
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 482193, 28 pages
doi:10.1155/2012/482193

Research Article
A Two-Phase Support Method for Solving Linear
Programs: Numerical Experiments

Mohand Bentobache1, 2 and Mohand Ouamer Bibi2

1 Department of Technology, University of Laghouat, 03000, Algeria
2 Laboratory of Modelling and Optimization of Systems (LAMOS), University of Bejaia, 06000, Algeria

Correspondence should be addressed to Mohand Bentobache, mbentobache@yahoo.com

Received 6 September 2011; Accepted 7 February 2012

Academic Editor: J. Jiang

Copyright q 2012 M. Bentobache and M. O. Bibi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We develop a single artificial variable technique to initialize the primal support method for solving
linear programs with bounded variables. We first recall the full artificial basis technique, then
we will present the proposed algorithm. In order to study the performances of the suggested
algorithm, an implementation under the MATLAB programming language has been developed.
Finally, we carry out an experimental study about CPU time and iterations number on a large
set of the NETLIB test problems. These test problems are practical linear programs modelling
various real-life problems arising from several fields such as oil refinery, audit staff scheduling,
airline scheduling, industrial production and allocation, image restoration, multisector economic
planning, and data fitting. It has been shown that our approach is competitive with our
implementation of the primal simplex method and the primal simplex algorithm implemented
in the known open-source LP solver LP SOLVE.

1. Introduction

Linear programming is a mathematical discipline which deals with solving the problem
of optimizing a linear function over a domain delimited by a set of linear equations or
inequations. The first formulation of an economical problem as a linear programming
problem is done by Kantorovich (1939, [1]), and the general formulation is given later by
Dantzig in his work [2]. LP is considered as the most important technique in operations
research. Indeed, it is widely used in practice, and most of optimization techniques are based
on LP ones. That is why many researchers have given a great interest on finding efficient
methods to solve LP problems. Although some methods exist before 1947 [1], they are
restricted to solve some particular forms of the LP problem. Being inspired from the work
of Fourier on linear inequalities, Dantzig (1947, [3]) developed the simplex method which is

2 Mathematical Problems in Engineering

known to be very efficient for solving practical linear programs. However, in 1972, Klee and
Minty [4] have found an example where the simplex method takes an exponential time to
solve it.

In 1977, Gabasov and Kirillova [5] have generalized the simplex method and
developed the primal support method which can start by any basis and any feasible solution
and can move to the optimal solution by interior points or boundary points. The latter is
adapted by Radjef and Bibi to solve LPs which contain two types of variables: bounded
and nonnegative variables [6]. Later, Gabasov et al. developed the adaptive method to
solve, particularly, linear optimal control problems [7]. This method is extended to solve
general linear and convex quadratic problems [8–18]. In 1979, Khachian developed the first
polynomial algorithm which is an interior point one to solve LP problems [19], but it’s not
efficient in practice. In 1984, Karmarkar presented for the first time an interior point algorithm
competitive with the simplex method on large-scale problems [20].

The efficiency of the simplex method and its generalizations depends enormously
on the first initial point used for their initialization. That is why many researchers have
given a new interest for developing new initialization techniques. These techniques aim to
find a good initial basis and a good initial point and use a minimum number of artificial
variables to reduce memory space and CPU time. The first technique used to find an initial
basic feasible solution for the simplex method is the full artificial basis technique [3]. In
[21, 22], the authors developed a technique using only one artificial variable to initialize the
simplex method. In his experimental study, Millham [23] shows that when the initial basis
is available in advance, the single artificial variable technique can be competitive with the
full artificial basis one. Wolfe [24] has suggested a technique which consists of solving a new
linear programming problem with a piecewise linear objective function (minimization of the
sum of infeasibilities). In [25–31], crash procedures are developed to find a good initial basis.

In [32], a two-phase support method with one artificial variable for solving linear
programming problems was developed. This method consists of two phases and its general
principle is the following: in the first phase, we start by searching an initial support with
the Gauss-Jordan elimination method, then we proceed to the search of an initial feasible
solution by solving an auxiliary problem having one artificial variable and an obvious feasible
solution. This obvious feasible solution can be an interior point of the feasible region. After
that, in the second phase, we solve the original problem with the primal support method [5].

In [33, 34], we have suggested two approaches to initialize the primal support method
with nonnegative variables and bounded variables: the first approach consists of applying
the Gauss elimination method with partial pivoting to the system of linear equations
corresponding to the main constraints and the second consists of transforming the equality
constraints to inequality constraints. After finding the initial support, we search a feasible
solution by adding only one artificial variable to the original problem, thus we get an
auxiliary problem with an evident support feasible solution. An experimental study has
been carried out on some NETLIB test problems. The results of the numerical comparison
revealed that finding the initial support by the Gauss elimination method consumes much
time, and transforming the equality constraints to inequality ones increases the dimension
of the problem. Hence, the proposed approaches are competitive with the full artificial basis
simplex method for solving small problems, but they are not efficient to solve large problems.

In this work, we will first extend the full artificial basis technique presented in [7], to
solve problems in general form, thenwewill combine a crash procedurewith a single artificial
variable technique in order to find an initial support feasible solution for the initialization
of the support method. This technique is efficient for solving practical problems. Indeed, it

Mathematical Problems in Engineering 3

takes advantage of sparsity and adds a reduced number of artificial variables to the original
problem. Finally, we show the efficiency of our approach by carrying out an experimental
study on some NETLIB test problems.

The paper is organized as follows: in Section 2, the primal support method for solving
linear programming problems with bounded variables is reviewed. In Section 3, the different
techniques to initialize the support method are presented: the full artificial basis technique
and the single artificial variable one. Although the support method with full artificial basis is
described in [7], it has never been tested on NETLIB test problems. In Section 4, experimental
results are presented. Finally, Section 5 is devoted to the conclusion.

2. Primal Support Method with Bounded Variables

2.1. State of the Problem and Definitions

The linear programming problem with bounded variables is presented in the following
standard form:

max z = cTx, (2.1)

s.t. Ax = b, (2.2)

l ≤ x ≤ u, (2.3)

where c and x are n-vectors; b an m-vector; A an (m × n)-matrix with rank(A) = m < n; l
and u are n-vectors. In the following sections, we will assume that ‖l‖ < ∞ and ‖u‖ < ∞. We
define the following index sets:

I = {1, 2, . . . , m}, J = {1, 2, . . . , n}, J = JN ∪ JB,
JN ∩ JB = ∅, |JB| = m, |JN | = n −m. (2.4)

So we can write and partition the vectors and the matrix A as follows:

x = x(J) =
(
xj , j ∈ J

)
, x =

(
xN
xB

)
, xN = x(JN) =

(
xj , j ∈ JN

)
,

xB = x(JB) =
(
xj , j ∈ JB

)
; c = c(J) =

(
cj , j ∈ J

)
, c =

(
cN
cB

)
,

cN = c(JN) =
(
cj , j ∈ JN

)
, cB = c(JB) =

(
cj , j ∈ JB

)
,

l = l(J) =
(
lj , j ∈ J

)
, u = u(J) =

(
uj, j ∈ J

)
,

A = A(I, J) =
(
aij , i ∈ I, j ∈ J

)
=
(
a1, . . . , aj , . . . , an

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

AT
1
...
AT
i
...
AT
m

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

4 Mathematical Problems in Engineering

aj =

⎛

⎜
⎜⎜
⎝

a1j
a2j
...

amj

⎞

⎟
⎟⎟
⎠
, j = 1, n; AT

i = (ai1, ai2, . . . , ain), i = 1, m,

A = (AN | AB), AN = A(I, JN), AB = A(I, JB).

(2.5)

(i) A vector x verifying constraints (2.2) and (2.3) is called a feasible solution for the
problem (2.1)–(2.3).

(ii) A feasible solution x0 is called optimal if z(x0) = cTx0 = max cTx, where x is taken
from the set of all feasible solutions of the problem (2.1)–(2.3).

(iii) A feasible solution xε is said to be ε-optimal or suboptimal if

z
(
x0) − z(xε) = cTx0 − cTxε ≤ ε, (2.6)

where x0 is an optimal solution for the problem (2.1)–(2.3), and ε is a positive
number chosen beforehand.

(iv) We consider the set of indices JB ⊂ J such that |JB| = |I| = m. Then JB is called a
support if det(AB) = det(A(I, JB))/= 0.

(v) The pair {x, JB} comprising a feasible solution x and a support JB will be called a
support feasible solution (SFS).

(vi) An SFS is called nondegenerate if lj < xj < uj , j ∈ JB.

Remark 2.1. An SFS is a more general concept than the basic feasible solution (BFS). Indeed,
the nonsupport components of an SFS are not restricted to their bounds. Therefore, an SFS
may be an interior point, a boundary point or an extreme point, but a BFS is always an
extreme point. That is why we can classify the primal support method in the class of interior
search methods within the simplex framework [35].

(i) We define the Lagrange multipliers vector π and the reduced costs vector Δ as
follows:

πT = cTBA
−1
B , ΔT = ΔT (J) = πTA − cT =

(
ΔT
N,Δ

T
B

)
, (2.7)

where ΔT
N = cTBA

−1
B AN − cTN, ΔT

B = cTBA
−1
B AB − cTB = 0.

Theorem 2.2 (the optimality criterion [5]). Let {x, JB} be an SFS for the problem (2.1)–(2.3). So
the relations:

Δj ≥ 0 for xj = lj ,

Δj ≤ 0 for xj = uj,

Δj = 0 for lj < xj < uj , j ∈ JN
(2.8)

Mathematical Problems in Engineering 5

are sufficient and, in the case of nondegeneracy of the SFS {x, JB}, also necessary for the optimality of
the feasible solution x.

The quantity β(x, JB) defined by:

β(x, JB) =
∑

Δj>0, j∈JN
Δj

(
xj − lj

)
+

∑

Δj<0, j∈JN
Δj

(
xj − uj

)
, (2.9)

is called the suboptimality estimate. Thus, we have the following theorem [5].

Theorem 2.3 (sufficient condition for suboptimality). Let {x, JB} be an SFS for the problem (2.1)–
(2.3) and ε an arbitrary positive number. If β(x, JB) ≤ ε, then the feasible solution x is ε-optimal.

2.2. The Primal Support Method

Let {x, JB} be an initial SFS and ε an arbitrary positive number. The scheme of the primal
support method is described in the following steps:

(1) Compute πT = cTBA
−1
B ; Δj = πTaj − cj , j ∈ JN .

(2) Compute β(x, JB)with the formula (2.9).

(3) If β(x, JB) = 0, then the algorithm stops with {x, JB}, an optimal SFS.

(4) If β(x, JB) ≤ ε, then the algorithm stops with {x, JB}, an ε-optimal SFS.

(5) Determine the nonoptimal index set:

JNNO =
{
j ∈ JN :

[
Δj < 0, xj < uj

]
or

[
Δj > 0, xj > lj

]}
. (2.10)

(6) Choose an index j0 from JNNO such that |Δj0 | = maxj∈JNNO |Δj |.
(7) Compute the search direction d using the relations:

dj0 = − sign Δj0 ,

dj = 0, j /= j0, j ∈ JN,
d(JB) = −A−1

B ANd(JN) = −A−1
B aj0dj0 .

(2.11)

(8) Compute θj1 = minj∈JBθj , where θj is determined by the formula:

θj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
uj − xj

)

dj
, if dj > 0;

(
lj − xj

)

dj
, if dj < 0;

∞, if dj = 0.

(2.12)

6 Mathematical Problems in Engineering

(9) Compute θj0 using the formula

θj0 =

{
xj0 − lj0 , if Δj0 > 0;
uj0 − xj0 , if Δj0 < 0.

(2.13)

(10) Compute θ0 = min{θj1 , θj0}.
(11) Compute x = x + θ0d, z = z + θ0|Δj0 |.
(12) Compute β(x, JB) = β(x, JB) − θ0|Δj0 |.
(13) If β(x, JB) = 0, then the algorithm stops with {x, JB}, an optimal SFS.

(14) If β(x, JB) ≤ ε, then the algorithm stops with {x, JB}, an ε-optimal SFS.

(15) If θ0 = θj0 , then we put JB = JB.

(16) If θ0 = θj1 , then we put JB = (JB \ {j1}) ∪ {j0}.
(17) We put x = x and JB = JB. Go to the step (1).

3. Finding an Initial SFS for the Primal Support Method

Consider the linear programming problem written in the following general form:

max z = cTx,

s.t. A1x ≤ b1,
A2x = b2,

l ≤ x ≤ u,

(3.1)

where c = (c1, c2, . . . , cp)
T , x = (x1, x2, . . . , xp)

T , l = (l1, l2, . . . , lp)
T , u = (u1, u2, . . . , up)

T are
vectors in R

p; A1 is a matrix of dimension (m1 × p), A2 is a matrix of dimension (m2 × p),
b1 ∈ R

m1 , b2 ∈ R
m2 . We assume that ‖l‖ <∞ and ‖u‖ <∞.

Letm = m1+m2 be the number of constraints of the problem (3.1) and I = {1, 2, . . . , m},
J0 = {1, 2, . . . , p} are, respectively, the constraints indices set and the original variables indices
set of the problem (3.1). We partition the set I as follows: I = I1∪I2, where I1 and I2 represent,
respectively, the indices set of inequality and equality constraints. We note by e(j) the j-vector
of ones, that is, e(j) = (1, 1, . . . , 1) ∈ R

j and ej the jth vector of the identity matrix Im of order
m.

After adding m1 = |I1| slack variables to the problem (3.1), we get the following
problem in standard form:

max z = cTx, (3.2)

s.t. Ax +Hexe = b, (3.3)

l ≤ x ≤ u, (3.4)

0 ≤ xe ≤ ue, (3.5)

Mathematical Problems in Engineering 7

where A = (aij , i ∈ I, j ∈ J0) =
(
A1

A2

)
, b = (bi, i ∈ I) =

(
b1

b2

)
, He =

(
Im1

0(m2×m1)

)
= (ei, i ∈ I1) =

(e1, e2, . . . , em1), x
e = (xp+i, i ∈ I1) = (xp+1, xp+2, . . . , xp+m1)

T is the vector of the added slack
variables and ue = (up+i, i ∈ I1) = (up+1, up+2, . . . , up+m1)

T its upper bound vector. In order to
work with finite bounds, we set up+i = M, i ∈ I1, that is, ue = Me(m1), where M is a finite,
positive and big real number chosen carefully.

Remark 3.1. The upper bounds, up+i, i ∈ I1, of the added slack variables can also be deduced
as follows: up+i = bi −AT

i h
i, i ∈ I1, where hi is a p-vector computed with the formula

hij =

⎧
⎪⎪⎨

⎪⎪⎩

lj , if aij > 0;
uj, if aij < 0;
0, if aij = 0.

(3.6)

Indeed, from the system (3.3), we have xp+i = bi −
∑p

j=1 aijxj , i ∈ I1. By using the bound

constraints (3.4), we get xp+i ≤ bi −
∑p

j=1 aijh
i
j = bi − AT

i h
i, i ∈ I1. However, the experimental

study shows that it’s more efficient to set up+i, i ∈ I1, to a given finite big value, because for
the large-scale problems, the deduction formula (3.6) given above takes much CPU time to
compute bounds for the slack variables.

The initialization of the primal support method consists of finding an initial support
feasible solution for the problem (3.2)–(3.5). In this section, being inspired from the technique
used to initialize interior point methods [36] and taking into account, the fact that the support
method can start with a feasible point and a support which are independent, we suggest
a single artificial variable technique to find an initial SFS. Before presenting the suggested
technique, we first extend the full artificial basis technique, originally presented in [7] for
standard form, to solve linear programs presented in the general form (3.1).

3.1. The Full Artificial Basis Technique

Let x+ be a p-vector chosen between l and u and w an m-vector such that w = b − Ax+. We
consider the following subsets of I1: I+1 = {i ∈ I1 : wi ≥ 0}, I−1 = {i ∈ I1, wi < 0}, andwe assume
without loss of generality that I+1 = {1, 2, . . . , k}, with k ≤ m1 and I−1 = {k + 1, k + 2, . . . , m1}.
Remark that I+1 and I−1 form a partition of I1; |I+1 | = k and |I−1 | = m1 − k.

We make the following partition for xe, ue andHe: xe =
(
xe+

xe−
)
, where

xe+ =
(
xp+i, i ∈ I+1

)
=
(
xp+1, xp+2, . . . , xp+k

)T
,

xe− =
(
xp+i, i ∈ I−1

)
=
(
xp+k+1, xp+k+2, . . . , xp+m1

)T ;
(3.7)

ue =
(
ue+

ue−
)
, where

ue+ =
(
up+i, i ∈ I+1

)
=
(
up+1, up+2, . . . , up+k

)T
,

ue− =
(
up+i, i ∈ I−1

)
=
(
up+k+1, up+k+2, . . . , up+m1

)T
,

(3.8)

8 Mathematical Problems in Engineering

andHe = (He+,He−), where

He+ =
(
ei, i ∈ I+1

)
= Im

(
I, I+1

)
= (e1, e2, . . . , ek),

He− =
(
ei, i ∈ I−1

)
= Im

(
I, I−1

)
= (ek+1, ek+2, . . . , em1).

(3.9)

Hence, the problem (3.2)–(3.5) becomes

max z = cTx, (3.10)

s.t. Ax +He−xe− +He+xe+ = b, (3.11)

l ≤ x ≤ u, (3.12)

0 ≤ xe+ ≤ ue+, 0 ≤ xe− ≤ ue−. (3.13)

After adding s = m − k artificial variables to the equations k + 1, k + 2, . . . , m of the
system (3.11), where s is the number of elements of the artificial index set Ia = I−1 ∪ I2 =
{k + 1, k + 2, . . . , m1, m1 + 1, . . . , m}, we get the following auxiliary problem:

max ψ = −e(s)Txa,
s.t. Ax +He−xe− +He+xe+ +Haxa = b,

l ≤ x ≤ u,
0 ≤ xe+ ≤ ue+, 0 ≤ xe− ≤ ue−,
0 ≤ xa ≤ ua,

(3.14)

where

xa =
(
xp+m1+i, i = 1, s

)
=
(
xp+m1+1, . . . , xp+m1+s

)T (3.15)

represents the artificial variables vector,

Ha =
(
sign(wi)ei, i ∈ Ia

)
=
(
sign(wk+1)ek+1, sign(wk+2)ek+2, . . . , sign(wm)em

)
,

ua = |w(Ia)| + δe(s) = (|wi| + δ, i ∈ Ia),
(3.16)

where δ is a real nonnegative number chosen in advance.
If we put xN = (x

xe−) ∈ R
p+m1−k, xB =

(
xe+

xa
) ∈ R

m, AN = (A,He−), AB = (He+,Ha),

lN =
(

l
0

R
m1−k

)
, uN = (u

ue−), lB = 0Rk+s = 0Rm , uB =
(
ue+

ua
)
, cB =

(
0

Rk

−e(s)
)
, then we get the following

auxiliary problem:

max ψ = cTBxB, (3.17)

s.t. ANxN +ABxB = b, (3.18)

lN ≤ xN ≤ uN, lB ≤ xB ≤ uB. (3.19)

Mathematical Problems in Engineering 9

The variables indices set of the auxiliary problem (3.17)–(3.19) is

J = J0 ∪
{
p + i, i ∈ I1

} ∪
{
p +m1 + i, i = 1, s

}

=
{
1, . . . , p, p + 1, . . . , p +m1, p +m1 + 1, . . . , p +m1 + s

}
.

(3.20)

Let us partition this set as follows: J = JN ∪ JB, where

JN = J0 ∪
{
p + i, i ∈ I−1

}
=
{
1, . . . , p, p + k + 1, . . . , p +m1

}
,

JB =
{
p + i, i ∈ I+1

} ∪
{
p +m1 + i, i = 1, s

}

=
{
p + 1, . . . , p + k, p +m1 + 1, . . . , p +m1 + s

}
.

(3.21)

Remark that the pair {y, JB}, where

y =
(
yN
yB

)
=
(
xN
xB

)
=

⎛

⎜⎜
⎝

x
xe−

xe+

xa

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

x+

0R
m1−k

w
(
I+1
)

|w(Ia)|

⎞

⎟⎟
⎠, (3.22)

with w(I+1) = (wi, i ∈ I+1) and w(Ia) = (wi, i ∈ Ia), is a support feasible solution (SFS) for the
auxiliary problem (3.17)–(3.19). Indeed, y lies between its lower and upper bounds: for δ ≥ 0
we have

⎛

⎜⎜
⎝

l
0R

m1−k

0Rk

0Rs

⎞

⎟⎟
⎠ ≤ y =

⎛

⎜⎜
⎝

x+

0R
m1−k

w
(
I+1
)

|w(Ia)|

⎞

⎟⎟
⎠ ≤

⎛

⎜⎜
⎝

u
Me(m1−k)

Me(k)

|w(Ia)| + δe(s)

⎞

⎟⎟
⎠. (3.23)

Furthermore, the (m ×m)-matrix

AB =
(
e1, e2, . . . , ek, sign(wk+1)ek+1, sign(wk+2)ek+2, . . . , sign(wm)em

)
(3.24)

is invertible because

det(AB) =
∏

i∈Ia
sign(wi) =

m∏

i=k+1

sign(wi) = ±1, (3.25)

10 Mathematical Problems in Engineering

and y verifies the main constraints: by replacing x, xe−, xe+, and xa with their values in the
system (3.18), we get

ANxN +ABxB =
(
A,He−)

(
x+

0R
m1−k

)
+ (He+,Ha)

(
w
(
I+1
)

|w(Ia)|
)

= Ax+ +He+w
(
I+1
)
+Ha|w(Ia)|

= Ax+ +
k∑

i=1

wiei +
m∑

i=k+1

wiei

= Ax+ + Imw

= Ax+ +w

= Ax+ + b −Ax+

= b.

(3.26)

Therefore, the primal support method can be initialized with the SFS {y, JB} to solve the
auxiliary problem. Let {y∗, J∗B} be the obtained optimal SFS after the application of the primal
support method to the auxiliary problem (3.17)–(3.19), where

y∗ =

⎛

⎜⎜
⎝

x∗

xe−∗

xe+∗

xa∗

⎞

⎟⎟
⎠, ψ∗ = −e(s)Txa∗. (3.27)

If ψ∗ < 0, then the original problem (3.2)–(3.5) is infeasible.
Else, when J∗B does not contain any artificial index, then {(x∗

xe∗
)
, J∗B} will be an SFS for

the original problem (3.2)–(3.5). Otherwise, we delete artificial indices from the support J∗B,
and we replace them with original or slack appropriate indices, following the algebraic rule
used in the simplex method.

In order to initialize the primal support method for solving linear programming
problems with bounded variables written in the standard form, in [7], Gabasov et al. add
m artificial variables, where m represents the number of constraints. In this work, we are
interested in solving the problemwritten in the general form (3.1), so we have added artificial
variables only for equality constraints and inequality constraints with negative components
of the vector w.

Remark 3.2. We have I = I1 ∪ I2 = I+1 ∪ I−1 ∪ I2 = I+1 ∪ Ia. Since in the relationship (3.22), we

have yB = xB =
(

w(I+1)
|w(Ia)|

)
and w(I+1) ≥ 0, we get yB = |w(I+1 ∪ Ia)| = |w(I)| = |w|.

Remark 3.3. If we choose x+ such that x+ = l or x+ = u, then the vector y, given by the
relationship (3.22), will be a BFS. Hence, the simplex algorithm can be initialized with this
point.

Remark 3.4. If b1 ≥ 0R
m1 , l ≤ 0Rp and u ≥ 0Rp , two cases can occur.

Mathematical Problems in Engineering 11

Case 1. If b2 ≥ 0Rm2 , then we put x+ = 0Rp .

Case 2. If b2 < 0Rm2 , then we put A2 = −A2, b2 = −b2 and x+ = 0Rp .
In the two cases, we get b ≥ 0Rm , w = b − Ax+ = b ≥ 0, therefore I−1 = ∅. Hence

Ia = I−1 ∪ I2 = I2, so we add onlym2 artificial variables for the equality constraints.

3.2. The Single Artificial Variable Technique

In order to initialize the primal support method using this technique, we first start by
searching an initial support, then we proceed to the search of an initial feasible solution for
the original problem.

The application of the Gauss elimination method with partial pivoting to the system
of equations (3.3) can give us a support JB = {j1, j2, . . . , jr}, where r ≤ m. However,
the experimental study realized in [33, 34] reveals that this approach takes much time in
searching the initial support, that is, why it’s important to take into account the sparsity
property of practical problems and apply some procedure to find a triangular basis among the
columns corresponding to the original variables, that is, the columns of the matrix A. In this
work, on the base of the crash procedures presented in [26, 28–30], we present a procedure to
find an initial support for the problem (3.2)–(3.5).

Procedure 1 (searching an initial support). (1) We sort the columns of the (m × p-) matrix A
according to the increasing order of their number of nonzero elements. Let L be the list of the
sorted columns of A.

(2) Let aj0 = L(r) (the rth column of L) be the first column of the list L verifying: ∃i0 ∈ I
such that

∣∣ai0j0
∣∣ = max

i∈I

∣∣aij0
∣∣,

∣∣ai0j0
∣∣ > pivtol, (3.28)

where pivtol is a given tolerance. Hence, we put JB = {j0}, Ipiv = {i0}, k = 1.
(3) Let jk be the index corresponding to the column (r + k) of the list L, that is, ajk =

L(r + k). If ajk has zero elements in all the rows having indices in Ipiv and if ∃ik ∈ I such that

∣∣aikjk
∣∣ = max

i∈I\Ipiv

∣∣aijk
∣∣,

∣
∣aikjk

∣∣ > pivtol, (3.29)

then we put JB = JB ∪ {jk}, Ipiv = Ipiv ∪ {ik}.
(4)We put k = k + 1. If r + k ≤ p, then go to step (3), else go to step (5).
(5)We put s = 0, Ia = ∅, Ja = ∅.
(6) For all i ∈ I \ Ipiv, if the ith constraint is originally an inequality constraint, then we

add to JB an index corresponding to the slack variable p + i, that is, JB = JB ∪ {p + i}. If the ith
constraint is originally an equality constraint, then we put s = s + 1 and add to this latter an
artificial variable xp+m1+s for which we set the lower bound to zero and the upper bound to
a big and well-chosen valueM. Thus, we put JB = JB ∪ {p +m1 + s}, Ja = Ja ∪ {p +m1 + s},
Ia = Ia ∪ {i}.

Remark 3.5. The inputs of Procedure 1 are:

(i) the (m × p)-matrix of constraints, A;

12 Mathematical Problems in Engineering

(ii) a pivoting tolerance fixed beforehand, pivtol;

(iii) a big and well chosen valueM.

The outputs of Procedure 1 are:

(i) JB = {j0, j1, . . . , jm−1}: the initial support for the problem (3.2)–(3.5);

(ii) Ia: the indices of the constraints for which we have added artificial variables;

(iii) Ja: the indices of artificial variables added to the problem (3.2)–(3.5);

(iv) s = |Ia| = |Ja|: the number of artificial variables added to the problem (3.2)–(3.5).

After the application of the procedure explained above (Procedure 1) for the problem
(3.2)–(3.5), we get the following linear programming problem:

max z = cTx,

s.t. Ax +Hexe +Haxa = b,

l ≤ x ≤ u,
0 ≤ xe ≤Me(m1),

0 ≤ xa ≤Me(s),

(3.30)

where xa = (xp+m1+1, xp+m1+2, . . . , xn)
T is the s-vector of the artificial variables added during

the application of Procedure 1, with n = p +m1 + s,Ha = (ei, i ∈ Ia) is an (m × s)-matrix.
Since we have got an initial support, we can start the procedure of finding a feasible

solution for the original problem.

Procedure 2 (searching an initial feasible solution). Consider the following auxiliary problem:

max ψ = −xn+1 −
∑

j∈Ja
xj ,

s.t. Ax +Hexe +Haxa + ρxn+1 = b,

l ≤ x ≤ u,
0 ≤ xe ≤Me(m1),

0 ≤ xa ≤Me(s),

0 ≤ xn+1 ≤ 1,

(3.31)

where xn+1 is an artificial variable, ρ = b −Ax+, and x+ is a p-vector chosen between l and u.
We remark that

y =

⎛

⎜⎜
⎝

x
xe

xa

xn+1

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

x+

0R
m1

0Rs

1

⎞

⎟⎟
⎠ (3.32)

is an obvious feasible solution for the auxiliary problem. Indeed,

Ax+ +He0R
m1 +Ha0Rs + b −Ax+ = b. (3.33)

Mathematical Problems in Engineering 13

Hence, we can apply the primal support method to solve the auxiliary problem (3.31) by
starting with the initial SFS {y, JB}, where JB = {j0, j1, . . . , jm−1} is the support obtained with
Procedure 1. Let

y∗ =

⎛

⎜
⎜
⎝

x∗

xe∗

xa∗

x∗
n+1

⎞

⎟
⎟
⎠, J∗B, ψ

∗ (3.34)

be, respectively, the optimal solution, the optimal support, and the optimal objective value of
the auxiliary problem (3.31).

If ψ∗ < 0, then the original problem (3.2)–(3.5) is infeasible.
Else, when J∗B does not contain any artificial index, then {(x∗

xe∗
)
, J∗B} will be an SFS for

the original problem (3.2)–(3.5). Otherwise, we delete the artificial indices from the support
J∗B and we replace them with original or slack appropriate indices, following the algebraic
rule used in the simplex method.

Remark 3.6. The number of artificial variables na = s+1 of the auxiliary problem (3.31) verifies
the inequality: 1 ≤ na ≤ m2 + 1.

The auxiliary problem will have only one artificial variable, that is, na = 1, when the
initial support JB found by Procedure 1 is constituted only by the original and slack variable
indices (Ja = ∅), and this will hold in two cases.

Case 1. When all the constraints are inequalities, that is, I2 = ∅.

Case 2. When I2 /= ∅ and step (4) of Procedure 1 ends with Ipiv = I2.
The case na = m2 + 1 holds when the step (4) of Procedure 1 stops with Ipiv = I1.

Remark 3.7. Let’s choose a p-vector x+ between l and u and two nonnegative vectors ve ∈ Rm1

and va ∈ Rs. If we put in the auxiliary problem (3.31), ρ = b−v−Ax+, with v = Heve +Hava,
then the vector

y =

⎛

⎜⎜
⎝

x
xe

xa

xn+1

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

x+

ve

va

1

⎞

⎟⎟
⎠ (3.35)

is a feasible solution for the auxiliary problem. Indeed,

Ax +Hexe +Haxa + ρxn+1 = Ax+ +Heve +Hava + b −Heve −Hava −Ax+ = b. (3.36)

We remark that if we put ve = 0R
m1 , va = 0Rs , we get v = 0Rm , then ρ = b−Ax+ and we obtain

the evident feasible point that we have used in our numerical experiments, that is,

14 Mathematical Problems in Engineering

y =

⎛

⎜
⎜
⎝

x
xe

xa

xn+1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x+

0R
m1

0Rs

1

⎞

⎟
⎟
⎠. (3.37)

It’s important here, to cite two other special cases.

Case 1. If we choose the nonbasic components of y equal to their bounds, then we obtain a
BFS for the auxiliary problem, therefore we can initialize the simplex algorithm with it.

Case 2. If we put ve = e(m1) and va = e(s), then v = Hee(m1) +Hae(s) =
∑

i∈I1 ei+
∑

i∈Ia ei. Hence,
the vector

y =

⎛

⎜⎜
⎝

x
xe

xa

xn+1

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

x+

e(m1)

e(s)

1

⎞

⎟⎟
⎠ =

(
x+

e(m1+s+1)

)
(3.38)

is a feasible solution for the auxiliary problem (3.31), with ρ = b − v −Ax+.

Numerical Example

Consider the following LP problem:

{
max cTx, s.t. A1x ≤ b1, A2x = b2, l ≤ x ≤ u

}
, (3.39)

where

A1 =
(
0 0 1 2
2 0 0 −3

)
, b1 =

(
3
3

)
, A2 =

(
0 3 0 2
1 0 2 3

)
, b2 =

(
2
2

)
,

c = (2,−3,−1, 1)T , l = 0R4 , u = (10, 10, 10, 10)T , x = (x1, x2, x3, x4)T .
(3.40)

We put M = 1010, pivtol = 10−6, x+ = 0R4 , and we apply the two-phase primal support
method using the single artificial variable technique to solve the problem (3.39).

Phase 1. After adding the slack variables x5 and x6 to the problem (3.39), we get the following
problem in standard form:

{
max z = cTx, s.t. Ax +Hexe = b, l ≤ x ≤ u, 0R2 ≤ xe ≤ ue

}
, (3.41)

where

A =

⎛

⎜⎜
⎝

0 0 1 2
2 0 0 −3
0 3 0 2
1 0 2 3

⎞

⎟⎟
⎠, He =

⎛

⎜⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟⎟
⎠, b =

⎛

⎜⎜
⎝

3
3
2
2

⎞

⎟⎟
⎠, xe =

(
x5
x6

)
, ue =

(
M
M

)
. (3.42)

Mathematical Problems in Engineering 15

The application of Procedure 1 to the problem (3.41) gives us the following initial support:
JB = {2, 1, 3, 5}. In order to find an initial feasible solution to the original problem, we add an
artificial variable x7 to problem (3.41), and we compute the vector ρ: ρ = b −Ax+ = b. Thus,
we obtain the following auxiliary problem:

{
max ψ = −x7, s.t. Ax +Hexe + ρx7 = b, l ≤ x ≤ u, 0R2 ≤ xe ≤ ue, 0 ≤ x7 ≤ 1

}
. (3.43)

Remark that the SFS {y, JB}, where y = (x1, x2, x3, x4, x5, x6, x7)
T = (0, 0, 0, 0, 0, 0, 1)T , and JB =

{2, 1, 3, 5} is an obvious support feasible solution for the auxiliary problem. Hence, the primal
support method can be applied to solve the problem (3.43) starting with the SFS {y, JB}.

Iteration 1. The initial support is JB = {2, 1, 3, 5}, JN = {4, 6, 7}; the initial feasible solution and
the corresponding objective function value are: y = (0, 0, 0, 0, 0, 0, 1)T and ψ = −1.

The vector of multipliers is πT = (0, 0, 0, 0), and ΔT
N = (0, 0, 1). Hence, the reduced

costs vector is Δ = (0, 0, 0, 0, 0, 0, 1)T .
The suboptimality estimate is β(x, JB) = Δ7(x7 − l7) = 1 > 0. So the current solution is

not optimal. The set of nonoptimal indices is JNNO = {7} ⇒ j0 = 7.
In order to improve the objective function, we compute the search direction d: we

have d7 = − sign Δ7 = −1, so dN = (d4, d6, d7)
T = (0, 0,−1)T ; dB = −A−1

B ANdN =
(2/3, 3/2, 1/4, 11/4)T . Hence, the search direction is d = (3/2, 2/3, 1/4, 0, 11/4, 0,−1)T .

Since dj > 0, ∀j ∈ JB, θj = (uj − xj)/dj, ∀j ∈ JB. So θ2 = 15, θ1 = 20/3, θ3 =
40 and θ5 = 4M/11 ⇒ θj1 = θ1 = 20/3, and θj0 = θ7 = x7−l7 = 1. Hence, the primal step length
is θ0 = min{θ1, θ7} = 1 = θ7. The new solution is y = y + θ0d = (3/2, 2/3, 1/4, 0, 11/4, 0, 0)T ,
and the new objective value is ψ = ψ + θ0|Δ7| = 0 ⇒ y is optimal for the auxiliary problem.
Therefore, the pair {x, JB}, where x = (3/2, 2/3, 1/4, 0, 11/4, 0)T and JB = {2, 1, 3, 5}, is an SFS
for the problem (3.41).

Phase 2.

Iteration 1. The initial support is JB = {2, 1, 3, 5}, and JN = {4, 6}.
The initial feasible solution is x = (3/2, 2/3, 1/4, 0, 11/4, 0)T , and the objective value is

z = 3/4.
The multipliers vector and the reduced costs vector are: πT = (0, 5/4,−1,−1/2) and

Δ = (0, 0, 0,−33/4, 0, 5/4)T . The suboptimality estimate is β(x, JB) = Δ4(x4−u4)+Δ6(x6− l6) =
165/2 > 0. So the initial solution is not optimal.

The set of nonoptimal indices is JNNO = {4} ⇒ the entering index is j0 = 4.
The search direction is d = (3/2,−2/3,−9/4, 1, 1/4, 0)T .
The primal step length is θ0 = min{θ3, θ4} = min{1/9, 1} = 1/9 = θ3. So the leaving

index is j1 = 3. The new solution is x = x + θ0d = (5/3, 16/27, 0, 1/9, 25/9, 0)T , and z =
z + θ0|Δ4| = 5/3.

Iteration 2. The current support is JB = {2, 1, 4, 5}, and JN = {3, 6}.
The current feasible solution is x = (5/3, 16/27, 0, 1/9, 25/9, 0)T , and the objective

value is z = 5/3.
The multipliers vector and the reduced costs vector are: πT = (0, 1/3,−1, 4/3) and

Δ = (0, 0, 11/3, 0, 0, 1/3)T . The suboptimality estimate is β(x, JB) = Δ3(x3− l3)+Δ6(x6− l6) = 0.

16 Mathematical Problems in Engineering

Therefore, the optimal solution and the optimal objective value of the original problem
(3.39) are

x∗ =
(
5
3
,
16
27
, 0,

1
9

)T

, z∗ =
5
3
. (3.44)

4. Experimental Results

In order to perform a numerical comparison between the simplex method and the
different variants of the support method, we have programmed them under the MATLAB
programming language version 7.4.0 (R2007a).

Since the test problems available in the NETLIB library present bounds on the
variables which can be infinite, we have built a sample of 68 test problems having finite
bounds and a same optimal objective value as those of NETLIB. The principle of the building
process is as follows: let xl and xu be the obtained bounds after the conversion of a given
test problem from the “mps” format to the “mat” format and x∗ the optimal solution. We put
xmin = min{x∗

j , j = 1, p} and xmax = max{x∗
j , j = 1, p}. Thus, the constraint matrix and the

objective coefficients vector of the new problem remains the same as those of NETLIB, but
the new lower bounds l̃ and upper bounds ũwill be changed as follows:

l̃j =

{
xmin, if xlj = −∞;
xlj , if xlj > −∞,

ũj =

{
xmax, if xuj = +∞;
xuj , if xuj < +∞.

(4.1)

Table 1 represents the listing of the main characteristics of the considered 68 test problems,
where NC, NV, NEC, and D represent, respectively, the number of constraints, the number
of variables, the number of equality constraints, and the density of the constraints matrix
(the ratio between the number of nonzero elements and the number of total elements of the
constraints matrix, multiplied by 100).

There exist many LP solvers which include a primal simplex algorithm package for
solving LP problems, we cite: commercial solvers such as CPLEX [37], MINOS [28] and open-
source solvers such as LP SOLVE [38], GLPK [39], and LPAKO [30]. The LP SOLVE solver
is well documented and widely used in applications and numerical experiments [40, 41].
Moreover, the latter has a mex interface called mxlpsolve which can be easily installed
and used with the MATLAB language. That is why we compare our algorithm with the
primal simplex algorithm implemented in LP SOLVE. However, MATLAB is an interpreted
language, so it takes much time in solving problems than the native language C++ used
for the implementation of LP SOLVE. For this reason, the numerical comparison carried out
between ourmethod and LP SOLVE concerns only the iterations number. In order to compare
our algorithm with the primal simplex algorithm in terms of CPU time, we have developed
our own simplex implementation. The latter is based on the one given in [42].

In order to compare the different solvers, we have given them the following names.

Mathematical Problems in Engineering 17

Table 1: Characteristics of the test problems.

LP NC NV NEC D (%) LP NC NV NEC D (%)
(1) afiro 27 32 8 9,61 (35) fffff800 524 854 350 1,39
(2) kb2 43 41 16 16,20 (36) grow22 440 946 440 1,98
(3) sc50a 50 48 20 5,42 (37) standata 359 1075 160 0,79
(4) sc50b 50 48 20 4,92 (38) scsd6 147 1350 147 2,17
(5) adlittle 56 97 15 7,05 (39) standmps 467 1075 268 0,73
(6) blend 74 83 43 7,99 (40) standgub 361 1184 162 0,73
(7) share2b 96 79 13 9,15 (41) scfxm2 660 914 374 0,86
(8) sc105 105 103 45 2,59 (42) scrs8 490 1169 384 0,56
(9) stocfor1 117 111 63 3,44 (43) gfrd-pnc 616 1092 548 0,35
(10) scagr7 129 140 84 2,33 (44) bnl1 643 1175 232 0,68
(11) israel 174 142 0 9,18 (45) ship04s 402 1458 354 0,74
(12) share1b 117 225 89 4,37 (46) fit1p 627 1677 627 0,94
(13) vtpbase 198 203 55 2,26 (47) modszk1 687 1620 687 0,29
(14) sc205 205 203 91 1,32 (48) shell 536 1775 534 0,37
(15) beaconfd 173 262 140 7,45 (49) scfxm3 990 1371 561 0,57
(16) grow7 140 301 140 6,20 (50) 25fv47 821 1571 516 0,81
(17) lotfi 153 308 95 2,29 (51) ship04l 402 2118 354 0,74
(18) brandy 220 249 166 3,92 (52) wood1p 244 2594 243 11,10
(19) e226 223 282 33 4,10 (53) sctap2 1090 1880 470 0,33
(20) bore3d 233 315 214 1,95 (54) ganges 1309 1681 1284 0,31
(21) capri 271 353 142 1,85 (55) scsd8 397 2750 397 0,79
(22) agg 488 163 36 3,03 (56) ship08s 778 2387 698 0,38
(23) scorpion 388 358 280 1,03 (57) ship12s 1151 2763 1045 0,26
(24) bandm 305 472 305 1,73 (58) ctap3 1480 2480 620 0,24
(25) sctap1 300 480 120 1,18 (59) stocfor2 2157 2031 1143 0,19
(26) scfxm1 330 457 187 1,72 (60) czprob 929 3523 890 0,33
(27) agg2 516 302 60 2,75 (61) ship08l 778 4283 698 0,38
(28) agg3 516 302 60 2,76 (62) bnl2 2324 3489 1327 0,17
(29) stair 356 467 209 2,32 (63) ship12l 1151 5427 1045 0,26
(30) scsd1 77 760 77 4,08 (64) d2q06c 2171 5167 1507 0,29
(31) grow15 300 645 300 2,90 (65) woodw 1098 8405 1085 0,41
(32) scagr25 471 500 300 0,66 (66) truss 1000 8806 1000 0,32
(33) fit1d 24 1026 1 54,40 (67) fit2d 25 10500 1 49,10
(34) finnis 497 614 47 0,76 (68) maros-r7 3136 9408 3136 0,49

Solver1. SupportSav

The two-phase support method, where we use the suggested single artificial variable
technique in the first phase, that is, the initial support is found by applying Procedure 1,
and the feasible solution is found by applying Procedure 2.

Solver2. SupportFab

The two-phase support method, where we use the full artificial basis technique presented
above in the first phase.

18 Mathematical Problems in Engineering

Table 2: CPU time and iterations number for Solver1 (SupportSav).

LP cput1 cput nit1 nit LP cput1 cput nit1 nit
afiro 0,00 0,02 15 18 fffff800 0,14 4,75 1339 1707
kb2 0,00 0,05 29 95 grow22 0,42 2,70 18 917
sc50a 0,00 0,02 27 38 standata 0,11 2,19 635 806
sc50b 0,03 0,05 19 33 scsd6 0,05 1,17 87 425
adlittle 0,02 0,08 25 118 standmps 0,16 3,17 998 1064
blend 0,00 0,05 59 81 standgub 0,11 2,09 616 741
share2b 0,00 0,11 134 170 scfxm2 0,27 4,02 990 1344
sc105 0,02 0,06 61 84 scrs8 0,44 2,27 173 707
stocfor1 0,02 0,06 56 74 gfrd-pnc 0,66 2,92 510 929
scagr7 0,02 0,11 114 138 bnl1 0,31 13,78 3541 3902
israel 0,02 0,59 272 589 ship04s 0,05 1,44 324 455
share1b 0,02 0,38 300 450 fit1p 0,88 3,36 4 673
vtpbase 0,03 1,03 942 989 modszk1 0,91 6,83 322 1759
sc205 0,08 0,23 128 169 shell 0,47 2,20 280 525
beaconfd 0,06 0,23 133 161 scfxm3 0,61 9,20 1546 2137
grow7 0,05 0,27 18 229 25fv47 0,33 62,47 5376 12998
lotfi 0,03 0,27 79 228 ship04l 0,08 2,20 324 521
brandy 0,03 0,58 419 461 wood1p 0,05 3,17 383 450
e226 0,05 0,89 165 690 sctap2 1,48 6,09 220 1015
bore3d 0,06 0,23 97 140 ganges 1,83 8,66 1311 1645
capri 0,06 1,05 636 741 scsd8 0,34 3,50 212 643
agg 0,05 0,22 72 127 ship08s 0,17 4,42 656 848
scorpion 0,09 0,64 288 316 ship12s 0,31 8,30 968 1309
bandm 0,13 1,03 360 630 sctap3 2,73 10,08 251 1237
sctap1 0,13 0,61 129 340 stocfor2 4,08 17,31 1325 2061
scfxm1 0,09 1,05 455 620 czprob 0,13 23,55 2477 3373
agg2 0,09 0,38 40 169 ship08l 0,17 8,23 656 1026
agg3 0,09 0,41 36 178 bnl2 4,19 88,17 3256 8840
stair 0,13 1,33 452 701 ship12l 0,38 17,36 979 1679
scsd1 0,02 0,31 48 188 d2q06c 5,14 643,03 6625 46311
grow15 0,20 1,23 18 573 woodw 1,31 49,59 2107 3003
scagr25 0,19 0,89 309 414 truss 2,25 153,02 448 9241
fit1d 0,03 3,36 14 1427 fit2d 0,16 290,91 11 13593
finnis 0,17 2,41 343 994 maros-r7 21,30 100,34 1757 3480

Solver3. SimplexFab

The two-phase primal simplex method, where we use the full artificial basis technique
presented above in the first phase (we use the BFS presented in Remark 3.3, with x+ = l̃).

Solver4. LP Solve PSA

The primal simplex method implemented in the open-source LP solver LP SOLVE. The
different options are (Primal-Primal, PRICER DANTZIG, No Scaling, No Presolving). For
setting these options, the following MATLAB commands are used.

Mathematical Problems in Engineering 19

Table 3: CPU time and iterations number for Solver2 (SupportFab).

LP cput nit1 nit LP cput nit1 nit
afiro 0,02 10 18 fffff800 4,48 1334 1659
kb2 0,06 84 143 grow22 3,59 442 1427
sc50a 0,02 26 49 standata 1,22 427 479
sc50b 0,02 26 52 scsd6 1,50 203 554
adlittle 0,09 35 127 standmps 2,00 667 718
blend 0,06 92 118 standgub 1,28 419 470
share2b 0,08 96 129 scfxm2 5,16 1384 1772
sc105 0,06 56 112 scrs8 3,09 620 1112
stocfor1 0,05 64 82 gfrd-pnc 3,11 719 1095
scagr7 0,19 242 285 bnl1 11,23 2752 3235
israel 0,36 9 346 ship04s 1,67 479 535
share1b 0,33 241 394 fit1p 12,47 1625 3067
vtpbase 1,02 951 1001 modszk1 8,59 1038 2325
sc205 0,22 112 232 shell 2,78 568 757
beaconfd 0,17 138 170 scfxm3 10,39 1853 2464
grow7 0,36 142 337 25fv47 50,19 3562 10694
lotfi 0,28 150 261 ship04l 3,27 706 789
brandy 0,66 520 566 wood1p 3,06 351 426
e226 0,94 160 757 sctap2 7,78 896 1452
bore3d 0,33 226 282 ganges 9,58 1637 1979
capri 0,91 527 678 scsd8 7,48 556 1432
agg 0,19 77 118 ship08s 5,73 913 1125
scorpion 0,73 378 423 ship12s 9,48 1334 1478
bandm 2,22 1095 1339 sctap3 13,50 1183 1902
sctap1 0,59 292 375 stocfor2 11,23 1144 1655
scfxm1 1,17 552 723 czprob 17,91 1647 2544
agg2 0,28 78 169 ship08l 14,63 1404 1806
agg3 0,33 80 181 bnl2 123,72 7209 12614
stair 2,17 860 1128 ship12l 28,77 2463 2719
scsd1 0,38 81 226 d2q06c 644,20 9240 45670
grow15 1,53 301 843 woodw 45,80 1916 2752
scagr25 4,05 1834 2129 truss 180,47 1320 11069
fit1d 3,52 10 1469 fit2d 297,03 11 13574
finnis 2,41 395 1083 maros-r7 137,19 4519 5612

(i) mxlpsolve(“set simplextype”, lp, 5); % (Phase 1: Primal, Phase 2: Primal).

(ii) mxlpsolve(“set pivoting”, lp, 1); % (Dantzig’s rule).

(iii) mxlpsolve(“set scaling”, lp, 0); % (No scaling).

The Lagrange multipliers vector and the basic components of the search direction in
the first three solvers are computed by solving the two systems of linear equations:AT

Bπ = cB
and ABdB = −aj0dj0 , using the LU factorization of AB [43]. The updating of the L and U
factors is done, in each iteration, using the Sherman-Morrison-Woodbury formula [42].

In the different implementations, we have used the Dantzig’s rule to choose the
entering variable. To prevent cycling, the EXPAND procedure [44] is used.

20 Mathematical Problems in Engineering

Table 4: CPU time and iterations number for Solver3 (SimplexFab).

LP cput nit1 nit LP cput nit1 nit
afiro 0,02 10 18 fffff800 5,38 1513 1920
kb2 0,05 68 125 grow22 3,38 441 1366
sc50a 0,02 26 51 standata 5,45 2609 2646
sc50b 0,03 26 52 scsd6 1,31 203 524
adlittle 0,06 33 123 standmps 7,19 3217 3232
blend 0,06 91 117 standgub 5,81 2610 2627
share2b 0,08 96 131 scfxm2 4,88 1245 1602
sc105 0,08 56 112 scrs8 2,69 529 975
stocfor1 0,05 64 82 gfrd-pnc 3,05 672 1035
scagr7 0,23 276 318 bnl1 11,06 2718 3100
israel 0,34 9 348 ship04s 1,69 479 534
share1b 0,33 234 383 fit1p 11,98 1716 3001
vtpbase 3,03 3921 4145 modszk1 8,47 1100 2275
sc205 0,22 111 224 shell 4,72 646 1507
beaconfd 0,17 138 170 scfxm3 10,55 1901 2420
grow7 0,34 141 317 25fv47 41,23 3350 8974
lotfi 0,22 155 235 ship04l 3,23 709 784
brandy 0,75 501 569 wood1p 3,11 355 426
e226 0,89 156 713 sctap2 7,88 894 1494
bore3d 0,52 431 486 ganges 9,95 1657 1991
capri 4,19 3769 3917 scsd8 6,27 536 1276
agg 0,20 88 133 ship08s 5,77 912 1121
scorpion 0,73 373 417 ship12s 9,66 1333 1477
bandm 2,13 1034 1251 sctap3 13,22 1176 1879
sctap1 0,63 295 374 stocfor2 11,55 1144 1635
scfxm1 1,08 513 656 czprob 20,03 2164 3027
agg2 0,30 76 167 ship08l 14,36 1404 1800
agg3 0,30 79 179 bnl2 131,38 6782 12918
stair 2,78 1216 1475 ship12l 28,69 2462 2715
scsd1 0,34 81 236 d2q06c 539,45 8708 39227
grow15 1,47 301 816 woodw 41,14 1844 2550
scagr25 3,08 1299 1563 truss 150,53 1359 9845
fit1d 3,06 10 1420 fit2d 275,03 11 13535
finnis 2,53 520 1190 maros-r7 132,11 4434 5477

We have solved the 68 NETLIB test problems listed in Table 1 with the solvers
mentioned above on a personal computer with Intel (R) Core (TM) 2 Quad CPU Q6600
2.4GHz, 4GB of RAM, working under the Windows XP SP2 operating system, by setting
the different tolerances appropriately. We recall that the initial point x+, needed in the three
methods (Solvers 1, 2 and 3), must be located between its lower and upper bounds, so after
giving it some values and observing the variation of the CPU time, we have concluded that
it’s more efficient to set x+ = l̃. The upper bounds for the slack and artificial variables added
for the methods SupportSav, SupportFab, and SimplexFab are put toM = 1010.

Numerical results are reported in Tables 2, 3, 4, and 5, where nit1, nit, and cput
represent respectively the phase one iterations number, the total iterations number, and the

Mathematical Problems in Engineering 21

Table 5: Iterations number for Solver4 (LP SOLVE PSA).

LP nit LP nit LP nit LP nit
afiro 17 brandy 1215 fffff800 1771 wood1p 352
kb2 96 e226 909 grow22 1369 sctap2 1465
sc50a 50 bore3d 193 standata 221 ganges 1893
sc50b 51 capri 835 scsd6 594 scsd8 6165
adlittle 172 agg 583 standmps 454 ship08s 702
blend 129 scorpion 386 standgub 210 ship12s 1249
share2b 185 bandm 1040 scfxm2 1272 sctap3 1864
sc105 105 sctap1 359 scrs8 1170 stocfor2 3317
stocfor1 124 scfxm1 592 gfrd-pnc 895 czprob 3422
scagr7 184 agg2 597 bnl1 3810 ship08l 1153
israel 606 agg3 634 ship04s 485 bnl2 9579
share1b 379 stair 936 fit1p 2873 ship12l 2197
vtpbase 782 scsd1 249 modszk1 1736 d2q06c 39828
sc205 250 grow15 987 shell 754 woodw 2179
beaconfd 110 scagr25 898 scfxm3 1962 truss 14046
grow7 328 fit1d 2196 25fv47 12767 fit2d 14249
lotfi 296 finnis 999 ship04l 733 maros-r7 4474

CPU time in seconds of each method necessary to find the optimal objective values presented
in [25] or [45]; cput1, shown in columns 2 and 7 of Table 2, represents the CPU time necessary
to find the initial support with Procedure 1. The number of artificial variables added to the
original problem in our implementations is listed in Table 6.

In order to compare the different solvers, we have ordered the problems according
to the increasing order of the sum of the constraints and variables numbers (NC+NV), as
they are presented in the different tables and we have computed the CPU time ratio (Table 7)
and the iteration ratio (Table 8) of the different solvers over the solver SupportSav (Solver1),
where for each test problem, we have

cputr1j =
cput

(
Solverj

)

cput(Solver1)
, j = 2, 3,

nitr1j =
nit

(
Solverj

)

nit(Solver1)
, j = 2, 4.

(4.2)

The above ratios (see [46]) indicate how many times SupportSav is better than the other
solvers. Ratios greater than one mean that our method is more efficient for the considered
problem: let S be one of the solvers 2, 3, and 4. If cputr1S ≥ 1, (resp., nitr1S ≥ 1), then our
solver (Solver1) is competitive with SolverS in terms of CPU time, (resp., in terms of iterations
number). Ratios greater or equal to one are mentioned with the bold character in Tables 7 and
8.

We plot the CPU time ratios of the solvers SupportFab and SimplexFab over
SupportSav (Figures 1(a) and 1(c)), and the iteration ratios of each solver over SupportSav
(Figures 1(b), 1(d), and 1(e)). Ratios greater than one correspond to the points which are
above the line y = 1 in the graphs of Figure 1.

22 Mathematical Problems in Engineering

Table 6: The number of artificial variables added in Phase one of the three Solvers.

LP Solver1 Solver2 Solver3 LP Solver1 Solver2 Solver3
afiro 7 8 8 fffff800 304 384 384
kb2 7 16 16 grow22 17 440 440
sc50a 19 20 20 standata 121 171 171
sc50b 15 20 20 scsd6 20 147 147
adlittle 9 16 16 standmps 229 279 279
blend 33 43 43 standgub 122 173 173
share2b 10 13 13 scfxm2 247 374 374
sc105 41 45 45 scrs8 65 386 386
stocfor1 50 63 63 gfrd-pnc 89 548 548
scagr7 47 91 91 bnl1 171 239 239
israel 1 8 8 ship04s 355 354 354
share1b 62 89 89 fit1p 1 627 627
vtpbase 40 81 81 modszk1 112 687 687
sc205 82 91 91 shell 151 534 534
beaconfd 100 140 140 scfxm3 370 561 561
grow7 17 140 140 25fv47 417 520 520
lotfi 34 95 95 ship04l 355 354 354
brandy 127 166 166 wood1p 234 244 244
e226 28 46 46 sctap2 1 521 521
bore3d 103 214 214 ganges 678 1284 1284
capri 125 170 170 scsd8 45 397 397
agg 1 63 63 ship08s 699 698 698
scorpion 245 333 333 ship12s 1046 1045 1045
bandm 138 305 305 sctap3 1 682 682
sctap1 1 154 154 stocfor2 889 1143 1143
scfxm1 124 187 187 czprob 870 890 890
agg2 1 60 60 ship08l 699 698 698
agg3 3 60 60 bnl2 864 1335 1335
stair 86 301 301 ship12l 1046 1045 1045
scsd1 13 77 77 d2q06c 558 1533 1533
grow15 17 300 300 woodw 608 1089 1089
scagr25 173 325 325 truss 62 1000 1000
fit1d 2 1 1 fit2d 2 1 1
finnis 24 129 129 maros-r7 1 3136 3136
Sum 13234 27389 27389

The analysis of the different tables and graphs leads us to make the following ob-
servations.

(i) In terms of iterations number, SupportSav is competitive with SupportFab in
solving 74% of the test problems with an average iteration ratio of 1.33. In terms
of CPU time, SupportSav is competitive with SupportFab in solving 66% of the test
problems with an average CPU time ratio of 1.20. Particularly, for the LP “scagr25”
(Problem number 32), SupportSav is 5.14 times faster than SupportFab in terms
of iterations number and solves the problem 4.55 times faster than SupportFab in
terms of CPU time.

Mathematical Problems in Engineering 23

Table 7: CPU time ratio of the different solvers over SupportSav.

LP\Ratio cputr12 cputr13 LP\Ratio cputr12 cputr13
afiro 1,000 1,000 fffff800 0,943 1,133
kb2 1,200 1,000 grow22 1,330 1,252
sc50a 1,000 1,000 standata 0,557 2,489
sc50b 0,400 0.600 scsd6 1,282 1,120
adlittle 1,125 0,750 standmps 0,631 2,268
blend 1,200 1,200 standgub 0,612 2,780
share2b 0,727 0,727 scfxm2 1,284 1,214
sc105 1,000 1,333 scrs8 1,361 1,185
stocfor1 0,833 0,833 gfrd-pnc 1,065 1,045
scagr7 1,727 2,091 bnl1 0,815 0,803
israel 0,610 0,576 ship04s 1,160 1,174
share1b 0,868 0,868 fit1p 3,711 3,565
vtpbase 0,990 2,942 modszk1 1,258 1,240
sc205 0,957 0,957 shell 1,264 2,145
beaconfd 0,739 0,739 scfxm3 1,129 1,147
grow7 1,333 1,259 25fv47 0,803 0,660
lotfi 1,037 0,815 ship04l 1,486 1,468
brandy 1,138 1,293 wood1p 0,965 0,981
e226 1,056 1,000 sctap2 1,278 1,294
bore3d 1,435 2,261 ganges 1,106 1,149
capri 0,867 3,990 scsd8 2,137 1,791
agg 0,864 0,909 ship08s 1,296 1,305
scorpion 1,141 1,141 ship12s 1,142 1,164
bandm 2,155 2,068 sctap3 1,339 1,312
sctap1 0,967 1,033 stocfor2 0,649 0,667
scfxm1 1,114 1,029 czprob 0,761 0,851
agg2 0,737 0,789 ship08l 1,778 1,745
agg3 0,805 0,732 bnl2 1,403 1,490
stair 1,632 2,090 ship12l 1,657 1,653
scsd1 1,226 1,097 d2q06c 1,002 0,839
grow15 1,244 1,195 woodw 0,924 0,830
scagr25 4,551 3,461 truss 1,179 0,984
fit1d 1,048 0,911 fit2d 1,021 0,945
finnis 1,000 1,050 maros-r7 1,367 1,317
Mean 1,20 1,35

(ii) In terms of iterations number, SupportSav is competitive with SimplexFab in
solving 79% of the test problems with an average iteration ratio of 1.57. In terms
of CPU time, SupportSav is competitive with SimplexFab in solving 68% of the test
problems with an average CPU time ratio of 1.35. The peaks of the graph ratios
correspond to the problems where our approach is 2 up to 5 times faster than
SimplexFab. Particularly, for the LP “capri” (Problem number 21), SupportSav is
5.29 times faster than SimplexFab in terms of iterations number and solves the
problem 3.99 times faster than SimplexFab in terms of CPU time.

24 Mathematical Problems in Engineering

Table 8: Iteration ratio of the different solvers over SupportSav.

LP\Ratio nitr12 nitr13 nitr14 LP\Ratio nitr12 nitr13 nitr14
afiro 1,000 1,000 0,944 fffff800 0,972 1,125 1,037
kb2 1,505 1,316 1,011 grow22 1,556 1,490 1,493
sc50a 1,289 1,342 1,316 standata 0,594 3,283 0,274
sc50b 1,576 1,576 1,545 scsd6 1,304 1,233 1,398
adlittle 1,076 1,042 1,458 standmps 0,675 3,038 0,427
blend 1,457 1,444 1,593 standgub 0,634 3,545 0,283
share2b 0,759 0,771 1,088 scfxm2 1,318 1,192 0,946
sc105 1,333 1,333 1,250 scrs8 1,573 1,379 1,655
stocfor1 1,108 1,108 1,676 gfrd-pnc 1,179 1,114 0,963
scagr7 2,065 2,304 1,333 bnl1 0,829 0,794 0,976
israel 0,587 0,591 1,029 ship04s 1,176 1,174 1,066
share1b 0,876 0,851 0,842 fit1p 4,557 4,459 4,269
vtpbase 1,012 4,191 0,791 modszk1 1,322 1,293 0,987
sc205 1,373 1,325 1,479 shell 1,442 2,870 1,436
beaconfd 1,056 1,056 0,683 scfxm3 1,153 1,132 0,918
grow7 1,472 1,384 1,432 25fv47 0,823 0,690 0,982
lotfi 1,145 1,031 1,298 ship04l 1,514 1,505 1,407
brandy 1,228 1,234 2,636 wood1p 0,947 0,947 0,782
e226 1,097 1,033 1,317 sctap2 1,431 1,472 1,443
bore3d 2,014 3,471 1,379 ganges 1,203 1,210 1,151
capri 0,915 5,286 1,127 scsd8 2,227 1,984 9,588
agg 0,929 1,047 4,591 ship08s 1,327 1,322 0,828
scorpion 1,339 1,320 1,222 ship12s 1,129 1,128 0,954
bandm 2,125 1,986 1,651 sctap3 1,538 1,519 1,507
sctap1 1,103 1,100 1,056 stocfor2 0,803 0,793 1,609
scfxm1 1,166 1,058 0,955 czprob 0,754 0,897 1,015
agg2 1,000 0,988 3,533 ship08l 1,760 1,754 1,124
agg3 1,017 1,006 3,562 bnl2 1,427 1,461 1,084
stair 1,609 2,104 1,335 ship12l 1,619 1,617 1,309
scsd1 1,202 1,255 1,324 d2q06c 0,986 0,847 0,860
grow15 1,471 1,424 1,723 woodw 0,916 0,849 0,726
scagr25 5,143 3,775 2,169 truss 1,198 1,065 1,520
fit1d 1,029 0,995 1,539 fit2d 0,999 0,996 1,048
finnis 1,090 1,197 1,005 maros-r7 1,613 1,574 1,286
Mean 1,33 1,57 1,49

(iii) In terms of iterations number, SupportSav is competitive with LP SOLVE PSA in
solving 72% of the test problems with an average iteration ratio of 1.49 (the majority
of iteration ratios are above the line y = 1 in Figure 1(e)). Particularly, for the
LP “scsd8” (Problem number 55), our method is 9.58 times faster than the primal
simplex implementation of the open-source solver LP SOLVE.

(iv) We remark from the last row of Table 6 that the total number of artificial variables
added in order to find the initial support for SupportSav (13234) is considerably
less than the total number of artificial variables added for SimplexFab (27389) and
SupportFab (27389).

Mathematical Problems in Engineering 25

0 10 20 30 40 50 60 70
0
1
2
3
4
5
6

Problem number

C
PU

 ti
m

e
ra

ti
o

(a) Ratio of the CPU time of SupportFab over the CPU
time of SupportSav (cputr12)

0 10 20 30 40 50 60 70
0
1
2
3
4
5
6

Problem number

It
er

at
io

n
ra

ti
o

(b) Ratio of the iterations number of SupportFab over
the iterations number of SupportSav (nitr12)

0 10 20 30 40 50 60 70
0
1
2
3
4
5
6

Problem number

C
PU

 ti
m

e
ra

ti
o

(c) Ratio of the CPU time of SimplexFab over the CPU
time of SupportSav (cputr13)

It
er

at
io

n
ra

ti
o

Problem number

6
5
4
3
2
1
0

0 10 20 30 40 50 60 70

(d) Ratio of the iterations number of SimplexFab over
the iterations number of SupportSav (nitr13)

It
er

at
io

n
ra

ti
o

Problem number

6

4

2

0
0 10 20 30 40 50 60 70

8

10

(e) Ratio of the iterations number of LP SOLVE PSA over
the iterations number of SupportSav (nitr14)

Figure 1: Ratios of the different solvers over SupportSav.

(v) If we compute the total number of iterations necessary to solve the 68 LPs for
each solver, we find (143737) for SupportSav, (159306) for SupportFab, (163428)
for SimplexFab, and (158682) for LP SOLVE PSA. Therefore, the total number of
iterations is the smallest for our solver.

5. Conclusion

In this work, we have proposed a single artificial variable technique to initialize the
primal support method with bounded variables. An implementation under the MATLAB
environnement has been developed. In the implementation, we have used the LU
factorization of the basic matrix to solve the linear systems and the Sherman-Morrison-
Woodbury formula to update the LU factors. After that, we have compared our approach
(SupportSav) to the full artificial basis support method (SupportFab), the full artificial
basis simplex method (SimplexFab), and the primal simplex implementation of the open-
source solver LP SOLVE (LP SOLVE PSA). The obtained numerical results are encouraging.

26 Mathematical Problems in Engineering

Indeed, the suggested method (SupportSav) is competitive with SupportFab, SimplexFab,
and LP SOLVE PSA.

Note that during our experiments, we have remarked that the variation of the initial
support and the initial point x+ affects the performances (CPU time and iterations number)
of the single artificial variant of the support method. Thus, how to choose judiciously the
initial point and the initial support in order to improve the efficiency of the support method?
In future works, we will try to apply some crash procedure like those proposed in [25, 27] in
order to initialize the support method with a good initial support. Furthermore, we will try
to implement some modern sparse algebra techniques to update the LU factors [47].

References

[1] L. V. Kantorovich, Mathematical Methods in the Organization and Planning of Production, Publication
House of the Leningrad State University, 1939, Translated in Management Science, vol. 6, pp. 366–
422, 1960.

[2] G. B. Dantzig, “Maximization of a linear function of variables subject to linear inequalities,” inActivity
Analysis of Production and Allocation, R. C. Koopmans, Ed., pp. 339–347, Wiley, New York, NY, USA,
1951.

[3] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, USA,
1963.

[4] V. Klee and G. J. Minty, “How good is the simplex algorithm?” in Inequalities III, O. Shisha, Ed., pp.
159–175, Academic Press, New York, NY, USA, 1972.

[5] R. Gabasov and F. M. Kirillova, Methods of Linear Programming, vol. 1–3, The Minsk University, 1977,
1978 and 1980.

[6] S. Radjef and M. O. Bibi, “An effective generalization of the direct support method,” mathematical
Problems in Engineering, vol. 2011, Article ID 374390, 18 pages, 2011.

[7] R. Gabasov, F. M. Kirillova, and S. V. Prischepova, Optimal Feedback Control, Springer, London, UK,
1995.

[8] R. Gabasov, F. M. Kirillova, and O. I. Kostyukova, “Solution of linear quadratic extremal problems,”
Soviet Mathematics Doklady, vol. 31, pp. 99–103, 1985.

[9] R. Gabasov, F. M. Kirillova, and O. I. Kostyukova, “A method of solving general linear programming
problems,” Doklady AN BSSR, vol. 23, no. 3, pp. 197–200, 1979 (Russian).

[10] R. Gabasov, F. M. Kirillova, and A. I. Tyatyushkin, Constructive Methods of Optimization. Part1. Linear
Problems, Universitetskoje, Minsk, Russia, 1984.

[11] E. A. Kostina andO. I. Kostyukova, “An algorithm for solving quadratic programming problemswith
linear equality and inequality constraints,” Computational Mathematics and Mathematical Physics, vol.
41, no. 7, pp. 960–973, 2001.

[12] E. Kostina, “The long step rule in the bounded-variable dual simplex method: numerical
experiments,”Mathematical Methods of Operations Research, vol. 55, no. 3, pp. 413–429, 2002.

[13] M. O. Bibi, “Support method for solving a linear-quadratic problem with polyhedral constraints on
control,” Optimization, vol. 37, no. 2, pp. 139–147, 1996.

[14] B. Brahmi and M. O. Bibi, “Dual support method for solving convex quadratic programs,” Op-
timization, vol. 59, no. 6, pp. 851–872, 2010.

[15] M. Bentobache and M. O. Bibi, “Two-phase adaptive method for solving linear programming
problems with bounded variables,” in Proceedings of the YoungOR 17, pp. 50–51, University of
Nottingham, UK, 2011.

[16] M. Bentobache and M. O. Bibi, “Adaptive method with hybrid direction: theory and numerical
experiments,” in Proceedings of the Optimization, pp. 24–27, Universidade Nova de Lisboa, Portugal,
2011.

[17] M. O. Bibi and M. Bentobache, “The adaptive method with hybrid direction for solving linear
programming problems with bounded variables,” in Proceedings of the colloque International sur
l’Optimisation et les Systèmes d’Information (COSI’ 11), pp. 80–91, University of Guelma, Algeria, 2011.

[18] M. O. Bibi and M. Bentobache, “An hybrid direction algorithm for solving linear programs,” in
Proceedings of the International Conference on Discrete Mathematics & Computer Science (DIMACOS’11),
pp. 28–30, University of Mohammedia, Morocco, 2011.

Mathematical Problems in Engineering 27

[19] L. G. Khachian, “A polynomial algorithm for linear programming,” Soviet Mathematics Doklady, vol.
20, pp. 191–194, 1979.

[20] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica, vol. 4, no.
4, pp. 373–395, 1984.

[21] S. I. Gass, Linear Programming: Methods and Applications, McGraw-Hill, New York, NY, USA, 1964.
[22] C. M. Shetty, “A simplified procedure for quadratic programming,” Operations Research, vol. 11, pp.

248–260, 1963.
[23] C. B. Millham, “Fast feasibility methods for linear programming,”Opsearch, vol. 13, pp. 198–204, 1976.
[24] P. Wolfe, “The Composite Simplex Algorithm,” SIAM Review, vol. 7, no. 1, pp. 42–54, 1965.
[25] R. E. Bixby, “Implementing the simplex method: the initial basis,” ORSA Journal on Computing, vol. 4,

no. 3, pp. 1–18, 1992.
[26] N. I. M. Gould and J. K. Reid, “New crash procedures for large systems of linear constraints,”

Mathematical Programming, vol. 45, no. 1–3, pp. 475–501, 1989.
[27] I. Maros and G. Mitra, “Strategies for creating advanced bases for large-scale linear programming

problems,” INFORMS Journal on Computing, vol. 10, no. 2, pp. 248–260, 1998.
[28] B. A. Murtagh and M. A. Saunders, “MINOS 5.5 User’s Guide,” Tech. Rep. SOL 83–20, Systems

Optimization Lab., Stanford University, Stanford, Calif, USA, 1998.
[29] W. Orchard-Hays, Advanced Linear-Programming Computing Techniques, McGraw-Hill, New York, NY,

USA, 1968.
[30] S. Lim and S. Park, “LPAKO: a simplex-based linear programming program,” Optimization Methods

and Software, vol. 17, no. 4, pp. 717–745, 2002.
[31] H. D. Sherali, A. L. Soyster, and S. G. Baines, “Nonadjacent extreme point methods for solving linear

programs,” Naval Research Logistics Quarterly, vol. 30, no. 1, pp. 145–161, 1983.
[32] M. Bentobache, A new method for solving linear programming problems in canonical form and with bounded

variables, M.S. thesis, University of Bejaia, Algeria, 2005.
[33] M. Bentobache andM. O. Bibi, “Two-phase support method for solving linear programming problems

with nonnegative variables: numerical experiments,” in Proceedings of the Colloque International sur
l’Optimisation et les Systèmes d’Information (COSI’08), pp. 314–325, University of Tizi Ouzou, Algeria,
2008.

[34] M. Bentobache andM. O. Bibi, “Two-phase support method for solving linear programming problems
with bounded variables: numerical experiments,” in Proceedings of the Colloque International sur
l’Optimisation et les Systèmes d’Information (COSI’09), pp. 109–120, University of Annaba, Algeria, 2009.

[35] G. Mitra, M. Tamiz, and J. Yadegar, “Experimental investigation of an interior search method within
a simplex framework,” Communications of the ACM, vol. 31, no. 12, pp. 1474–1482, 1988.

[36] R. J. Vanderbei, Linear Programming: Foundations and Extensions, Kluwer Academic Publichers, Prin-
ceton University, 2001.

[37] ILOG CPLEX, “9.0 User’s Manual,” 2003, http://www.ilog.com.
[38] “LP SOLVE,” http://sourceforge.net/projects/lpsolve/files/lpsolve.
[39] A. Makhorin, “GNU linear programming Kit,” Reference Manual Version 4.9, Draft Edition, 2006,

http://www.gnu.org/software/glpk/glpk.html .
[40] P. G. Garcı́a and Á. Santos-Palomo, “A deficient-basis dual counterpart of Paparrizos, Samaras

and Stephanides’s primal-dual simplex-type algorithm,” in Proceedings of the 2nd Conference on
Optimization Methods & Software and 6th EUROPT Workshop on Advances in Continuous Optimization,
Prague, Czech Republic, 2007.

[41] S. R. Thorncraft, H. R. Outhred, and D. J. Clements, “Evaluation of open-source LP optimization
codes in solving electricity spot market optimization problems,” in Proceedings of the 19th Mini-Euro
Conference on Operations Research Models and Methods in the Energy Sector, Coimbra, Portugal, 2006.

[42] M. C. Ferris, O. L. Mangasarian, and S. J. Wright, “Linear programming with MATLAB,” MPSSIAM
Series on Optimization, 2007.

[43] R. H. Bartels and G. H. Golub, “The simplex method of linear programming using LU decomposi-
tion,” Communications of the ACM, vol. 12, no. 5, pp. 266–268, 1969.

[44] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “A practical anti-cycling procedure for
linearly constrained optimization,”Mathematical Programming, vol. 45, no. 1-3, pp. 437–474, 1989.

[45] M. Gay, “Electronic mail distribution of linear programming test problems,” Mathematical Pro-
gramming Society COAL, Bulletin no. 13, 1985, http://www.netlib.org/lp/data.

28 Mathematical Problems in Engineering

[46] K. Paparrizos, N. Samaras, and G. Stephanides, “An efficient simplex type algorithm for sparse and
dense linear programs,” European Journal of Operational Research, vol. 148, no. 2, pp. 323–334, 2003.

[47] J. J. H. Forrest and J. A. Tomlin, “Updated triangular factors of the basis to maintain sparsity in the
product form simplex method,”Mathematical Programming, vol. 2, no. 1, pp. 263–278, 1972.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

