
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 478981, 27 pages
doi:10.1155/2012/478981

Research Article
A Hybrid Multiobjective Evolutionary Approach for
Flexible Job-Shop Scheduling Problems

Jian Xiong,1 Xu Tan,2 Ke-wei Yang,1
Li-ning Xing,1 and Ying-wu Chen1

1 Department of Management, College of Information System and Management,
National University of Defense Technology, Changsha, Hunan 410073, China

2 School of Software, Shenzhen Institute of Information Technology, Shenzhen 518029, China

Correspondence should be addressed to Jian Xiong, xiongjian1984@hotmail.com

Received 24 March 2012; Revised 24 May 2012; Accepted 25 May 2012

Academic Editor: Alex Elias-Zuniga

Copyright q 2012 Jian Xiong et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper addresses multiobjective flexible job-shop scheduling problem (FJSP) with three
simultaneously considered objectives: minimizing makespan, minimizing total workload, and
minimizing maximal workload. A hybrid multiobjective evolutionary approach (H-MOEA) is
developed to solve the problem. According to the characteristic of FJSP, a modified crowding
distance measure is introduced to maintain the diversity of individuals. In the proposed H-
MOEA, well-designed chromosome representation and genetic operators are developed for FJSP.
Moreover, a local search procedure based on critical path theory is incorporated in H-MOEA
to improve the convergence ability of the algorithm. Experiment results on several well-known
benchmark instances demonstrate the efficiency and stability of the proposed algorithm. The
comparison with other recently published approaches validates that H-MOEA can obtain Pareto-
optimal solutions with better quality and/or diversity.

1. Introduction

As its practical importance, job-shop scheduling problem (JSP) has received considerable
attention in various application areas. JSP is one of the hardest combinatorial optimization
problems and has been proven to be a NP-hard problem [1, 2]. Flexible job-shop scheduling
problem (FJSP) is a generalization of the classic JSP, which allows one operation to
be performed on more than one machine. Consequently, in addition to the operations
scheduling, another issue that needs to be taken into account is the assignment problem,
that is determining the assignment of operations to machines. Brucker and Schlie [3] were
among the first to address this problem. According to the flexibility, FJSP can be generally
categorized into total flexibility FJSP (T-FJSP) and partial flexibility FJSP (P-FJSP) [4, 5].



2 Mathematical Problems in Engineering

Due to the complexity of FJSP and its NP-hard characteristic, heuristic or metaheuristic
methods are preferable to solve the problem. Integrated approaches have been often used in
order to improve the performance of algorithms [6]. With simultaneous consideration of mul-
tiple objectives, in particular makespan, total workload, and maximal workload, the approaches
can be generally categorized into three classes [7]: (1) Transform the multiobjective problem
to a monoobjective problem by a weighted sum approach; (2) The non-Pareto approaches
dealing with different objectives in a separated way; (3) The Pareto approaches based on the
Pareto optimality concept.

In the first type of approaches mentioned above, objective function is linearly
combined by weighed sum approach and is given as follows:

f = ω1f1 +ω2f2 +ω3f3, (1.1)

where ω1, ω2, and ω3, respectively, denote the weight coefficients for the three objective
values, satisfying ω1 + ω2 + ω3 = 1. According to existing literature, most approaches can be
categorized as this type. Xia and Wu [6] proposed a hybrid approach by combining particle
swarm optimization algorithm with simulated annealing. Zhang et al. [8] also introduced
a hybridized particle swarm optimization approach for multiobjective FJSP. Liu et al. [9]
presented a multiswarm approach to multiobjective FJSP. Gao et al. [10, 11] proposed two
hybrid genetic algorithms. Experiment results show that Gao’s algorithms are efficient for
multiobjective FJSP. Xing et al. [12] designed a simulation model to deal with multiobjective
FJSP, and an efficient search method [13] was developed by the authors. Li et al. [14]
proposed a hybrid tabu search algorithm integrating variable neighborhood search to solve
multiobjective FJSP. Bagheri et al. [15] proposed an artificial immune algorithm in which a
function of makespan was taken as the affinity evaluation. Vlcot and Billaut [16] proposed a
tabu search algorithm for finding a set of nondominated solution, with a linear combination
of objectives makespan and maximal lateness. Kacem et al. [4] proposed a controlled
evolutionary approach for multiobjective FJSP. In the proposed algorithm, objectives of
makespan and total workload were dealt with separately. In particular, makespan was taken
as evaluation function when the generation index is even, otherwise, total workload was
taken as evaluation function.

Compared with the approaches of transforming the problem to a single-objective
one, the literature on Pareto-based approaches, especially the multiobjective evolutionary
approaches, rather scant. Kacem et al. [5] proposed a Pareto approach based on the
hybridization of fuzzy logic and evolutionary algorithms to solve the FJSP. Ho and Tay [17]
presented an efficient approach combining evolutionary algorithm and guided local search.
Frutos et al. [18] introduced aMemetic Algorithm based on the nondominated sorting genetic
algorithm (NSGA-II) [19], in which a local search procedure (simulated annealing) was
added. Wang et al. [20] solved FJSP by a multiobjective genetic algorithm based on immune
and entropy principle. Li et al. [21] introduced a hybrid Pareto-based discrete artificial bee
colony algorithm for solving multiobjective FJSP, and, in their subsequent research, Li et al.
[22] presented a hybrid Pareto-based local search (PLS) embedding a variable neighborhood
search-based self-adaptive strategy for the problem. Moslehi and Mahnam [23] proposed a
Pareto approach hybridizing particle swarm and local search to solve multiobjective FJSP.

In this paper, we propose a hybrid multiobjective evolutionary algorithm (H-MOEA)
to solve the FJSP. In the proposed H-MOEA, NSGA-II [19] is employed as the basic optimizer.
In multiobjective optimization problems, convergency and diversity are two important



Mathematical Problems in Engineering 3

issues. The former indicates the algorithm’s ability to find the true Pareto optimal solutions,
and the latter reflects the algorithm’s ability to find as much as possible different Pareto
optimal solutions. However, in FJSP, there are not many Pareto optimal solutions in objective
space. Thus, a modified crowding distance measure is developed to keep the diversity
of the population. In order to improve the convergency of the algorithm, a local search
based on critical path theory is incorporated into the H-MOEA. Additionally, well-designed
chromosome representation and genetic operators are presented in the algorithm.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce
the problem formulation and optimization model of FJSP. Some preliminary concepts are
presented in Section 3. The elements of the proposedH-MOEA are described in Section 4. The
computational results and the comparison with other algorithms are reported in Section 5.
Finally, some conclusion of our work is presented in the last section.

2. Problem Formulation

Similar to the classic JSP, FJSP takes into account the assignment of each operation to a
machine and sets its starting and ending times. However, the task is more challenging than
the classic one because it requires a proper selection of a machine from a set of machines
to process each operation. A FJSP considering n jobs to be processed on m machines can be
described as follows.

(1) There is a set of n jobs to be scheduled.

(2) The set of machines is denoted as M = M1,M2, . . . ,Mm, where m is the number of
machines.

(3) Each job i consists of a sequence of ni operations Oi1, Oi2, . . . , Oini .

(4) The execution of operation Oij requires one machine out of a set of given machines
represented as Mij ∈ M.

FJSP is to determine an assignment and a sequence of operations on machines to
minimize

(1) makespan, which indicates the maximal completion time of all jobs, denoted as f1;

(2) total workload, which represents the total working time of all machines, denoted
as f2;

(3) critical machine workload, which is the most workload among all machines,
denoted as f3;

Then, the multiobjective FJSP can be generally formulated as follows:

obj.: (1) min f1 = makespan

(2) min f2 = total workload

(3) min f3 = max workload

s.t.: (1) precedence constraint.

(2.1)



4 Mathematical Problems in Engineering

There are some assumptions and constraints in FJSP.

(1) Jobs are independent from each other.

(2) Machines are independent from each other.

(3) Setting up time of machines is negligible.

(4) Move time between operations is negligible.

(5) At a given time, a machine can execute at most one operation.

(6) No more than one operation of the same job can be executed at a time.

(7) There are no precedence constraints among the operations of different jobs.

3. Preliminary Concepts

3.1. Concept of Domination and Nondomination

Within the framework of multiobjective optimization, the concept of dominance is defined as
follows: a solution S1 dominates solution S2 if S1 is as good as S2 on all objective measures
and better than S2 on at least one objective measure. Thus, in this paper, we formally define
the schedule dominance as follows.

Definition 3.1. A schedule S1 dominates schedule S2 if fi(S1) ≤ fi(S2) (i = 1, 2, 3), with strict
inequality holding for at least one objective measure.

Thus, the nondominance concept can be defined as follows.

Definition 3.2. A schedule S∗ is said to be a nondominated schedule if it is not dominated by
any other individual in the population.

3.2. Concept of Critical Path

Feasible schedules of FJSP can be represented as a directed graph G(O,A,E), where O is
the operation set, represented as node set in the graph, A is the conjunctive arc set, and E
is the disjunctive arc set. Thus, some graph theory is often integrated into the optimization
algorithm of FJSP. In particular, local search procedure based on critical path theory is usually
combined with heuristic or meta-heuristic.

Two important concepts in directed solution graph are earliest start time and latest
start time of a node [11]. The first concept is used to indicate the earliest time at which an
operation can be processed, while the second concept is related to the latest time at which
the implementation of an operation can begin without delaying the makespan of a schedule.
For an operation, if its earliest start time is equal to latest start time, any delay in the start of
the operation will delay the completion of the schedule. Such an operation is critical to the
completion of all the jobs on time [11]. A path from starting node to ending node in a graph
that entirely consists of critical operations is called a critical path. Themakespan of a schedule
is equal to the length of the critical path [24].



Mathematical Problems in Engineering 5

Critical
operation

Internal
block

Block
head

Block
rear

Critical block

O31 O22 O34

O21 O12

O11 O32 O33 O23

M3

M2

M1

Time

Figure 1: An example of critical block.

3.3. Concept of Critical Block

A critical block is a set of consecutive operations on the critical path processed by the same
machine [17]. One machine can be associated with more than one critical block on a given
critical path. The first operation of the critical block is called as block head, while the last
operation is termed as block rear. The operation between block head and rear is called as
internal block. Figure 1 shows an example of critical block.

4. Methodology

It is clear that a multiobjective approach is needed to solve the problem. To perform this
task, one of the classic MOEAs, named NSGA-II [19], is employed as the multiobjective
optimization algorithm. In the procedure of NSGA-II, the parent population and offsprings
are combined and sorted in order to generate a population for the next generation. A
nondominated sorting mechanism is performed to classify the combined population into
different ranks of nondomination. A crowding-distance assignment is employed to ensure
diversity is maintained among nondominated solutions. However, the crowding-distance
mechanism is not very effective when there are few nondominated solutions and many-to-
one mapping from decision space and objective space exists. Thus, a modified crowding-
distance measure is introduced to maintain the diversity of the population. Additionally,
chromosome representation, crossover, and mutation operators in original NSGA-II are
redesigned for FJSP in this research.

4.1. Modified Crowding-Distance Measure

In multiobjective optimization problem, along with convergence to the Paretooptimal set,
another issue that needs to be addressed is a good spread of solutions in the obtained set
of solutions. To do this, the population should have a good diversity preservation. The
original NSGA-II [19] employs a crowded-comparison approach to preserve the diversity



6 Mathematical Problems in Engineering

f1

f2Objective space

i

Cuboid

i − 1

i + 1

Figure 2: Crowding distance calculation.

of the population. The crowding distance of a solution is measured as the average distance
of the solution from its nearest neighbors with the same nondomination rank in the objective
space. Shown as in Figure 2, the crowding distance is calculated as the average side length of
the cuboid.

However, in FJSP, there are not many nondominated solutions [17]. Furthermore,
there exists many-to-one mapping from decision space to objective space. For example, two
solutions with different machine assignment and/or operation sequence may have the same
measure on objectives (an example will be shown in Section 5, Figures 7 and 8). In such a case,
the crowding distance measure in original NSGA-II cannot effectively indicate the diversity
estimation of an individual in the population. Shown as in Figure 3, suppose solutions A, B,
and C in decision space have same machine assignments but different operation sequences,
while solution D has different machine assignment and operation sequence from the other
three solutions. In objective space, the four solutions have the samemeasures on all objectives.
Based on the definition of nondomination solution, all of the four solutionswill bemaintained
in the population. According to the crowding distance measure in the original NSGA-II, the
four solutions have the same value on crowding distance. It indicates that the four solutions
have the same priority to be selected to form the next population. However, it is reasonable
to consider that solution D has a better contribution to the diversity of population. Thus,
solution D should have a higher priority in the selection operator and the operator to form
the population of next generation.

We modify the crowding distance as a measure in decision space. Such an idea has
received much attention in recent years and been employed in some literatures related to
multiobjective evolutionary algorithms [25–27]. Due to the stochastic feature of the nature-
inspired algorithms, in FJSP, different solutions might have the same machine assignment. In
order to keep the diversity of machine assignments, the crowding distance is measured by a
function of the times of an assignment that occurs in the population. It is simply calculated



Mathematical Problems in Engineering 7

A

B
C

D

f1

f2Decision space Objective space

Solutions in the same
nondomination front

Figure 3: An example of many-to-one mapping from decision space to objective space.

as follows:

I[i]distance =
popsize − T[i]assignment

popsize
, (4.1)

where popsize is the size of population, T[i]assignment represents the number of individuals
in the population which have the same machine assignment with individual I[i]. According
to the modified crowding distance measure, the solution with a diverse machine assignment
will be selected first in the nondomination front to form the next population.

4.2. Chromosome Representation

Since FJSP has two independent tasks: machine assignment and operation scheduling, the
chromosome representation of a solution should contain the information of these two parts.
Permutation representation is often used to express operation sequence. In order to tackle the
precedence constraints, Gen et al. [28] name all operations for a job with the same symbol
and then interpret them according to the order of occurrences in the sequence of a given
chromosome. This representation has been employed in FJSP, and a two-vector representation
was proposed by Gao et al. [10, 11]. This paper also represents the chromosome in a two-
vector approach, named machine assignment vector and operation sequence vector, but
slightly modifies the representation of operation sequence.

In this study, the operation sequence is represented in a permutation way. Each oper-
ation is identified by a unique operation ID. A schedule is generated with the consideration
of precedence constraints. Since we assumed that there are no precedence constraints among
the operations of different jobs, each operation at most has one predecessor and successor,
respectively. Figure 4 shows the modified two-vector chromosome representation of a FJSP
with 4 jobs, 12 operations, and 4 machines. The length of each chromosome is equal to
the total number of operations, denoted as O. For each position k in the chromosome,
the machine assignment vector v1(k) represents the machine selected for the operation on
position k, the operation sequence vector v2(k) denotes the ID index of the operation.



8 Mathematical Problems in Engineering

Machine assignment

Operation indicated

Operation sequence 1 2 3 4 5 6 7 8 9 10 11 12

M1 M3 M3 M2 M1 M4 M2 M3 M2 M4 M1 M2

O1,1 O1,3 O2,1 O3,2O2,2 O2,3 O3,1 O3,3 O4,1 O4,2 O4,3O1,2

vector v1(k)

vector v2(k)

Figure 4: An example of chromosome representation.

4.3. Population Initialization

The algorithm starts with initialization of population. For each individual, both machine
assignment and operation sequence need to be initialized.

4.3.1. Machine Assignment Initialization

Machine assignment is initialized by a mix of different assignment rules. Here, we employ
two assignment rules proposed in Kacem et al. [4].

(I) Assignment Rule 1: search for the global minimum in the processing time table.

(II) Assignment Rule 2: randomly permute jobs and machines in the processing time
table.

Assignment Rule 1 starts from the operation that corresponds to the global minimum
in the processing time table [29]. After several iterations, all assignments are found by entirely
exploring the table of processing times [4]. Assignment Rule 2 randomly permutes the jobs
and the machines before applying the approach by localization [29]. Thus, Assignment Rule
2 can avoid the inconvenience that tends to privilege some configurations as compared to
the others [4]. The initial set of assignments is generated by making use of a mix of these
two assignment rules. In the experiments of this research, we employ the same assignment
initialization proportion as in [29], that is, 10% of initial population will be generated by
Assignment Rule 1 and 90% of it will be generated by Assignment Rule 2. For details about
these two rules, readers are referred to Kacem et al. [4] and Pezzella et al. [29].

4.3.2. Operation Sequence Initialization

Once the assignments are settled up, the sequence of operations on the machine needs to be
determined. In the proposed H-MOEA, mix of the following four rules is used to select an
operation from an eligible operation set.

(i) Long Processing Time (LPT), process the operation with maximal processing time
firstly.

(ii) Most Work Remaining (MWR), process the operation among the task with the
maximal total processing time firstly.

(iii) Most Operation Remaining (MOR), process the operation among the task with
most remaining operation firstly.

(iv) Randomly Selection (RS), randomly select an operation to be scheduled from the
eligible set.



Mathematical Problems in Engineering 9

4.4. Decoding

A shift is called global left-shift if some operations can be started earlier in time without
delaying any other operations even though the shift has changed the operation sequence. A
schedule is said to be active if no global left-shift exists [10]. Since makespan is taken as one
of the optimization objective, in this study, we construct a schedule as active one, that is, the
schedule is constructed as compact as possible.

In order to transfer the chromosome into an active schedule, several scheduling
techniques are combined to generate the schedule. In concrete, we integrate Serial Sequence
Generation Schedule (SSGS) [30, 31], scheduling algorithm proposed by Kacem et al. [4] and
priority-based decoding method introduced by Gao et al. [11] in the decoding procedure.
In the proposed decoding method, operations are scheduled at their earliest time from left
to right according to their ID index in the chromosome. Algorithm 1 shows the proposed
decoding procedure.

4.5. Crossover and Mutation

Crossover and mutation operators are used to generate the offspring, the former operator
applies to pairs of chromosomes, while the latter operator applies to single one. Since the
chromosome of FJSP consists of two vectors, genetic operators are executed to each part
independently.

4.5.1. Assignment Operators

Assignment operators change the machine assignments of individuals, while the operation
sequences are preserved.

We adopt crossover presented in Kacem et al. [4], shown as in Algorithm 2. N is the
job number, and ni and ni′ are the operation numbers of job i and i′, respectively.

It would be interesting to make genetic operators able to contribute in optimization
objectives [4]. Along this avenue, we propose several mutation operators for machine
assignment.

(1) Mutation operator balancing workload of machines, denoted as Assignment MO1.
This mutation operator is adopted from Kacem et al. [4] but made a slight
modification. The operation on most loaded machine is randomly selected and
assigned to another machine such that the workload of the new assigned machine
cannot exceed the maximal workload of the individual before applying mutation
operation.

(2) Mutation operator reducing total workload, denoted as Assignment MO2. This
mutation operator aims at contributing to optimization of total workload. A certain
number of operations are randomly selected to be assigned on another machine (if
exists), satisfying the following two conditions:

(a) the processing time of the operation on the new assigned machine is less than
the original machine;

(b) the workload of the new assigned machine cannot exceed the maximal
workload of the individual.



10 Mathematical Problems in Engineering

Beginning Decoding Procedure
initialize vector of machines availabilities Dispo Machine[k]=0 for each
machineMk (k ≤ M);
initialize vector of idle intervals Interval Machine[k][m]=0 for each ma-
chineMk (k ≤ M);
initialize vector of jobs availabilities Dispo Job[j]=0 for each job j(k ≤ N);

for i = 1 to O (O is the length of chromosome) do
Schedule operations Ii (1 ≤ i ≤ O) from left to right.
Search an available idle interval from left to right on machine k for
operation Ii.
if Such an interval exists. then

Insert the operation into that interval.
Update Interval Machine[k][m].

else
Determine t = max{Dispo Machine[k], Dispo Job[j]}.
Set the start time of operation Ii as t.
Update Dispo Machine[k].
Update Interval Machine[k][m].
Update Interval Machine[k][m].

end if
end for

Algorithm 1: Pseudocode of decoding procedure.

Crossover
Select randomly two parents P1 and P2;
Select randomly two integers i and i′ such that i ≤ i′ ≤ N;
Select randomly two integers j and j ′ such that j ≤ ni and j ′ ≤ ni′ (in the
case where i = i′, j ≤ j ′);
Child C1 receives the same assignments from the parent P1 for all opera-
tions between the operations Oij and Oi′j ′ ;
The rest of assignments for C1 is obtained from P2;
The construction of child C2 is similar with C1.

Algorithm 2: Procedure of crossover for assignment.

(3) Mutation operator reassigning critical operations, denoted as Assignment MO3. In
this operator, a certain number of critical operations are randomly selected and
assigned to another machine on which the processing time cannot exceed the
processing time on the original machine. In other words, the total workload after
mutation is equal to or less than original one.

(4) Immigration mutation operator, denoted as Assignment MO4. This operator is
adopted from Gao et al. [11], which randomly generates new machine assignment
for individuals according to the rules discussed in the stage of assignment
initialization.



Mathematical Problems in Engineering 11

Operation sequence

Operation indicated

1 4 7 2 5 6 3 8 9 10 11 12

O1,1

Selected
operation

Feasible interval

O3,1 O1,2 O3,2O2,2 O2,3 O1,3 O3,3 O4,1 O4,2 O4,3O2,1

vector v2(k)

Jsuce Msucc

Figure 5: The first mutation operator for operation sequence.

4.5.2. Sequence Operators

In sequence operators, operation sequences are changed, while the machine assignments are
preserved. Several crossover operators have been reported in the literature for permutation
representation. In our algorithm, we apply a two-point position-based crossover [32, 33] for
operation sequence. Usually, the two-point position-based crossover for scheduling problem
can be divided into two versions [32]: in the first version, the activities outside the two
selected points are inherited from one parent to the child, while in the other version, the set of
activities between the two randomly selected points is inherited from one parent to the child.
In this research, we employ the first version of crossover operator. In other words, for each
crossover, two crossing points will be generated. We randomly generate these two crossing
points from the interval [1, O], denoted as r1 and r2, r1 ≤ r2. Then, parent chromosome
is separated as three parts by crossing points. For instance, we assume that two parent
chromosomes P1 and P2 are selected for crossover, which can be represented as (P 1

1 , P
2
1 , P

3
1 )

and (P 1
2 , P

2
2 , P

3
2 ), respectively. Two children C1 and C2 are constructed by interchangeably

inheriting different parts from parents, that is,C1 takes the first and third parts from parent P1,
while inherits the second part from P2. The process is the same for generating C2, but with a
reverse sequence P 1

2− > P 2
1− > P 3

2 . What should be carefully noted is that, in order to preserve
the precedence constraints, when inheriting the second and third parts, all operations that
are already in the previous parts should be eliminated. This crossover operator is widely
used in other scheduling problems, for example, project scheduling problem [34]. Hartmann
[35] showed that this operator creates precedence feasible operation sequences.

Mutation operator generates new individuals slightly different from the parent. In
this study, we adopt the procedure presented by Shadrokh and Kianfar [36] as the basic
idea of mutation operator for operation sequence. In this mutation operator, an element in
the operation sequence is randomly selected and inserted into another position between the
interval determined by its last predecessor and first successor. Since this mutation operator
is introduced for project scheduling with a permutation representation, it might not work
effectively for FJSP in some cases. For example, when the machine predecessor and successor
of the selected operation are not between its job predecessor and successor, changing the
position of the selected operation will not impact the performance of an individual. Thus, we
propose two mutation operators for FJSP based on the permutation representation.

The first mutation operator, denoted as Sequence MO1, is used to permutate the
position of an operation’s job successor and/or job predecessor if its machine successor
and/or machine predecessor are out of the interval of job predecessor and successor. Figure 5
shows an example of mutation operator Sequence MO1. Suppose operationO1,2 is the selected



12 Mathematical Problems in Engineering

operation to be applied mutation operator. The job successor and machine successor of O1,2

are O1,3 and O3,2, with a index of 7 and 8, respectively, in the operation sequence. In such
a case, permutating the position of O1,2 in the sequence between its job predecessor and
successor cannot change the schedule sequence of its machine successorO3,2. Then, mutation
operator Sequence MO1 is to permutate the position of the job successor O1,3 to a feasible
interval after the position of machine successorO3,2 (if exists). The situation of predecessor is
the same with successor.

The second mutation operator for operation sequence, denoted as Sequence MO2,
is defined as permutating the position of the first critical operation in a randomly selected
interval from the operation sequence. This operator bears much similarity with the one
proposed in Shadrokh and Kianfar [36]; the only difference is that Sequence MO2 is only
applied to critical operation.

4.6. Local Search Approach

The evolution speed of simple GAs is relatively slow [37]. One of the possible promising
avenues to improve the convergence speed is the hybridization of local search [11]. Ishibuchi
and Murata [38, 39] were among the first to implement such a hybridization. A central
problem of any local search procedure for combinatorial optimization problem is how to
define the effective neighborhood around an initial solution [10]. Since FJSP consists of two
subproblems, that is, machine assignment and operation sequence, the neighborhood of a
solution of FJSP should be defined to indicate the neighbors of these two parts.

4.6.1. Assignment Neighborhood

The makespan of a schedule is invariant when moving operations that are not on critical
paths to other machines [17]. Thus, an efficient neighborhood of machine assignment is often
constructed by adjusting critical operations on a machine to other available machines, such
as in Li et al. [22]. In this study, an efficient assignment neighborhood is presented based on
the idea of critical operation adjustment.

Step 1. Randomly select a machine Ms on which the workload is equal to the maximal
workload of the individual.

Step 2. Select the critical operation(s) on machineMs to be adjusted according to given prob-
abilities based on the number of operations belonging to the same job. Suppose the vector
of critical operations on machine Ms is denoted as Operation Ms = (O′

s1, O
′
s2, . . . , O

′
sn′), the

numbers of operations belonging to the same job with a critical operation on machine Ms

are represented as Num Operation Ms = (N1,N2, . . . ,Nn′). Then, the probability vector of
adjusting each critical operation is given as Prob Adjust = (αN1, αN2, . . . , αNn′), where α
is a coefficient, which is set as 1/OprNum Ave, OprNum Ave is the average number of
operations for each job.

Step 3. For each critical operation on machine Ms selected to be executed for machine
adjustment, assign the operation to a new machine Mnew such that the combined value of
total workload and maximal workload after adjustment is minimum. Let T Workloadnew

and M Workloadnew, respectively, denote the total workload and maximal workload of



Mathematical Problems in Engineering 13

Procedure: Sequence Adjustment
Randomly select a critical operation Ii.
if Operation Ii is critical block head then

Randomly generate an integer i′ between the machine successor and job
successor of Ii.
Insert operation Ii into the position i′, Insert(i, i’ ).

end if
if Operation Ii is critical block rear then

Randomly generate an integer i′ between the job predecessor and ma-
chine predecessor of Ii.
Insert operation Ii into the position i′, Insert(i, i’ ).

end if
if Operation Ii is critical internal block then

Randomly create a decimal d between 0 and 1.
if d ≤ 0.5 then

Randomly generate an integer i′ between the machine successor and
job successor of Ii.
Insert operation Ii into the position i′, Insert(i, i’ ).

else
Randomly generate an integer i′ between the job predecessor and ma-
chine predecessor of Ii.
Insert operation Ii into the position i′, Insert(i, i’ ).

end if
end if

Algorithm 3: Procedure of sequence adjustment.

the individual after machine assignment. For a selected critical operation, search for a
machine which is capable of processing the operation such that the combined function
fcombined = 0.1 × T Workloadnew + 0.9 × M Workloadnew is minimum among all possible
machines.

4.6.2. Sequence Neighborhood

In order to define the neighborhood of operation sequence, critical path and/or critical
block are often employed in FJSP by many researchers [8, 10, 11, 14, 17, 21, 22, 40]. Along
this avenue, in this study, the effective neighborhood of operation sequence is based on
the concept of critical block. A neighbor solution is obtained by adjusting the position of
a randomly selected operation which belongs to a critical block. Algorithm 3 shows the
procedure of sequence adjustment.

4.6.3. Framework of Local Search

Xing et al. [13] proposed an efficient search method for FJPS. In that proposed approach, two
feasible moves were introduced tomachine assignment, followed by a procedure of operation
sequence. Then, a best move with a optimal performance can be obtained after feasible
moves evaluation. Based on this approach, the present research proposes a local search
procedure which incorporates machine adjustment and sequence adjustment. Algorithm 4



14 Mathematical Problems in Engineering

Procedure: Local search
for i = 0 to popsize do

Indi: the ith individual in the population;
ranki: the value of non-domination rank of an individual Indi;
JobNum: the number of job;
TempInd: a new created temporary individual;
Copy Ind(Indi, TempInd);
for j = 0 to JobNum/ranki do

Adjust machine assignment on Indi;
Evaluate Indi;
if Indi dominates TempInd then

break;
end if
for k = 0 to JobNum/ranki do

Adjust operation sequence on Indi;
Evaluate Indi;
if Indi dominates TempInd then

break;
end if

end for
if Indi dominates TempInd then

break;
end if
if TempInd dominates Indi then

Copy Ind(TempInd, Indi);
end if

end for
end for

Algorithm 4: Procedure of local search.

shows the procedure of the proposed local search. The local search procedure is implemented
on each individual in the population. The size of neighborhood is set as dependent with the
value of nondominated rank of an individual, given as follows:

N Sizei = Round
(
JobNum
ranki

)
, (4.2)

where JobNum represents the number of jobs and ranki indicates the nondominated rank
value of the ith individual in the population, Round(·) is the function to obtain the integer
part of a number. However, with the consideration of computational cost, this local search
procedure is only implemented every dth generation. Several important issues in the
hybridization of MOEAs and local search, such as balance between genetic search and local
search [41, 42] and choice of solutions to which local search is applied [43], are left in our
future work to study more efficient algorithms to solve larger scale problems.

4.7. Framework of H-MOEA

By hybridizing local search with multiobjective genetic algorithm, the convergence speed to
local optimal can be improved. On the other hand, it might increase computational time per



Mathematical Problems in Engineering 15

iteration. Thus, a well-designed algorithm is very important to the real application cases.
Figure 6 illustrates the framework of the proposed H-MOEA.

5. Computational Results

In this section, we compared the results obtained by the proposed hybrid multiobjective
evolutionary approach (H-MOEA) and other recently published algorithms. In particular, we
compared the results of AL+CGA and FL+EA by Kacem et al. [4, 5], PSO+SA by Xia and Wu
[6], the hybrid genetic algorithm (hGA) by Gao et al. [11], the multiobjective evolutionary
algorithm with local search (MOEA+GLS) by Ho and Tay [17], the multiobjective genetic
algorithm (MOGA) proposed by Wang et al. [20], the PSO+TS by Zhang et al. [8], the
artificial immune algorithm (AIA) by Bagheri et al. [15], the Pareto-based discrete artificial
bee colony algorithm (P-DABC) by Li et al. [21], the Pareto-based local search algorithm
(PLS) developed by Li et al. [22], and the multiobjective particle swarm optimization and
local search method proposed by Moslehi and Mahnam [23]. We also compared the results
obtained by the present approach with some algorithms developed by our group, such as
local search method developed by Xing et al. [12].

5.1. Parameter Settings

The H-MOEA was implemented in C# on Core(TM)2 Duo CPU 2.66 GHz with Windows
XP system. For each instances, 20 independent runs were performed. Depending on the
complexity of the problems, the population size of the H-MOEA ranges from 40 to 400. The
maximal number of generation is limited to 200. The parameter settings for other genetic
algorithms are listed as follows.

(i) Assignment crossover probability: 75%.

(ii) Sequence crossover probability: 90%.

(iii) Assignment mutation Assignment MO1 probability: 45%.

(iv) Assignment mutation Assignment MO2 probability: 45%.

(v) Assignment mutation Assignment MO3 probability: 45%.

(vi) Assignment mutation Assignment MO4 probability: 10%.

(vii) Sequence mutation Sequence MO1 probability: 20%.

(viii) Sequence mutation Sequence MO2 probability: 20%.

Moreover, in the stage of operation sequence initialization, the percentages of different
rules were set as follows: Long Processing Time (LPT) 30%; Most Work Remaining (MWR)
30%; Most Operation Remaining (MOR) 30%, Randomly Selection (RS) 10%. The local search
procedure is applied every 10th generation.

5.2. Test Instances I

The first five test instances, range from 4 jobs × 5 machines to 15 jobs × 10 machines,
were taken from Kacem. Release date was not considered in this set of test instances. The
three simultaneously considered objectives are, respectively, denoted as f1 (minimization of



16 Mathematical Problems in Engineering

Set parameters

Population initialization

Evaluate each schedule

Calculate crowding distance
for each schedule and sort it in

non-domination rank

Local search criterion?

Local search procedure

Crossover and mutation

Merge parent and child
population to form the next

generation population

Output

Calculate crowding distance
for each schedule and sort it in

non-domination rank

Stop criteria?

N

Y

N

Y

Figure 6: The flowchart of the proposed H-MOEA.

makespan), f2 (minimization of total workload), and f3 (minimization of critical workload).
Table 1 shows the comparison of the obtained results on the five instances. In order to
investigate the performance of proposed K-MOGA, we preprint the solutions dominated by
the ones obtained by K-MOEA in italic font. From Table 1, one can see that our algorithm



Mathematical Problems in Engineering 17

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

1 2 3 4 5 6 7 8 9 10 11

O14,1 O1,1 O1,2 O7,1 O10,2 O6,2 O8,4

O13,1 O3,3 O6,1 O7,2 O11,4 O13,4 O10,4

O9,2 O2,2 O1,3 O15,3

O2,1 O8,3 O3,4 O5,4

O4,1 O4,2 O12,2 O14,4 O15,4

O5,2 O11,2 O15,2 O4,3 O1,4

O3,1 O8,1 O11,1 O5,3 O9,3 O12,4

O12,1 O15,1 O8,2 O14,3 O2,4

O5,1 O3,2 O14,2 O11,3 O12,3

O9,1 O10,1 O13,2 O13,3 O2,3 O4,4 O10,3 O9,4

Time

Figure 7: A solution of problem 15 × 10 (makespan = 11, total workload = 91, maximal workload = 11).

performs better for at least one problem instance, compared to all other algorithms expect
MOEA-GLS. By looking at the results obtained by MOEA-GLS and our algorithm, it is
shown that our algorithm is competitive to MOEA-GLS, except in problem 8 × 8 where
4 nondominated solutions were obtained by MOEA-GLS, while just 3 ones were obtained
by our algorithm. The average processing time (in second), denoted as T , with 20 runs is
reported in the last column in Table 1. The values of T indicate the efficiency of our algorithm.

As discussed earlier, it exits many-to-one mapping from decision space to objective
space in FJSP. Figures 7 and 8 show two solutions of 15 × 10 instance. These two solutions
have the same objective values, makespan 11, total workload 91, and maximal workload 11,
but with different machine assignments. This indicates that keeping diversity in decision
space could contribute to the convergency of the algorithm towards to Paretooptimal front.

The performance analysis of the algorithms not only considers the end state, but it
is quite important to understand how they behave during the time of evolution. In this
paper, we propose to measure the mean ideal distance (MID) [44] over time. MID is used
to evaluate the closeness of solutions in a nondominated set with an ideal point which is



18 Mathematical Problems in Engineering

Ta
b
le

1:
C
om

pa
ri
so
n
of

th
e
K
ac
em

in
st
an

ce
s
w
it
ho

ut
re
le
as
e
d
at
e.

Si
ze

f
PS

O
+
SA

PS
O
+
T
S

P-
D
A
B
C

M
O
PS

O
+
L
S

M
O
E
A
-G

L
S

M
O
G
A

H
-M

O
E
A

T
(s
)

1
2

1
2

1
2

3
1

2
3

4
5

1
2

3
4

1
2

3
4

1
2

3
4

4
×5

f
1

11
11

12
13

11
11

12
11

12
13

11

f
2

32
32

32
33

32
34

32
32

32
33

34
3.
09

f
3

10
10

8
7

10
9

8
10

8
7

9

8
×8

f
1

15
16

14
15

14
15

16
15

16
14

16
17

16
15

14
16

15
15

16
16

15
16

f
2

75
73

77
75

77
75

73
75

73
77

78
77

73
75

77
77

81
75

73
73

75
77

9.
69

f
3

12
13

12
12

12
12

13
12

13
12

11
11

13
12

12
11

11
12

13
13

12
11

10
×7

f
1

12
11

12
12

11
11

f
2

61
63

60
60

61
62

14
.5
2

f
3

11
11

12
12

11
10

10
×1

0
f
1

7
7

8
7

8
8

7
8

7
8

7
8

7
8

7
8

7
8

7
8

7

f
2

44
43

41
43

42
41

42
42

43
41

42
42

43
42

42
41

45
41

42
42

43
14
.4
1

f
3

6
6

7
5

5
7

6
5

5
7

6
5

5
5

6
7

5
7

6
5

5

15
×1

0
f
1

12
11

12
11

12
11

11
11

11
12

11
11

11

f
2

91
93

91
93

93
91

93
91

91
95

98
93

91
32
.4
6

f
3

11
11

11
11

10
11

10
11

11
10

10
10

11



Mathematical Problems in Engineering 19

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

1 2 3 4 5 6 7 8 9 10 11

O14,1 O1,1 O1,2 O7,1O15,1 O6,2 O8,4

O13,1 O3,3 O6,1 O7,2O10,4 O13,4 O11,4

O9,2 O2,2 O1,3 O15,3

O2,1 O8,3 O3,4 O5,4

O4,1 O4,2 O12,2 O14,4 O15,4

O5,2 O11,2 O15,2 O4,3

O3,1 O8,1 O11,1 O5,3O9,3 O12,4

O12,1 O10,2 O8,2 O14,3 O2,4

O5,1 O3,2 O14,2 O11,3

O9,1 O10,1 O13,2 O10,3 O2,3 O13,3 O9,4

Time

O12,3

O1,4

O4,4

Figure 8: A solution of problem 15 × 10 with different machine assignment and operation sequence
(makespan = 11, total workload = 91, maximal workload = 11).

usually considered as (0,0,0) [45]. MID can be calculated as follows:

MID =
NoN∑
i

di, (5.1)

where NoN is the number of nondominated solutions, and di represents the distance of the
ith nondominated solution from the ideal point.

Figure 9 depicts the performance curve of MID for instance 15 × 10 without release
dates. The X-axis indicates the evolving generation, and the Y-axis represents the average
value of MID over 20 independent runs. To such an instance, H-MOEA converged quickly
in the first 20 generation. The first nondominated solution included in the final population
was found at 32 generation, and all of the final nondominated solutions were identified at 46
generation. This suggests that the proposed H-MOEA is very efficient in solving FJSPs.



20 Mathematical Problems in Engineering

98

97

96

95

94

93

92
0 10 20 30 40 50 60

Generation

M
ID

Figure 9: The performance curve of MID for 15 × 10 size test instance without release dates.

Table 2: Comparison of the Kacem instances with release date.

Size f
FL+EA P-DABC MOPSO+LS MOEA-GLS H-MOEA

T (s)1 2 3 4 5 1 2 3 1 2 3 1 2 3 1 2 3

4× 5
f1 18 18 16 16 16 16 16 16 16 16 16 16
f2 32 33 35 34 32 33 32 33 32 33 32 33 0.57
f3 8 7 9 10 8 7 8 7 8 7 8 7

8× 8
f1 20 20 20 20 20 20
f2 73 75 77 73 75 77 9.93
f3 13 12 11 13 12 11

10× 7
f1 16 15 18 17 16 15 16 15 16 15 15 15 16 15 15 16 15
f2 60 61 63 64 66 61 60 62 60 61 62 61 60 62 61 60 62 13.89
f3 12 11 10 10 10 11 12 10 12 11 10 11 12 10 11 12 10

10× 10
f1 12 13 13 13 13
f2 43 41 42 41 42 10.23
f3 6 7 5 7 5

15× 10
f1 24 23 23 23 23 23 23 23 23
f2 91 95 91 93 91 91 93 91 93 15.88
f3 11 11 11 10 11 11 10 11 10

5.3. Test Instances II

We also tested our algorithm on the five instances taken from Kacem et al. [4, 5], with
consideration of release dates. The considered release date constraints are given as follows.

(1) Instance 4 × 5: r1 = 3, r2 = 5, r3 = 1, r4 = 6.

(2) Instance 8 × 8: r1 = 2, r2 = 5, r3 = 8, r4 = 3, r5 = 1, r6 = 5, r7 = 7, r8 = 0.

(3) Instance 10× 7: r1 = 2, r2 = 4, r3 = 9, r4 = 6, r5 = 7, r6 = 5, r7 = 7, r8 = 4, r9 = 1, r10 = 0.



Mathematical Problems in Engineering 21

Table 3: Comparison of the MK01 instance.

Solution f1 f2 f3 T (s)
X-SM 1 42 162 42 286.80
AIA 1 40 171 36 97.21

1 40 167 36
2 41 160 39
3 42 163 37

PLS 4 42 157 40 N/A
5 43 155 40
6 45 154 40
7 46 153 42
1 40 167 36
2 40 165 37
3 41 164 40
4 42 163 42
5 42 164 37

HSFLA 6 43 162 38 172.18
7 44 166 36
8 44 160 38
9 46 163 37
10 48 165 36
11 70 153 70
1 40 167 36
2 40 165 37
3 41 161 38
4 41 163 37
5 41 168 36

H-MOEA 6 42 160 38 47.27
7 42 165 36
8 41 163 37
9 42 157 40
10 42 158 39
11 43 155 40
12 44 154 40
13 46 153 42

(4) Instance 10 × 10: r1 = 2, r2 = 4, r3 = 9, r4 = 6, r5 = 7, r6 = 5, r7 = 7, r8 = 4, r9 = 1,
r10 = 0.

(5) Instance 15 × 10: r1 = 5, r2 = 3, r3 = 6, r4 = 4, r5 = 9, r6 = 7, r7 = 1, r8 = 2, r9 = 9,
r10 = 0, r11 = 14, r12 = 13, r13 = 11, r14 = 12, r15 = 5.

Table 2 gives the comparison results with several recently published algorithms. It
can be seen from Table 2 that our algorithm can obtain better or equiponderant solutions
compared with others, except for instance 10 × 10. In the problem 10 × 10 with consideration
of release date, our algorithms obtained two nondominated solutions with an average time
10.21 s. The algorithm P-DABC proposed by Li et al. [21] could obtain 3 nondominated
solutions. However, since the authors of P-DABC did not report the average processing time



22 Mathematical Problems in Engineering

Table 4: Comparison of the MK02 instance.

Solution f1 f2 f3 T(s)
X-SM 1 28 155 28 181.2
AIA 1 26 154 26 103.46

1 26 151 26
2 27 146 27
3 28 145 28

PLS 4 29 145 27 N/A
5 29 144 28
6 29 143 29
7 31 142 30
8 33 140 33
1 26 152 26
2 27 151 26
3 27 150 27
4 28 146 28
5 28 148 27
6 29 147 27
7 29 145 28

HSFLA 8 30 146 27 229.56
9 30 144 30
10 33 150 26
11 33 141 33
12 34 141 31
13 36 140 36
14 36 142 30
15 38 140 33
1 26 152 26
2 27 150 26
3 27 145 27

H-MOEA 4 28 144 28 51.26
5 29 143 29
6 30 142 30
7 31 141 31
8 33 140 33

on this instance, it could not be considered that our algorithm performed worse on obtaining
diverse nondominated solutions.

5.4. Test Instances III

In order to make a further investigation on the performance of our algorithm, we ran H-
MOEA on several instances from the BR data set presented by Brandimarte [46]. We used the
same four different scale instances as in Li et al. [21] to verify the performance of H-MOEA.
Four recently published algorithms were compared to our algorithm. The first algorithm was
developed by the researchers in our group Xing et al. [13], denoted as X-SM. The second
algorithm AIA was proposed by Bagheri et al. [15]. The third one, which was also the most



Mathematical Problems in Engineering 23

Table 5: Comparison of the MK03 instance.

Solution f1 f2 f3 T(s)
X-SM 1 204 852 204 1568.40
AIA 1 204 1207 204 247.37

1 204 852 204
2 210 850 204
3 213 846 213

PLS 4 220 848 210 N/A
5 222 842 222
6 223 844 213
7 330 812 330
1 204 852 204
2 210 850 204
3 213 846 213

HSFLA 4 220 848 210 139.87
5 222 842 222
6 223 844 213
7 330 812 330
1 204 850 204
2 210 848 210
3 213 844 213
4 221 842 221
5 222 838 222

H-MOEA 6 231 834 231 318.13
7 240 832 240
8 258 828 258
9 267 826 267
10 303 818 303
11 312 816 312
12 321 814 321
13 330 812 330

recently published one, was introduced by Li et al. [22] and denoted as PLS. The fourth
algorithm, which was also the most recently published one, hybrid shuffled frog-leaping
algorithm (HSFLA), was proposed by Li et al. [47]. The comparison results are reported in
Tables 3, 4, 5, and 6. In order to show the performance of our algorithm in a more clear way,
we also preprint the solutions dominated by other ones in italic font and preprint the solutions
dominating at least one other solution in bold face.

As shown in Tables 3 to 6, compared with X-SM, H-MOEA could obtain dominating
or nondominated solutions with less computational effort. The solutions obtained by AIA
for all tested instances were dominated by the solutions by our algorithm. By looking
at the Pareto-based approach PLS, one can see that most of solutions obtained by PLS
were dominated by the ones obtained by our algorithm, while in reverse, just one solution
obtained by our algorithm for instance MK02 was dominated by the solution obtained by
PLS. Also, it can be seen that H-MOEA could obtain a richer nondominated set than PLS.
Since the computational time of PLS was not reported by the authors, further comparison
and more accurate conclusion about the performances of the two algorithms could not be



24 Mathematical Problems in Engineering

Table 6: Comparison of the MK08 instance.

Solution f1 f2 f3 T (s)
X-SM 1 523 2524 523 4060.20
AIA 1 523 2723 523 392.25

1 523 2524 523
2 524 2519 524
2 533 2514 533

PLS 3 548 2509 542 N/A
4 576 2507 569
5 578 2502 578
6 587 2497 587
7 594 2484 587
1 523 2524 523
2 524 2519 524
3 533 2514 533

HSFLA 4 548 2509 548 165.48
5 576 2507 569
6 578 2502 578
7 587 2497 587
8 594 2484 587
1 523 2524 523
2 524 2519 524
3 533 2514 533

H-MOEA 4 542 2509 542 1674.14
5 551 2504 551
6 560 2499 560
7 569 2494 569
8 578 2489 578
9 587 2484 587

available. The comparison between HSFLA and the proposed H-MOEA shows that most of
nondominated solutions obtained by HSFLA were dominated by the solutions obtained by
H-MOEA. It suggests that H-MOEA has better convergence ability than HSFLS on the test
instances.

6. Conclusion

As its practical importance and complexity, multiobjective flexible job-shop scheduling
problem (FJSP) has received considerable attention during last few years, and various
heuristic or meta-heuristic approaches were reported in the literature. In this paper, we
present a multiobjective evolutionary approach for solving the problem. In our algorithm,
a permutation based chromosome representation and several efficient genetic operators are
designed for FJSP. For multiobjective optimization problems, an important issue is obtaining
well spread nondominated solutions. In other words, good diversity should be maintained
in the population. To do this, a modified crowding distance measure is introduced in our
approach to indicate the diversity of individuals in decision space. In order to speed up



Mathematical Problems in Engineering 25

the convergency of the algorithm, a local search procedure is embedded in the evolutionary
process. Experiment results indicate the effectiveness of the proposed approach. In order
to handle more complex problems, in future work, the authors will address the design of
more efficient hybrid multiobjective evolutionary algorithms, in which several mentioned
issues, that is, balance between genetic search and local search and choice of solutions to
which local search is applied, will be considered in the implementation of algorithms. In
this research, it is assumed that all parameters and data are deterministic. However, in
real applications, schedules are often confronted with uncertain factors. In other words,
the executing environment of a schedule might be stochastic or dynamic. The authors will
address the efficient approach for stochastic version of FJSP in future work.

Acknowledgments

This research was supported in part by the China Scholarship Council and National Natural
Science Foundation of China under the Contracts no. 70971131, 70901074, 71001104, 71101150,
and 71101096.

References

[1] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop and job shop scheduling,”
Mathematics of Operations Research, vol. 1, no. 2, pp. 117–129, 1976.

[2] A. S. Jain and S. Meeran, “Deterministic job-shop scheduling: past, present and future,” European
Journal of Operational Research, vol. 113, no. 2, pp. 390–434, 1999.

[3] P. Brucker and R. Schlie, “Job-shop scheduling with multi-purpose machines,” Computing, vol. 45, no.
4, pp. 369–375, 1990.

[4] I. Kacem, S. Hammadi, and P. Borne, “Approach by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems,” IEEE Transactions on Systems, Man and
Cybernetics Part C, vol. 32, no. 1, pp. 1–13, 2002.

[5] I. Kacem, S. Hammadi, and P. Borne, “Pareto-optimality approach for flexible job-shop scheduling
problems: hybridization of evolutionary algorithms and fuzzy logic,” Mathematics and Computers in
Simulation, vol. 60, no. 3–5, pp. 245–276, 2002.

[6] W. Xia and Z. Wu, “An effective hybrid optimization approach for multi-objective flexible job-shop
scheduling problems,” Computers and Industrial Engineering, vol. 48, no. 2, pp. 409–425, 2005.

[7] T. Hsu, R. Dupas, D. Jolly, and G. Goncalves, “Evaluation of mutation heuristics for the solving of
multiobjective flexible job shop by an evolutionary algorithm,” in Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, pp. 655–660, October 2002.

[8] G. Zhang, X. Shao, P. Li, and L. Gao, “An effective hybrid particle swarm optimization algorithm for
multi-objective flexible job-shop scheduling problem,” Computers and Industrial Engineering, vol. 56,
no. 4, pp. 1309–1318, 2009.

[9] H. Liu, A. Abraham, and Z. Wang, “A multi-swarm approach to multi-objective flexible job-shop
scheduling problems,” Fundamenta Informaticae, vol. 95, no. 4, pp. 465–489, 2009.

[10] J. Gao, M. Gen, L. Sun, and X. Zhao, “A hybrid of genetic algorithm and bottleneck shifting for
multiobjective flexible job shop scheduling problems,” Computers and Industrial Engineering, vol. 53,
no. 1, pp. 149–162, 2007.

[11] J. Gao, L. Sun, and M. Gen, “A hybrid genetic and variable neighborhood descent algorithm for
flexible job shop scheduling problems,” Computers and Operations Research, vol. 35, no. 9, pp. 2892–
2907, 2008.

[12] L. N. Xing, Y. W. Chen, and K. W. Yang, “Multi-objective flexible job shop schedule: design and
evaluation by simulation modeling,” Applied Soft Computing Journal, vol. 9, no. 1, pp. 362–376, 2009.

[13] L. N. Xing, Y. W. Chen, and K. W. Yang, “An efficient search method for multi-objective flexible job
shop scheduling problems,” Journal of Intelligent Manufacturing, vol. 20, no. 3, pp. 283–293, 2009.

[14] J. Q. Li, Q. K. Pan, and Y. C. Liang, “An effective hybrid tabu search algorithm for multi-objective
flexible job-shop scheduling problems,” Computers and Industrial Engineering, vol. 59, no. 4, pp. 647–
662, 2010.



26 Mathematical Problems in Engineering

[15] A. Bagheri, M. Zandieh, I. Mahdavi, and M. Yazdani, “An artificial immune algorithm for the flexible
job-shop scheduling problem,” Future Generation Computer Systems, vol. 26, no. 4, pp. 533–541, 2010.

[16] G. Vilcot and J.-C. Billaut, “A tabu search algorithm for solving a multicriteria flexible job shop
scheduling problem,” International Journal of Production Research, vol. 49, no. 23, pp. 6963–6980, 2011.

[17] N. B. Ho and J. C. Tay, “Solving multiple-objective flexible job shop problems by evolution and local
search,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 38, no. 5, pp. 674–685, 2008.

[18] M. Frutos, A. C. Olivera, and F. Tohmé, “A memetic algorithm based on a NSGAII scheme for the
flexible job-shop scheduling problem,” Annals of Operations Research, vol. 181, no. 1, pp. 745–765, 2010.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[20] X. Wang, L. Gao, C. Zhang, and X. Shao, “A multi-objective genetic algorithm based on immune
and entropy principle for flexible job-shop scheduling problem,” International Journal of Advanced
Manufacturing Technology, vol. 51, no. 5–8, pp. 757–767, 2010.

[21] J. Q. Li, Q. K. Pan, and K. Z. Gao, “Pareto-based discrete artificial bee colony algorithm for multi-
objective flexible job shop scheduling problems,” International Journal of Advanced Manufacturing
Technology, vol. 55, no. 9–12, pp. 1159–1169, 2011.

[22] J.-Q. Li, Q.-K. Pan, and J. Chen, “A hybrid Pareto-based local search algorithm for multi-objective
flexible job shop scheduling problems,” International Journal of Production Research, vol. 50, no. 4, pp.
1063–1078, 2012.

[23] G. Moslehi and M. Mahnam, “A Pareto approach to multi-objective flexible job-shop scheduling
problem using particle swarm optimization and local search,” International Journal of Production
Economics, vol. 129, no. 1, pp. 14–22, 2011.

[24] E. Balas, “Machine sequencing via disjunctive graphs: an implicit enumeration algorithm,”Operations
Research, vol. 17, pp. 941–957, 1969.

[25] K. Deb and S. Tiwari, “Omni-optimizer: a generic evolutionary algorithm for single and multi-
objective optimization,” European Journal of Operational Research, vol. 185, no. 3, pp. 1062–1087, 2008.

[26] T. Ulrich, J. Bader, and E. Zitzler, “Integrating decision space diversity into hypervolume-based
multiobjective search,” in Proceedings of the 12th Annual Genetic and Evolutionary Computation
Conference (GECCO ’10), pp. 455–462, Portland, Ore, USA, July 2010.

[27] H. Ishibuchi, N. Akedo, and Y. Nojima, “A many-objective test problem for visually examining
diversity maintenance behavior in a decision space,” in Proceedings of the 13th Annual Genetic and
Evolutionary Computation Conference (GECCO ’11), pp. 649–656, 2011.

[28] M. Gen, Y. Tsujimura, and E. Kubota, “Solving job-shop scheduling problems by genetic algorithm,”
in Proceedings of the 16th International Conference on Computer and Industrial Engineering, pp. 1577–1582,
Ashikaga, Japan, October 1994.

[29] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for the Flexible Job-shop Scheduling
Problem,” Computers and Operations Research, vol. 35, no. 10, pp. 3202–3212, 2008.

[30] S. Hartmann and R. Kolisch, “Experimental evaluation of state-of-the-art heuristics for the resource-
constrained project scheduling problem,” European Journal of Operational Research, vol. 127, no. 2, pp.
394–407, 2000.

[31] R. Kolisch and S. Hartmann, “Experimental investigation of heuristics for resource-constrained
project scheduling: an update,” European Journal of Operational Research, vol. 174, no. 1, pp. 23–37,
2006.

[32] T. Murata, H. Ishibuchi, and H. Tanaka, “Genetic algorithms for flowshop scheduling problems,”
Computers and Industrial Engineering, vol. 30, no. 4, pp. 1061–1071, 1996.

[33] T. Murata, H. Ishibuchi, and H. Tanaka, “Multi-objective genetic algorithm and its applications to
flowshop scheduling,” Computers and Industrial Engineering, vol. 30, no. 4, pp. 957–968, 1996.

[34] J. Xiong, Y.-W. Chen, K.-W. Yang, Q.-S. Zhao, and L.-N. Xing, “A hybrid multiobjective genetic
algorithm for robust resource-constrained project scheduling with stochastic durations,”Mathematical
Problems in Engineering, vol. 2012, Article ID 786923, 24 pages, 2012.

[35] S. Hartmann, “A competitive genetic algorithm for resource-constrained project scheduling,” Naval
Research Logistics, vol. 45, no. 7, pp. 733–750, 1998.

[36] S. Shadrokh and F. Kianfar, “A genetic algorithm for resource investment project scheduling problem,
tardiness permitted with penalty,” European Journal of Operational Research, vol. 181, no. 1, pp. 86–101,
2007.

[37] P. Moscato and R. Cheng, “A memetic approach for the traveling salesman problem: implementation
of a computational ecology for combinatorial optimization on message-passing systems,” in



Mathematical Problems in Engineering 27

Proceedings of the International Conference on Parallel Computing and Transputer Applications, Amsterdam,
The Netherlands, 1992.

[38] H. Ishibuchi and T. Murata, “Multi-objective genetic local search algorithm,” in Proceedings of the IEEE
International Conference on Evolutionary Computation (ICEC ’96), pp. 119–124, May 1996.

[39] H. Ishibuchi and T. Murata, “A multi-objective genetic local search algorithm and its application to
flowshop scheduling,” IEEE Transactions on Systems, Man and Cybernetics Part C, vol. 28, no. 3, pp.
392–403, 1998.

[40] C. Zhang, P. Li, Z. Guan, and Y. Rao, “A tabu search algorithmwith a new neighborhood structure for
the job shop scheduling problem,” Computers and Operations Research, vol. 34, no. 11, pp. 3229–3242,
2007.

[41] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic search and local search in memetic
algorithms for multiobjective permutation flowshop scheduling,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 204–223, 2003.

[42] J.-Y. Lin and Y.-P. Chen, “Analysis on the collaboration between global search and local search
in memetic computation,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 5, Article ID
6031912, pp. 608–623, 2011.

[43] H. Ishibuchi, Y. Hitotsuyanagi, Y. Wakamatsu, and Y. Nojima, “How to choose solutions for local
search in multiobjective combinatorial memetic algorithms,” in Proceedings of the 11th International
Conference on Parallel Problem Solving from Nature (PPSN ’10), 2010.

[44] N. Karimi, M. Zandieh, and H. R. Karamooz, “Bi-objective group scheduling in hybrid flexible
flowshop: a multi-phase approach,” Expert Systems with Applications, vol. 37, no. 6, pp. 4024–4032,
2010.

[45] S. H. A. Rahmati, M. Zandieh, and M. Yazdani, “Developing two multi-objective evolutionary
algorithms for the multi-objective flexible job shop scheduling problem,” International Journal of
Advanced Manufacturing Technology. In press.

[46] P. Brandimarte, “Routing and scheduling in a flexible job shop by tabu search,” Annals of Operations
Research, vol. 41, no. 3, pp. 157–183, 1993.

[47] J. Li, Q. Pan, and S. Xie, “An effective shuffled frog-leaping algorithm for multi-objective flexible
job shop scheduling problems,” Applied Mathematics and Computation, vol. 218, no. 18, pp. 9353–9371,
2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


