [55].

To gain further insight into the performance of the multiobjective method in the
proposed algorithm, the procedure was run different times and the results are summarized
in Figure 9 and Table 7. As is shown in Figure 9, the amount and the distribution of Pareto
optimal solutions in each iteration are satisfactory. For further expression of the efficiency
of the convergence, three metrics of performance proposed by Zitzler et al. [55] were
introduced: (1) the average distances of the resulting nondominated set to the Pareto-optimal
front: the value of which decreases with an increase in the iterations, meaning that the pro-
gram results come in toward the Pareto optimal front, which expresses the convergence of the
algorithm; (2) the distribution in combination with the number of non-dominated solutions
found: the higher the value, the better the distribution for an appropriate neighbourhood
parameter; (3) the extent of the obtained nondominated fronts: it uses a maximum
extent in each dimension to estimate the range to which the fronts spread out, which in this
paper equals the distance of the two outer solutions.

The metrics of performance for the Pareto optimal set is shown in Table 7 to provide a
satisfactory result for the efficiency of the convergence. Although there are some fluctuations
in the three metrics in the 500 iterations, these do not affect the final result.

To asses the efficiency and effectiveness of the MOBLPSO for the proposed MCNFP,
the MOBLPSO results for the MCNFP in the Shuibuya Hydropower Project are compared
with two other state-of-the-art heuristic algorithms, that is, a genetic algorithm for a multi-
objective bilevel model (denoted by MOBLGA) [56] and a simulated annealing algorithm
for a multiobjective bilevel model (denoted by MOBLSA) [57].

In order to carry out the comparisons under a similar circumstance, the parameter
selections for theMOBLGA andMOBLSA refer to those of theMOBLPSO, and nondominated
alternate schemes are also employed for both. To measure the quality of the results obtained
by the three algorithms, a weight sum method was introduced to detrmine one minimal
weight sum for the objectives from the nondominated solutions. Thus the comparison could
be implemented based on the unique measured criterion (i.e., the minimal weight sum of
the objectives). To ensure the conformity validity of the multiobjectives, the division of the
dimensions and a unifying of the order of magnitude need to be performed before the weight-
sum procedure.

Table 8 shows the comparison results, that is, the minimal weight sum value of the
two objectives, and the average computation times, obtained using the preceding approaches
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for the different combination of weights (i.e., ω1 and ω2 represent the weights of the two
objectives, resp.). It is demonstrated that the MOBLPSO for the MCNFP can perform opti-
mizing better than the MOBLGA, since MOBLGA may lead to a local search and need more
computation time. On the other hand, the MOBLSA could get similar results to those from
MOBLPSO, but computation was much slower than the MOBLPSO.

7. Conclusions and Future Research
In this paper, a multiobjective bilevel programming model under birandom environment for
an MCNFP in a large-scale construction project was formulated. The contributions of this
paper to the literature are as follows. Firstly, the multiobjective bilevel model for the mini-
mum cost network flow problem in a large-scale construction project focused on here was
found to provide a more reasonable expression of the proposed problem, where the upper
level aims at optimizing the material flow assignment along the transportation paths and the
lower level decides on the flow of each carrier transports on the paths. Secondly, because of
the complicated realistic decision systems, this study employs birandom variables to charac-
terize the hybrid uncertain environment. The application of birandom variables makes the
proposed programming model more suitable for describing a vague and uncertain situation
in the real world. Further, the birandom uncertainty model was converted into an expectation
multiobjective bilevel programming model with chance constraints. Thirdly, in order to
solve the NP-hard multiobjective bilevel problem, a very effective and relatively efficient
algorithm (i.e., MOBLPSO) was developed by employing both a MOPSO and a PSOPC.
Finally, the Shuibuya Hydropower Project was used here as a practical application example.
The MOBLPSO results for the preceding project example were compared with MOBLGA and
MOBLSA methods, which demonstrated the validity of the proposed mathematical model
and the effectiveness of the proposed MOBLPSO method in handling complex problems.

Further research is necessary to identify further properties to develop a more effective
method for solving other practical problems: (1) the formulation of an MCNFP for manifold
materials rather than only one type of material transportation network in large-scale con-
struction projects, (2) the investigation of other new approaches such as an automated design
methodology and dependent chance programming to handle the birandom variables more
reasonably and effectively, (3) the development of more efficient solution methods to solve
multiobjective bilevel programming problems. Each of these areas is very important and
equally worthy of attention. It should be mentioned that there are several commercial solvers
that can efficiently solve large-scale nonlinear problems such as MINOS, CONOPT and
SNOPT. However, when solving bilevel programming with nonlinear and non-differentiable
piecewise objective functions and constraints like the MCNFP discussed in this paper,
these solvers may face difficulties to deal with the nondifferentiability and nonconvexity by
employing the exact techniques such as enumeration method, Karush-Kuhn-Tucker method,
and penalty function approach. The future research may seek to address this issue with
alternative exact techniques.
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[4] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Networks,
Morgan Kaufmann, 2004.

[5] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network information flow: a deterministic
approach,” IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 1872–1905, 2011.

[6] W. S. Lee, W. I. Lim, and P. H. Koo, “Transporter scheduling based on a network flow model under a
dynamic block transportation environment,” in Proceedings of the International Conference on Computers
& Industrial Engineering, pp. 311–316, 2009.

[7] K. Paparrizos, N. Samaras, and A. Sifaleras, “An exterior simplex type algorithm for the minimum
cost network flow problem,” Computers & Operations Research, vol. 36, no. 4, pp. 1176–1190, 2009.

[8] C. Dang, Y. Sun, Y. Wang, and Y. Yang, “A deterministic annealing algorithm for the minimum
concave cost network flow problem,” Neural Networks, vol. 24, no. 7, pp. 699–708, 2011.

[9] D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides, “A dynamic programming approach
for solving single-source uncapacitated concave minimum cost network flow problems,” European
Journal of Operational Research, vol. 174, no. 2, pp. 1205–1219, 2006.

[10] D. Goldfarb and Z. Jin, “A new scaling algorithm for the minimum cost network flow problem,”
Operations Research Letters, vol. 25, no. 5, pp. 205–211, 1999.

[11] A. V. Goldberg, “An efficient implementation of a scaling minimum-cost flow algorithm,” Journal of
Algorithms, vol. 22, no. 1, pp. 1–29, 1997.

[12] A. Sedeño-Noda and C. González-Martı́n, “An algorithm for the biobjective integer minimum cost
flow problem,” Computers & Operations Research, vol. 28, no. 2, pp. 139–156, 2001.

[13] X. Zhu, Q. Yuan, A. Garcia-Diaz, and L. Dong, “Minimal-cost network flow problems with variable
lower bounds on arc flows,” Computers & Operations Research, vol. 38, no. 8, pp. 1210–1218, 2011.

[14] D. Watling, “User equilibrium traffic network assignment with stochastic travel times and late arrival
penalty,” European Journal of Operational Research, vol. 175, no. 3, pp. 1539–1556, 2006.

[15] A. Chen and Z. Zhou, “The α-reliable mean-excess traffic equilibrium model with stochastic travel
times,” Transportation Research B, vol. 44, no. 4, pp. 493–513, 2010.

[16] Y. K. Lin, “Reliability evaluation of a revised stochastic flow network with uncertain minimum time,”
Physica A, vol. 389, no. 6, pp. 1253–1258, 2010.

[17] A. Sumalee, D. P. Watling, and S. Nakayama, “Reliable network design problem: case with uncertain
demand and total travel time reliability,” Transportation Research Record, vol. 1964, no. 1, pp. 81–90,
2006.

[18] A. M. Geoffrion and W. W. Hogan, “Coordination of two-level organizations with multiple
objectives,” in Techniques of Optimization, pp. 455–466, Academic Press, New York, NY, USA, 1972.

[19] K. Tarvainen and Y. Y. Haimes, “Coordination of hierarchical multiobjective systems: theory and
methodology,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 12, no. 6, pp. 751–764, 1982.

[20] M. S. Osman, M. A. Abo-Sinna, A. H. Amer, and O. E. Emam, “A multi-level non-linear multi-
objective decision-making under fuzziness,” Applied Mathematics and Computation, vol. 153, no. 1, pp.
239–252, 2004.

[21] G. Zhang, J. Lu, and T. Dillon, “Decentralized multi-objective bilevel decision making with fuzzy
demands,” Knowledge-Based Systems, vol. 20, no. 5, pp. 495–507, 2007.
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