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A mathematical model is proposed in this paper for locating optimal positions for passive
energy dissipative dampers. Three control indices of structural responses with the storey-drift
angle, storey displacement, and acceleration are taken in this model. Firstly, six combination
modes of these indices are presented. On the premise that the number of dampers is fixed, this
paper deals with the optimal placement of two types of passive dampers for several building
models with different number of storeys and seismic ground motions at four types of sites
using genetic algorithm. Secondly, two estimating indices are presented to assess the reasonable
combination mode of coefficients under different conditions, which can generally express the best
response control. Numerical examples are illustrated to verify the effectiveness and feasibility
of the proposed mathematical model. At last, several significant conclusions are given based on
numerical results.

1. Introduction

The technique of energy dissipation belongs to a kind of passive structural control. The
basic role of passive energy dissipation devices is to absorb or consume a portion of the
input energy from earthquake or wind, reduce the structural response, and protect structural
members. These devices are classified as displacement-based and velocity-based dampers in
the China Seismic Code. Among them, metallic yielding damper (MD) and friction damper
are the most wildly used displacement-based devices, and their force-deformation responses
only depend on the relative displacement between each end of device. They could be
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effective on energy dissipation only if slip displacement is reached. Viscoelastic and viscous
dampers are the two typically used velocity-based devices. The viscoelastic damper (VED)
dissipates vibration energy when viscoelastic material is subjected to shear deformation,
thereby reducing the structural response. These devices are applied in seismic control of
buildings broadly because they rarely need to be repaired after being installed and have
economical and simple conformation performance.

It is well known that the installation of dampers will reduce seismic responses of
structures. To design a structure with energy dissipation devices, the optimal locations of
devices will have a significant effect on reducing responses and achieving desired design
objectives. Commonly, it may be convenient to distribute the devices to every storey or
one storey interval. However, such a placement may be uneconomical and not be the most
effective means because installation of dampers may increase the stiffness of corresponding
storey and enlarge responses of neighboring stories. Therefore, the research of optimal design
causes designers’ interest.

In the past decades, many researchers have contributed themselves to studies on the
optimal location of dampers in structures. Haftka and Adelman [1] had a study on selection
of actuator locations in large space structures based on worst out in and exhaustive single-
point substitution methods. However, this technique leads to a locally optimal solution near
the starting design guess. Ashour and Hanson [2] suggested placing devices on locations
that would maximize the damping ratio of the fundamental mode because of its dominance
in multistorey buildings’ mode. Zhang and Soong [3] used a simplified sequential search
algorithm to determine the optimal location of VEDs in an unsymmetrical shear building.
Parametric and positioning optimization analyses about VEDs were conducted by Gürgöze
and Müller [4] for a linear multi-degree-of-freedom structure. Several other methods were
adopted for location optimization, such as topological approach suggested by Natke and
Soong [5], simulated annealing optimization used by Milman and Chu [6], and others by
Takewaki [7] and Takewaki et al. [8] made use of a gradient-based method to search for
optimal locations. According to the capability and characteristic of structures with VEDs,
Zhou et al. [9] proposed five different optimum design methods for installation of dampers
and analyzed an example of a ten-floor reinforced concrete structure. Zhang et al. [10]
suggested a convenient and practical methodology about choosing parameters and locations
of VEDs, and effects of controlling of structural vibration for different positions of these
devices were compared. In practical applications, the location variables are discrete as the
numbers of dampers are fixed. Theoretically, the optimal solution of such a discrete problem
can be obtained by an enumerative search of every possible combination of dampers’
position. In fact, the number of feasible locations is too large. Thus, a versatile and flexible
method called genetic algorithm was suggested especially for problems whose performance
index is not a continuous function when the design variable and the variable design space
are discrete [11–13]. Singh and Moreschi [14] utilized this approach to study the layout
and parametric optimization of viscous and viscoelastic dampers to achieve a desired
performance. Moreschi and Singh [15] presented a methodology to determine the optimal
design parameters for the yieldingmetallic and friction devices installed at different locations
in a building for a desired performance objective. An optimal installation method of MR
dampers using genetic algorithms was put forward in order to reduce the vibration response
of high-rise building under wind load [16]. Bei and Li [17] gave a new method of improved
genetic algorithm and quadratic performance index. Five optimal methods were used to
determine the number and location of the magnetorheological dampers in the structure, and
several principles were pointed out.
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As displacement-based energy dissipative devices present highly nonlinear character-
istics, the installation of such dampers in a structure will render it to behave nonlinearly even
if all other structural members are designed to remain linear. Thus, the analysis of structures
with these devices must be done by a step-by-step time history analysis. Investigations
on optimal placement of displacement-based dampers are not enough and mainly focus
on parametrical optimization. Besides, there are two aspects of shortage [18] needed to
be improved on location optimization of dampers: on one hand, the objective functions
suggested by different scholars are diverse, thus the optimal results are different which can
confuse the designers; on the other hand, the investigations all aim at a given structure
subjected to one earthquake record. Optimal solutions may change for different structures
subjected to various earthquakes. The optimal results derived from one certain earthquake
record may be unsatisfied for another record.

The main objective of this research is to study the optimal objective functions of two
types of passive energy dissipation devices with fixed numbers. A new mathematic model
of location optimization will be established, which is suitable for different kinds of passive
dampers. Three seismic response performance indices are taken in this model. To achieve the
optimal coefficients of storey-drift angle, acceleration, and storey-displacement indices, this
paper deals with the optimal location of two types of passive dampers for several building
models with different number of storeys and groundmotions at four types of sites. Numerical
analyses are illustrated to verify effective and feasibility of the model for optimal locations of
dampers and structural control, in which a genetic algorithm is used.

2. Analytical Modeling of Passive Energy Dissipation Devices

2.1. Model of Force-Deformation Relation

The displacement-based devices are installed in series with bracings at the interstorey of
structures. The force-deformation model has often been expressed by the bilinear model.
The model of yielding metallic dampers is shown in Figure 1(a), and elastic-perfectly-plastic
model is used to approximate friction dampers’ model. The combination of a damper and
the bracings is called as the device-brace assembly, and its force is represented as gdb(x). The
stiffness of assembly can be expressed as

kdb0 =
kd0kb

kd0 + kb
, kdb1 =

kd1kb
kd1 + kb

, (2.1)

where kdb0 and kdb1 represent the initialized stiffness and the second stiffness of the assembly;
kd0 and kd1 represent the initialized stiffness and the second stiffness of dampers.

The combinational stiffness of assembly for friction dampers can be given by

kdb0 = kb, kdb1 = 0. (2.2)

A number of models of VED with the force-deformation relation have been brought
forward, and they are applicable to different conditions. The equivalent stiffness and
damping model [19] are here adopted for its wide and simple application. The hysteretic
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Figure 1: Force-deformation model of yielding metallic dissipation device.

loop of this model is shown in Figure 2. The general formula for the resistance force Fv takes
the following form:

Fv = cv(ω)u̇ + kv(ω)u, (2.3)

where cv(ω) and kv(ω) represent the frequency-dependent damping and stiffness coefficients
for the dampers, and they can be determined by

cv(ω) =
η(ω)G′(ω)A

ωδ
, kv(ω) =

G′(ω)A
δ

,

η(ω) =
G′′(ω)
G′(ω)

,

(2.4)

where G′ and G′′ are defined as the shear storage modulus and the shear loss modulus of
the VE material, respectively; A represents the area of VE material; δ means the thickness
of the VE material; η(ω) is the loss factor that provides a measure of the energy dissipation
capability of the VE material; ω corresponds to the frequency at which these properties are
determined.

2.2. System Equations of Controlled Structure

The equation of motion for an N-degree-freedom structure with displacement-based energy
dissipation devices subjected to earthquake can be written by

[M]
[
Ẍ
]
+ [C]

[
Ẋ
]
+
[
g(x, ẋ)

]
+
[
gdb(x)

]
= −[M]

[
Ẍg

]
, (2.5)

where [M] and [C]mean theN×N mass and inherent dampingmatrices of the structure, [X]
is the N-dimensional relative displacement vector with respect to the base, [Ẋ] and [Ẍ] are
relative velocity and acceleration vector ofN-dimension, [Ẍg] implies the seismic excitation,
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Figure 2: Force-deformation model of VED.

[g(x, ẋ)] represents force matrix of structure, which depends on the structural force-deform-
ation relationship model; [gdb(x)] denotes force matrix of device-bracing assembly, which
can be determined by hysteretic model of energy dissipation devices.

The equation of motion for an N degree of freedom structure with VEDs subjected to
earthquake motion can be written by

[M][ü(t)] + ([Cs] + [Cv])[u̇(t)] + ([Ks] + [Kv])[u(t)] = −[M][I]
[
üg(t)

]
, (2.6)

where [M], [Cs], and [Ks] represent the N × N mass, inherent damping, and stiffness
matrices of structure, [ü(t)], [u̇(t)] and [u(t)] are the relative acceleration, velocity, and
displacement vectors of N-dimension, respectively, [üg(t)] is the seismic excitation at the
base of structure, and [Cv] and [Kv] denote the added damping and stiffness matrices of the
VEDs.

3. Optimization Based on Genetic Algorithm

3.1. Genetic Algorithm

The genetic algorithm (GA) was proposed firstly by professor Holland in 1975 and is
a globally optimal and self-adaptive searching method of probability, which is based on
principles of “survival of the fittest” and adaptation of biology in nature [20]. GA is
effective for optimal questions especially for discrete variables and space, whereas traditional
math methods are disabled or hard to resolve [21]. An essential characteristic of the GA
is the coding of variables that describe the problem. The most common coding method
is to transform the variables to a binary string of specific length, and fitness function is
provided to measure the fitness of individual. In GA, a generation of population undergoes
successive evolution into future generations through the repeated use of genetic operators,
containing reproduction operator, crossover operator, and mutation operator [22–25]. As
a new population is created, the performance index is evaluated for each new design
to determine its fitness with respect to other designs in the population, until no further
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improvement is observed in the best individual in the subsequent generations, and the
optimal solution is obtained.

3.2. Objective Function

To bring forward an objective function is a core in optimal design. To design a structure
with energy dissipation devices, the optimal location of dampers can make the performance
indices be restricted within desired objectives as the number of dampers is fixed. The optimal
solutions are often diverse when the optimization formulations are different. For example,
if the acceleration control is considered as the performance index, the optimal location of
dampers can give a better limit for the acceleration. In the literature, several optimization
formulations were proposed with different indices as follows [10]: (1) the largest relative
displacement of interstorey; (2) storey-displacement and relative displacement of interstorey;
(3) relative displacement of interstorey and the displacement of the peak storey.

These indices all focus on the deformation of structures, which should not be regarded
as the only index to be reduced especially for high rise. It is a crucial problem to put forward
an optimization formulation considering different indices of seismic response and confirm
the combination of coefficients for all the indices.

The aim of seismic control of structures is to make structures safe and comfortable
in accord with the Codes. Three indices with the storey-drift angle, acceleration, and storey
displacement can reflect the two aspects of structural performance. Thus, a new objective
function of optimal location is presented in this paper, expressed as a linear combination of
three nondimensional items, considering both security and coziness. In order to avoid the
optimal solution applicable only to the special earthquake excitation, three seismic records
are used for every kind of site in the step-by-step time history analysis. The optimization
formulation can be written in the following form:

minZ = α
θmax

θ0,max
+ β

amax

a0,max
+ γ

umax

u0,max
, (3.1)

where θmax and θ0,max mean the largest storey-drift angles of structure with and without
additional energy dissipation devices, umax and u0,max are the largest displacements of
structure with and without devices, amax and a0,max represent the largest accelerations
of structure with and without devices and, α, β, and γ denote the weight coefficients,
respectively, which have different values according to the demand of application in
engineering. The combination of the three weight coefficients is given in detail in Section 4.3.

3.3. Optimal Variables

In the context of the problem of optimal location of dampers using GA, optimal variables
need to be confirmed. They are expressed as a matrix of position P consisting of 0 and 1,
which indicates locating a damper if the number is one. Premising a determinate number of
dampers, the optimal variable shows different positions of number 1 and 0. The dimension
of the positional matrix is determined by the storey number of a structure. For example,
if dampers are located one at the second, third and forth floor of a 6-storey structure,
respectively, the matrix of position can be written as follow: P = [0 1 1 1 0 0].
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3.4. Estimating Indices for Combination Modes of Coefficients

For different form of buildings with different number of storeys and ground motions at four
types of sites, the optimal results about six kinds of combination modes of coefficients may
be different. In order to compare these modes with another one to decide which one can
generate better control of the structures with optimal location of dampers, two estimating
dimensionless indices are proposed, which can be denoted as

J1 =
1
n

n∑

i=1

(
θi,max

θ0, i,max

)2

, J2 =
1
n

n∑

i=1

(
ai,max

a0, i,max

)2

, (3.2)

where θi,max and θ0, i,max imply the mean values of largest storey-drift angle of structures
with and without dampers for the ith floor, ai,max and a0, i,max represent the mean values of
largest accelerations of structures with andwithout the devices, respectively. J1 and J2 all take
responses of each floor into consideration, which can reflect the response control in general.
For six combination modes of coefficients, the two indices should be calculated, respectively,
for different buildings with optimal located dampers. The smaller the values of the indices
are, the better the combination mode is.

3.5. Optimal Design Process Based on Genetic Algorithms

(1) Confirm decision-making variables and conditions of restriction, and create a
stochastic initial population P0.

(2) Optimal formulation is established; namely, confirm the type of objective function
(determine the maximum or the minimum value of the objective function).

(3) Design genetic operators, such as select, crossover, and mutation operators.

(4) Make certain related parameters of GA, containing the number of population (M),
the terminate generation of genetic operation (T), probability of crossover (pc), and
probability of mutation (pm).

(5) Do step-by-step time history analysis of system by inputting records of earth-
quakes, and compute the value of the objective function associated with the
satisfied solution to get the optimal placement of supplemental dampers.

The system analysis and location optimization procedures are programmed by adopt-
ing MATLAB programming language. Figure 3 illustrates the optimal design flow chart.

4. Numerical Analyses

In order to realize the optimal locations to diverse structures at different types of sites, three
structures with low, moderate, and high rise height are chosen separately here. The positional
optimization of displacement-based energy dissipative devices (MD is considered) and
velocity-based devices (VEDs are considered) is processed according to four-site condition.
For each type of site, three earthquake records are selected having the close period with the
characteristic period of corresponding site. The parameters of GA are taken as follows. The
terminate generation of genetic operation is 300. The probabilities of crossover and mutation
are 0.8 and 0.2, respectively.
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Figure 3: Optimal design flow chart.

4.1. Building Models and Parameters of Dampers

Building 1.

A 5-storey shear building has uniform properties along its height. The mass is 2.0 × 105 kg,
the story stiffness is 4.2 × 108 N/m, and the height for each story is 3.3m. The damping ratio
is taken as 5%, and the period of structure is obtained with 0.4817 s. 3VEDs or MDs will be
installed on the structure.

Building 2 (see [9]).

A 10-storey shear building is considered. The mechanical properties of this building are
depicted in Table 1. The damping ratio is 5% and period of structure is 1.4583 s. 6VEDs or
MDs are chosen to be placed.

Building 3 (see [26]).

The third structure is a 16-storey shear building. Its mechanical properties are provided in
Table 2. The damping ratio is 5%, and period of structure is 2.3848 s. According to the formula
of effective damping ratio attached by energy dissipation in China Seismic Code, seventy-two
VEDs will provide the same effective damping ratio as nine MDs do. So 9MDs or 72VEDs
are chosen to be installed.

The typical VED with two viscoelastic layers is designed, where G′ = 1.5 × 107 N/m2,
G′′ = 2.01 × 107 N/m2, As = 3 × 10−2 m2, and δ = 1.3 × 10−2 m. The working temperature is
25◦C. Three initial stiffness of the device-bracing assembly installed on three buildings are
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Table 1:Mechanical properties of 10-storey building.

Floor Mass (kg) Highness (m) Stiffness (N ×m−1)
1 1.52 × 106

3.0

2 × 109

2 1.52 × 106 1 × 109

3 1.349 × 106 1.43 × 109

4 1.349 × 106 1.11 × 109

5 1.349 × 106 1 × 109

6–9 1.349 × 106 0.769 × 109

10 1.187 × 106 0.417 × 109

Table 2:Mechanical properties of 16-storey building.

Floor Mass (kg) Highness (m) Stiffness (N ×m−1)
1 4.84 × 106 3.6 5.1 × 109

2 4.67 × 106 3.0 3.6 × 109

3 4.35 × 106 3.0 3.8 × 109

4 4.31 × 106 3.0 3.21 × 109

5–9 4.07 × 106 3.0 2.54 × 109

10–13 3.81 × 106 3.0 2.13 × 109

14–16 3.57 × 106 3.0 1.92 × 109

Table 3: Earthquake records.

Site Group Records Component Interval
(s)

Time
(s)

Peak
value

(cm/s2)

I
F1
F2
N1

1985, La Union, Michoacan Mexico
1994, Los Angeles Griffith Observation, Northridge

1988, Zhutang, A, Langcang

N00E
360
S00E

0.01
0.005
0.01

62.71
28.75
25.32

162.79
163.80
541.60

II
F3
F4
N2

1971, Castaic Old bridge Route, San Fernando
1979, El Centro, Array no. 10, Imperial valley

1988, Gengma Gengma1

N69W
N69W
S00E

0.02
0.01
0.02

61.87
37.07
12.36

265.40
168.21
140.75

III
F6
F7
N3

1984, Coyote Lake Dam, Morgan Hill
1940, El Centro-Imp Vall Irr Dist, El Centro

1988, Gengma Gengma 2

285
270
S00E

0.02
0.02
0.02

59.98
53.47
16.56

1137.80
210.10
90.02

IV
F8
F9
N4

1949, Olympia Hwy Test Lab, Western Washington
1981, Westmor and, Westmoreland
1976, Tianjin Hospital, Tangshan

356
90
WE

0.02
0.02
0.01

89.16
88.43
19.19

161.63
353.97
104.18

2.928×108 N/m, 1.64×108 N/m, and 8×108 N/m. The yield deformation of dampers is taken
as 4mm.

4.2. Earthquake Records

Different earthquake records, even though similar intensities, lead to widely varying
responses, and results based on a single record may not be conclusive. Here, twelve
earthquake records are chosen [26] and three for each type of site are shown in Table 3. The
values of peak ground accelerations are scaled to 400 gal.
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Table 4: Combination modes of optimal coefficients.

Mode α β γ Objective of optimization

1 1 0 0 Considering storey-drift angle only, namely, security

2 0.7 0.1 0.2 Taking storey-drift angle as the main factor, acceleration, and storey
displacement as additive factors.

3 0.5 0.3 0.2 Considering the weight of storey-drift angle as half of the importance
4 0.1 0.7 0.2 Considering acceleration as the main factor
5 0 1 0 Considering acceleration only, namely, amenity
6 0.5 0.5 0 Considering only storey drift to reflect deformation of the structure

Table 5: Location optimization of MDs for 5-storey building.

Site Modes 1 and 2 Mode 3 Modes 4 and 5 Mode 6
I 1 2 3 1 2 3 1 2 4 1 2 4
II 1 2 3 1 2 3 1 2 3 1 2 3
III 1 2 3 1 2 3 1 2 5 1 2 5
IV 1 2 3 1 2 5 1 2 5/1 3 5 1 2 5
Annotation: the numbers in the table represent the floor of optimal location. For example, number 1 and 2mean that dampers
are positioned at the first and the second floor of the building.

Table 6: Location optimization of MDs for 10-storey building.

Site Modes 1 and 2 Mode 3 Modes 4 and 5 Mode 6
I 2 4 5 6 7 10 2 5 6 7 8 10 2 6 7 8 9 10 1 2 5 6 8 9
II 1 2 5 6 7 9 1 2 5 6 7 10 1 2 6 7 8 10 1 2 5 6 7 10
III 1 2 3 4 6 7 1 2 5 6 7 10 1 2 6 7 9 10 1 2 3 5 6 7
IV 2 3 4 5 6 7 1 2 3 4 5 6 1 2 3 4 5 6 2 5 6 7 8 10

Table 7: Location optimization of VEDs for 10-storey building.

Site Modes 1 and 2 Mode 3 Modes 4 and 5 Mode 6
I 2 6 7 8 9 10 2 6 7 8 9 10 5 6 7 8 9 10 2 6 7 8 9 10
II 1 2 5 6 7 8 2 5 6 7 8 10 2 6 7 8 9 10 2 6 7 8 9 10
III 2 4 5 6 7 10 2 4 5 6 7 10 2 6 7 8 9 10 2 5 6 7 8 10
IV 2 3 4 5 6 7 2 4 5 6 7 8 2 5 6 7 8 10 2 5 6 7 8 10

4.3. Combination of Coefficients in Optimal Function

In order to confirm the value of weight numbers α, β, and γ preliminarily, the calculation
of coefficient values is done. When α values are taken from 0.8∼1, 0.6∼0.8, and 0.3∼0.6,
the optimal results are almost the same. Consequently, six kinds of combination modes are
proposed considering α as the main factors shown in Table 4.

4.4. Optimal Results

Utilizing the above combination modes of coefficients in the objective function, the location
optimizations of two types of dampers for three structures at four types of sites are done.
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Figure 4: Envelope diagrams of maximal displacement for 5-storey structure with VEDs.

4.4.1. 5-Storey Building

The optimal results of VEDs are all the same for different sites and different combination
modes. The dampers are positioned with one in each storey from the first to the third floor.
It has no influence on the optimal solution for the low building whether the acceleration
factor is taken into account or not as the safety factor is considered. As the force-deformation
responses are dependent on the relative velocity and acceleration between each end of these
types of devices, the acceleration factor has been considered when the dampers are placed on
the structure.

According to the optimal results of MDs shown in Table 5, optimal locations are the
same for modes 1, 2, and 3 and same for modes 4, 5, and 6 on sites I and III. For the sites IV,
optimal results of modes 1 and 2 are the same and modes 3, 4, and 6 are the same also. The
optimal locations are uniform on site II for six combination mode.

4.4.2. 10-Storey Building

The optimal locations of two types of dampers are shown in Tables 6 and 7. The results
indicate that optimal solutions are the same for the combination modes 1 and 2. Meanwhile,



12 Mathematical Problems in Engineering

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Drift angle

Uncontrolled
Optimal

0

1

2

3

4

5

Fl
oo

r

Type I site

(a)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Drift angle

Uncontrolled
Optimal

0

1

2

3

4

5

Fl
oo

r

Type II site

(b)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Drift angle

Uncontrolled
Optimal

0

1

2

3

4

5

Fl
oo

r

Type III site

(c)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Drift angle

Uncontrolled
Optimal

0

1

2

3

4

5

Fl
oo

r

Type IV site

(d)

Figure 5: Envelope diagrams of maximal drift angle for 5-storey structure with VEDs.

when the modes 4 and 5 are adopted respectively, the optimal results for dampers are the
same. For the site I, the optimal locations of VEDs are uniform for themodes 1, 2, 3, and 6with
dampers mainly located on top part of the building. When the modes 4 and 5 are adopted, the
VEDs are placed on average at the top six floors. The MDs are mainly located in the middle
and top of the building on the site I. For the sites II and III, the VEDs are positioned in the
middle and top part, while the MDs are located on the bottom and middle of the building.
For the site IV, the optimal locations of two types of dampers are uniform for the modes 1
and 2. The optimal results of VEDs using modes 4, 5, and 6 are the same as results of MDs
using mode 6. These results indicate that the appropriate increase in acceleration weight has
less effect on the optimal results of velocity-based dampers.

4.4.3. 16-Storey Building

The optimal locations of two types of dampers on the four soil sites are shown in Tables 8
and 9. The optimal results indicate that optimal locations of VEDs are the same by using the
combination modes 1 and 2 for each site condition. For the site I, dampers are mainly located
in the middle part of the structure. Considering the sites II and III, dampers are placed on the
bottom and middle part. Dampers are positioned in the middle and top part of the building
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Figure 6: Envelope diagrams of maximal acceleration for 5-storey structure with VEDs.

on the site IV. These results mean that the acceleration factor has an impact upon the optimal
locations for high buildings. As far as the MDs are taken, optimal results are the same for the
modes 1 and 2 and same for the modes 4 and 5 only on the site I.

When the dampers are located in structures according to the optimal results with six
modes of coefficients combination, the step-by-step time history analysis is utilized to obtain
the responses of structures with two types of dampers on the four types of sites, respectively.
As the space of the paper is limited, some typical envelope diagrams of three buildings on
the different sites are displayed from Figures 4, 5, 6, 7, 8, 9, 10, and 11.

4.5. Comparisons between Different Combination Modes

4.5.1. 5-Storey Building

No comparisons are done because the optimal results of VEDs are all the same for 6
combination modes. In order to compare six modes with one another to decide which one
can generate better control effectiveness of structures with optimal locations of MDs, two
estimating dimensionless indices are calculated according to formula (3.2) as shown in
Table 10.
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Figure 7: Envelope diagrams of maximal displacement for 10-storey structure with VEDs.

Table 8: Location optimization of VEDs for 16-storey building.

Site Modes 1 and 2 Modes 3 and 6 Modes 4 and 5

I 2 3 5 6 7 8 10 11 12 1 2 5 6 7 8 10 11 12/
1 2 3 5 6 7 8 10 11

1 2 3 5 6 7 8 12 14/
1 2 3 5 6 8 11 12 14

II 1 2 3 4 5 6 7 8 11 1 2 3 4 5 6 7 8 10/
1 2 3 4 5 6 7 8 9

5 6 7 8 9 10 14 15 16

III 2 3 4 5 6 7 8 10 11 1 2 4 5 6 7 8 10 11/
1 2 3 5 6 7 8 10 11

1 3 4 5 6 7 10 11 13/
1 2 4 6 7 10 11 12 13

IV 2 5 6 7 8 9 10 11 13 1 2 3 4 5 10 11 14 16/
2 5 6 7 8 9 10 11 12

1 2 10 11 12 13 14 15 16/
1 9 10 11 12 13 14 15 16

As far as drift angle is concerned, the control effect is better for modes 1, 2, and 3
on sites I, II, and III. For the site IV, mode 3 can obtain the best optimal results. When the
acceleration is taken into consideration, the values of J2 are same on site II. For other three
sites, the acceleration control is better when modes 5 and 6 are adopted. The acceleration
responses of the whole structure may be enlarged when using MDs on sites III and IV.
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Figure 8: Envelope diagrams of maximal drift angle for 10-storey structure with VEDs.

Table 9: Location optimization of MDs for 16-storey building.

Site Modes 1 and 2 Modes 3 and 6 Modes 4 and 5

I 1 2 3 5 6 7 9 10 11 2 4 6 7 8 9 10 11 16/
1 3 6 7 8 9 10 11 16

2 3 4 6 7 8 9 10 16

II 1 5 6 7 8 9 10 11 12/
1 5 6 7 8 9 10 14 15

1 4 5 6 7 8 9 10 14/
3 4 5 6 7 8 9 10 15

6 8 9 10 11 12 13 14 16/
1 2 6 7 8 9 13 14 15

III 1 2 3 4 5 8 9 10 11/
3 4 5 6 8 9 10 12 15

1 2 5 6 7 8 9 10 11/
2 3 5 6 7 8 9 10 11

2 3 6 7 8 10 11 14 15/
1 2 3 6 8 9 11 15 16

IV 1 2 3 4 5 6 7 10 14/
1 2 3 4 5 6 7 8 10

1 2 3 4 5 6 10 15 16/
1 2 3 4 6 13 14 15 16

2 3 4 5 6 7 10 11 15/
3 4 5 7 9 10 12 13 14

Table 10: Evaluation indices of objective function for 5-storey structure with MD.

Index J1 J2
site Mode 1 Mode 3 Modes 5 and 6 Mode 1 Mode 3 Modes 5 and 6
I 0.4774 0.4774 0.4978 0.7898 0.7898 0.7666
II 0.4814 0.4814 0.4814 0.7664 0.7664 0.7664
III 0.4945 0.4945 0.5101 1.0782 1.0782 0.9577
IV 0.4790 0.4410 0.4871 1.0449 1.0580 1.0494
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Figure 9: Envelope diagrams of maximal acceleration for 10-storey structure with VEDs.

4.5.2. 10-Storey Building

Two estimating indices are calculated as shown in Table 11 for the structure with MDs. The
results in Table 11 indicate that the mode 1 is best for the drift angle control on the site I and
the value of mode 3 is better than other modes except for the mode 1. As far as acceleration is
taken into account, it is obvious that the mode 6 is the best. For the site II, the control effects
of drift angle are the best when using modes 3 and 6 while mode 1 is the best for acceleration
control. For the site III, mode 3 can obtain the smallest J1 value. Meanwhile, the acceleration
control effects are better for modes 5 and 3. For the site IV, the results are the same when
using modes 3 and 5 which can obtain the best control effects of drift angle and acceleration.
According to the above analysis, the optimal objective function should use mode 1 on site
I, mode 3 on sites II and III and mode 5 on site IV for intermediate period structure with
displacement-based dampers.

Two evaluation indices are calculated as shown in Table 12 for the structure with
VEDs. The J1 and J2 values of modes 1, 2, 3, and 6 are the same on site I. The results shown
in Table 12 indicate that mode 3 is the best one for drift-angle control on sites I, II, and III
while modes 5 and 6 are better on site IV. When the acceleration is taken into consideration,
the numerical difference of J2 is not obvious. Considering two indices and simple form of
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Figure 10: Envelope diagrams of maximal acceleration for 16-storey structure with MDs.

objective functions, the optimal objective function should use mode 1 on sites I and II, mode
5 on sites III and IV for intermediate period structure with velocity-based dampers.

4.5.3. 16-Storey Building

The indices J1 and J2 are calculated for the 16-storey building with MDs shown in Table 13.
The results in Table 13 show that the mode 3 is the best for drift angle control on the site I.
The mode 6 is the best for acceleration control, while modes 1, 2, and 3 are better than other
modes except for mode 6 on the site I. For the site II, the control effects of drift angle are the
best when using mode 1, while modes 2 and 5 are better for acceleration control. For the sites
III and IV, mode 3 can obtain the smallest J1 values, while the accelerationmay be enlarged for
the structure with the MDs. According to the above analysis, the optimal objective function
should use the mode 3 for a long-period structure with the displacement-based dampers
which can obtain better control effectiveness for the drift angle.
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Figure 11: Envelope diagrams of maximal acceleration for 16-storey structure with VEDs.

Table 11: Evaluation indices of objective function for 10-storey structure with MD.

Index J1 J2
site Mode 1 Mode 3 Mode 5 Mode 6 Mode 1 Mode 3 Mode 5 Mode 6
I 0.6596 0.6759 0.7028 0.6902 0.9448 0.9333 0.9268 0.8771
II 0.7984 0.7806 0.7928 0.7806 0.9169 0.9287 0.9454 0.9287
III 0.6880 0.6668 0.6709 0.6760 0.9336 0.8905 0.8794 0.9233
IV 0.6469 0.6419 0.6419 0.6454 0.8991 0.8080 0.8080 0.9077

Table 12: Evaluation indices of objective function for 10-storey structure with VED.

Index J1 J2
site Mode 1 Mode 3 Mode 5 Mode 6 Mode 1 Mode 3 Mode 5 Mode 6
I 0.7164 0.7164 0.7392 0.7164 0.7927 0.7927 0.8048 0.7927
II 0.7696 0.7694 0.7724 0.7724 0.8242 0.8550 0.8506 0.8506
III 0.7246 0.7246 0.7313 0.7248 0.8519 0.8519 0.8439 0.8418
IV 0.7886 0.7774 0.7748 0.7748 0.8334 0.8269 0.8262 0.8262
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Table 13: Evaluation indices of objective function for 16-storey structure with MD.

Index J1 J2
site M 1 M 2 M 3 M 4 M 5 M 6 M 1 M 2 M 3 M 4 M 5 M 6
I 0.538 0.538 0.503 0.544 0.544 0.514 0.911 0.911 0.922 0.963 0.963 0.870
II 0.644 0.650 0.647 0.676 0.681 0.648 0.988 0.909 0.920 0.973 0.911 0.928
III 0.637 0.619 0.593 0.607 0.599 0.612 1.133 1.169 1.111 1.154 1.034 1.161
IV 0.525 0.535 0.518 0.546 0.623 0.556 1.535 1.143 0.970 1.021 1.230 1.011

Table 14: Evaluation indices of objective function for 16-storey structure with VED.

Index J1 J2
site M 1 M 2 M 3 M 4 M 5 M 6 M 1 M 2 M 3 M 4 M 5 M 6
I 0.4645 0.4645 0.4568 0.4690 0.4680 0.4664 0.7435 0.7435 0.6696 0.6704 0.6671 0.6754
II 0.5606 0.5606 0.5480 0.6063 0.6063 0.5522 0.7287 0.7287 0.7228 0.8009 0.8009 0.7225
III 0.5172 0.5172 0.5130 0.5267 0.5264 0.5189 0.9421 0.9421 0.8773 0.9071 0.8748 0.8724
IV 0.6165 0.6165 0.5950 0.6192 0.6306 0.6185 0.7235 0.7235 0.6665 0.6880 0.7050 0.7236

Two indices are calculated for the 16-storey building with VEDs shown in Table 14.
The results reveal that the mode 3 is the best for drift-angle control on all of the four four
sites. As far as the acceleration control is concerned, mode 5 is best on site I and mode 3 is
better than other modes on site I. The values of modes 6 and 3 are better on sites II and III.
For the site IV, mode 3 can obtain the smallest J2 value. When control of deformation and
acceleration are both taken into account, the mode 3 is the most ideal one for long-period
structure with velocity-based dampers.

5. Conclusions

The optimal objective functions are different for two types of dampers placed on different
buildings on different types of sites.

It has no influence on the optimal locations of VEDs for low buildings whether
coziness is taken into account or not as the safety factor is considered on four types of sites.
As far as displacement-based dampers are taken, the influence of acceleration factor is very
small, but acceleration may be enlarged on the sites III and IV. The objective function of
velocity-based dampers can be predigested as minZ = θmax/θ0,max regardless of the type
of site, which has easier form to compute. According to the evaluation indices, the objective
function of displacement-based dampers can be taken as minZ = θmax/θ0,max on sites I, II,
and III while adopting the formminZ = 0.5(θmax/θ0,max)+0.3(amax/a0,max)+0.2(umax/u0,max)
on site IV.

For intermediate period structures, it is suggested to use minZ = θmax/θ0,max as the
objective function on site I, minZ = 0.5(θmax/θ0,max) + 0.3(amax/a0,max) + 0.2(umax/u0,max)
on sites II, III and minZ = amax/a0,max on site IV for displacement-based dampers. As far
as velocity-based dampers are taken, the objective function should be taken as minZ =
θmax/θ0,max on sites I, II and minZ = amax/a0,max on sites III and IV.

For long-period structures, both safety and amenity should be taken into consideration
to obtain better acceleration control. It is suggested to use minZ = 0.5(θmax/θ0,max) +
0.3(amax/a0,max) + 0.2(umax/u0,max) as the objective function of two type dampers regardless
of types of sites.
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