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This paper deals with the analysis of an unsteady mixed convection flow of a fluid saturated
porous medium adjacent to heated/cooled semi-infinite stretching vertical sheet in the presence
of heat source. The unsteadiness in the flow is caused by continuous stretching of the sheet and
continuous increase in the surface temperature. We present the analytical and numerical solutions
of the problem. The effects of emerging parameters on field quantities are examined and discussed.

1. Introduction

The study of flow and heat transfer over a continuous stretching sheet with a given
temperature distribution has received much attention due to its applications in different
fields of engineering and industry. The stretching and heating/cooling of the plate have a
definite impact on the quality of the finished product. The modeling of the real processes is
thus undertakenwith the help of different stretching velocities and temperature distributions.
Examples of such processes are the extrusion of polymers, aerodynamic extrusion of plastic
sheets, and the condensation process of a metallic plate (cf. Altan et al. [1]; Fisher [2]).
A few more examples of importance are heat-treated materials traveling between a feed
roll and a wind-up roll or materials manufactured by extrusion, wire drawing, spinning of
filaments, glass-fiber and paper production, cooling of metallic sheets or electronic chips,
crystal growing, food processing, and so forth. A great deal of research in fluid mechanics
is rightfully produced to model these problems and to provide analytical and numerical
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results for a better understanding of the fluid behavior and an adequate explanation of the
experiments.

Sakiadis [3] was first to present the boundary layer flow on a continuous moving
surface in a viscous medium. Crane [4]was first to obtain an analytical solution for the steady
stretching of the surface for viscous fluid. The heat transfer analysis for a stretching surface
was studied by Erickson et al. [5], while heat and mass transfer for stretching surfaces was
addressed by P. S. Gupta and A. S. Gupta [6]. Some of the research pertaining to the steady
stretching is given in numerous references [7–16]. In these discussions, steady state stretching
and heat transfer analyses have been undertaken.

In some cases the flow and heat transfer can be unsteady due to a sudden or oscillating
stretching of the plates or by time-varying temperature distributions. Physically, it concerns
the rate of cooling in the steady fabrication processes and the transient crossover to the steady
state. These observations are generally investigated in the momentum and thermal boundary
layer by assuming a steady part of the stretching velocity proportional to the distance from
the edge and an unsteady part to the inverse of time (highlighting the cooling process).
A similarity solution of the unsteady Navier-Stokes equations, of a thin liquid film on a
stretching sheet, was considered by Wang [17]. Andersson et al. [18] extended this problem
to heat transfer analysis for a power law fluid. Unsteady flow past a wall which starts to
move impulsively has been presented byPop and Na [19]. The heat transfer characteristics
of the flow problem of Wang [17] were considered by Andersson et al. [18]. The effect of the
unsteadiness parameter on heat transfer and flow field over a stretching surface with and
without heat generation was considered by [21, 22], respectively. The numerical solutions
of the boundary layer flow and heat transfer over an unsteady stretching vertical surface
were presented by Ishak et al. [23, 24]. Some more works regarding unsteady stretching are
reported and available [25–27].

It is sometimes physically interesting to examine the flow, thermal flow, and thermal
characteristics of viscous fluids over a stretching sheet in a porous medium. For example,
in the physical process of drawing a sheet from a slit of a container, it is tacitly assumed
that only the fluid adhered to the sheet is moving but the porous matrix remains fixed to
follow the usual assumption of fluid flow in a porous medium. Different models of the
porous medium have been formulated, namely, the Darcy, Brinkman, Darcy Brinkman, and
Forchheimer models. However, the Darcy Brinkman model is widely accepted as the most
appropriate. Comprehensive reviews of the convection through a porous media have been
addressed in the studies [28–35].

We all know that mixed convection is induced by themotion of a solid material (forced
convection) and thermal buoyancy (natural convection). The buoyancy forces stemming
from the heating or cooling of the continuous stretching sheets alter the flow and thermal
fields and thereby the heat transfer characteristics of the manufacturing process. The
combined forced and free convection in a boundary layer over continuous moving surfaces
through an otherwise quiescent fluid have been investigated by many authors [36–43].

The introduction of a heat source/sink in the fluid is sometimes important because of
sharp temperature distributions between solid boundaries and the ambient temperature that
may influence the heat transfer analysis as reported by Vajravelu and Hadjinicolaou [44].
These sources can be generally space and temperature dependent.

Keeping in view the importance of all that has been previously stated and the progress
still needed in these areas, we address the problem of an unsteady mixed convection flow
in a fluid saturated porous medium adjacent to a heated/cooled semi-infinite stretching
vertical sheet with a heat source. We present an analytical and numerical solution to attain an
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Figure 1: Physical model and coordinate system.

appropriate degree of confidence in both solutions. This paper has thus multiple objectives
to meet. The presentation of a satisfactory analytical solution for unsteady stretching which
can be used in future studies for unsteady problems, the introduction of a source/sink, and
the consideration of a porous medium.

In mathematical terms, the governing coupled nonlinear differential equations are
transformed into a nondimensional self-similar ordinary differential equation using the
appropriate similarity variables. The transformed equations are then solved analytically
and numerically using the perturbation method (with Padé approximation) and shooting
method, respectively. Very good agreement has been seen. The effects of the emerging
parameters are investigated on the field quantities with the help of graphs and the physical
reasoning. A comparison is made with the existing literature to support the validity of our
results.

2. Development of the Flow Problem

Consider an unsteady laminar mixed convection flow along a vertical stretched
heated/cooled semi-infinite flat sheet. The sheet is assumed impermeable and immersed in
a saturated porous medium satisfying the Darcy Brinkman model. At time t = 0, the sheet is
stretched with the velocity uw(x, t) and raised to temperature Tw(x, t). The geometry of the
problem is shown in Figure 1.

Under these assumptions, using the boundary layer and Boussinesq approximations,
the unsteady two-dimensional Navier-Stokes equations and energy equation in the presence
of heat source can be written as

∂u

∂x
+
∂v

∂y
= 0, (2.1)
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− ν

K
u + gβ(T − T∞), (2.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+
q′′′

ρcp
. (2.3)

The appropriate boundary conditions of the problem are

u = uw(x, t), v = 0, T = Tw(x, t), at y = 0,

u −→ 0, T −→ T∞ as y −→ ∞.
(2.4)

In the above equations u and v are the velocity components in the x and y directions,
respectively, T is the fluid temperature inside the boundary layer,K is the permeability of the
porous medium, t is time, αm and ν are the thermal diffusivity and the kinematic viscosity,
respectively. Where q′′′ is the internal heat generation/absorption per unit volume. The value
of q′′′ is chosen as

q′′′ =
kmuw(x, t)

xν
[A∗(Tw − T∞) + B∗(T − T∞)], (2.5)

where A∗ and B∗ are space-dependent and temperature-dependent heat genera-
tion/absorption parameters and are positive for an internal heat source and negative for an
internal heat sink.We assume that the stretching velocity uw(x, t) and the surface temperature
Tw(x, t) are

uw(x, t) =
ax

1 − ct ,

Tw(x, t) = T∞ +
bx

(1 − ct)2
,

(2.6)

where a > 0 and c > 0 are the constants having dimension time−1 such that ct < 1. The
constant b has a dimension temperature/length, with b > 0 and b < 0 corresponding to the
assisting and opposing flows, respectively, and b = 0 is for a forced convection limit (absence
of buoyancy force).

Let us introduce stream function ψ, similarity variable η and nondimensional
temperature θ as

ψ =
(

νa

1 − ct
)1/2

xf
(
η
)
,

θ
(
η
)
=

T − T∞
Tw − T∞ ,

η =
(

a

ν(1 − ct)
)1/2

y.

(2.7)
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Figure 2: Variation of (a) skin friction coefficient (b) local Nusselt number with λ for various values of
unsteadiness parameter αwhen Pr = 0.72, A∗ = B∗ = d = 0.1.
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Figure 3: Effect of unsteadiness parameter α for the case of Pr = 0.72, λ = d = A∗ = B∗ = 0.1 on (a) velocity
distributions f ′(η) (b) temperature distributions θ(η).
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Figure 4: Effect of Prandtle number Pr for the case of α = λ = d = A∗ = B∗ = 0.1 on (a) velocity distributions
f ′(η) (b) temperature distributions θ(η).
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Figure 5: Effect of permeability parameter d for the case of Pr = 0.72, α = λ = A∗ = B∗ = 0.1 on (a) velocity
distributions f ′(η), (b) temperature distributions θ(η).
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Table 1: Comparison between analytical and numerical results for f
′
(η) and θ(η) when Pr = 0.72, d =

A∗ = B∗ = 0.1.

f
′
(η) θ(η)

η α = 0 α = 0.1 α = 0 α = 0.1
Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.5 0.58647 0.58583 0.59846 0.59832 0.73927 0.74197 0.67861 0.68765
1.0 0.34721 0.34589 0.36603 0.36717 0.56066 0.56613 0.46850 0.48402
1.5 0.20676 0.20533 0.22722 0.23073 0.43085 0.43856 0.32808 0.34603
2.0 0.12208 0.12092 0.14055 0.14680 0.33099 0.34017 0.23163 0.24820
2.5 0.07283 0.07209 0.08792 0.09617 0.25591 0.26522 0.16806 0.18043
3.0 0.04310 0.04278 0.05481 0.06386 0.19735 0.20634 0.12483 0.13127
3.5 0.02497 0.02504 0.03385 0.04259 0.15122 0.15861 0.09493 0.09486
4.0 0.01434 0.01473 0.02116 0.02883 0.11641 0.12151 0.07454 0.06867
4.5 0.00827 0.00889 0.01368 0.01999 0.09113 0.09373 0.06048 0.05029
5.0 0.00425 0.00507 0.00855 0.01326 0.06980 0.06959 0.04864 0.03517
5.5 0.00208 0.00305 0.00570 0.00904 0.05524 0.05269 0.04025 0.02503
6.0 0.00065 0.00175 0.00374 0.00575 0.00575 0.03836 0.03288 0.01669

Table 2: Values of −θ′
(0) when α = λ = d = A∗ = B∗ = 0 and comparison with previous work.

Pr Grubka and Bobba [7] Ali [9] Elbashbeshy [11] Ishak et al. [24] Present study
Numerical Analytical

0.72 0.8086 0.8058 0.8161 0.8086 0.8086 0.8086
1.00 1.0000 0.9961 1.0000 1.0000 1.0000 1.0000
3.00 1.9237 1.9144 1.9237 1.9237 1.9234
10.0 3.7207 3.7206 3.7202 3.7207 3.7207 3.7205

The velocity components are defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.8)

Substituting (2.7) into (2.2) and (2.3) we obtain

f ′′′ + ff ′′ − f ′2 − α
(
f ′ +

1
2
ηf ′′

)
+ λθ − df ′ = 0, (2.9)

1
pr

(
θ′′ +A∗f ′ + B∗θ

)
+ fθ′ − f ′θ − α

(
2θ +

1
2
ηθ′

)
= 0, (2.10)

together with the boundary conditions

f(0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(∞) = 0, θ(∞) = 0,
(2.11)
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Table 3: The values of f
′′
(0) for various values of d and Pr when α = 0, λ = 1, A∗ = B∗ = 0.

d
Results of Ishak et al. [23] Results of present study

Pr = 0.72 Pr = 1.0 Pr = 10 Pr = 100 Pr = 0.72 Pr = 1.0 Pr = 10 Pr = 100
0.1 −0.5631 −0.6110 −0.8743 −0.9887 −0.5631 −0.6109 −0.8744 −0.9882
1.0 −0.9625 −1.0000 −1.2404 −1.3541 −0.9626 −1.0000 −1.2404 −1.3543
3.0 −1.6163 −1.6397 −1.8307 −1.9403 −1.6166 −1.6398 −1.8307 −1.9404
5.0 −2.1118 −2.1281 −2.2848 −2.3902 −2.1125 −2.1286 −2.2848 −2.3903

Table 4: The values of −θ′
(0) for various values of d and Pr when α = 0, λ = 1, A∗ = B∗ = 0.

d
Results of Ishak et al. [23] Results of present study

Pr = 0.72 Pr = 1.0 Pr = 10 Pr = 100 Pr = 0.72 Pr = 1.0 Pr = 10 Pr = 100
0.1 0.9006 1.0773 3.7373 12.3165 0.9006 1.0773 3.7370 12.3163
1.0 0.8278 1.0000 3.6478 12.2265 0.8279 1.0000 3.6475 12.2263
3.0 0.7140 0.8772 3.5010 12.0814 0.7143 0.8774 3.5008 12.0810
5.0 0.6374 0.7917 3.3859 11.9694 0.6384 0.7926 3.3861 11.9689

in which primes denote the differentiation with respect to η, d = 1/D, α = c/a is the
unsteadiness parameter and Pr = ν/αm is the Prandtle number. Further, λ is the buoyancy
or mixed convection parameter defined as λ = Grx/Re2x where Grx = gβ(Tw − T∞)x3/ν2 and
Rex = uwx/ν are the local Grashof and Reynold numbers, D = DaxRex where Dax = K/x2 =
K1(1 − ct)/x2 is the local Darcy number and K1 is the initial permeability.

The physical quantities skin friction coefficient Cf and the local Nusselt numberNux

are defined as

Cf =
2τw
ρu2

w

,

Nux =
xqw

k(Tw − T∞)
,

(2.12)

where the skin friction τw and the heat transfer from the sheet qw are given by

τw = μ
(
∂u

∂y

)
y=0

,

qw = −k
(
∂T

∂y

)
y=0

,

(2.13)

with μ and k being dynamic viscosity and thermal conductivity, respectively.
Using transformation on (2.7), we get

1
2
CfRe1/2x = f ′′(0),

NuRe−1/2x = −θ′(0).
(2.14)
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Figure 6: Effect of mixed convection parameter λ for the case of α = d = A∗ = B∗ = 0.1, Pr = 0.72 on (a)
velocity distributions f ′(η), (b) temperature distributions θ(η).

3. Solution of the Problem

3.1. Numerical Solution

Equations (2.9) and (2.10) can be expressed as

f ′′′ = −
(
ff ′′ − f ′2 − α

(
f ′ +

1
2
ηf ′′

)
+ λθ − df ′

)
,

θ′′ = − 1
Pr

(
A∗f ′ + B∗θ

)
+ Pr

(
f ′θ − fθ′) + α

(
2θ +

1
2
ηθ′

)
,

(3.1)

and the corresponding boundary conditions are

f(0) = 0, f ′(0) = 1, f ′′(0) = α1, θ(0) = 1, θ′(0) = α2, (3.2)

where α1 and α2 are the missing initial conditions. These are determined by the shooting
method in conjunction with implicit sixth order Runge-Kutta integration. The results
obtained are discussed in Section 4.
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Figure 7: (a) Effect of space-dependent heat generation/absorption parameter A∗ on temperature
distribution θ(η) for the case of Pr = 0.72, α = 0.3, λ = 0.1, d = 0.1 and B∗ = 0.05 (b) Effect of temperature-
dependent heat generation/absorption parameter B∗ on temperature distribution θ(η) for the case of
Pr = 0.72, α = 0.3, λ = 0.1, d = 0.1, and B∗ = 0.05.

3.2. Perturbation Solution for Small Parameter α

We assume that both the mixed convection parameter λ and the unsteadiness parameter α
are small, and take λ = mε wherem = O(1) and α = ε. Equations (2.9) and (2.10) yield

f ′′′ + ff ′′ − f ′2 − ε
(
f ′ +

1
2
ηf ′′

)
+mεθ − df ′ = 0,

1
Pr

(
θ′′ +A∗f ′ + B∗θ

)
+ fθ′ − f ′θ − ε

(
2θ +

1
2
ηθ′

)
= 0.

(3.3)

Now expanding f and θ in powers of ε

f
(
η
)
=
∑

εnfn
(
η
)
,

θ
(
η
)
=
∑

εnθn
(
η
)
,

(3.4)
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the zeroth order system is given by

f0
′′′ + f0f0

′′ − f0′2 − df0′ = 0 (3.5)

1
Pr

(
θ0

′′ +A∗f0
′ + B∗θ0

)
+ f0θ0

′ − f0′θ0 = 0, (3.6)

with

f0(0) = 0, f0
′(0) = 1, θ0(0) = 1,

f0
′(∞) = 0, θ0(∞) = 0.

(3.7)

The exact solution of (3.5) is

f0
(
η
)
=

1
c

(
1 − e−cη), (3.8)

where c =
√
1 + d.

Substituting (3.8) in (3.6) and using Padé approximation, the temperature θ0 is

θ0
(
η
)
=

1.0 + 0.60η + 0.21η2

1.0 + 1.23η + 0.71η2 + 0.22η3 + 0.04η4 + 0.008η5 + 0.001η6
. (3.9)

The first order system can be expressed as

f1
′′′ +

1
c

(
1 − e−cη)f1′′ − (

d + 2e−cη
)
f1

′ − ce−cηf1 +mθ0 − e−cη + 1
2
cηe−cη = 0,

1
Pr
θ1

′′ +
1
c

(
1 − e−cη)θ1′ +

(
B∗

Pr
− e−cη

)
θ1 +

(
A∗

Pr
− θ0

)
f1

′ +
(
f1 − 1

2
η

)
θ0

′ − 2θ0 = 0.

(3.10)

The resulting expressions of f1 and θ1 are

f1
(
η
)
= 0.13η2 − 0.27η4 + 0.009η5 − 0.001η6 + 0.0002η7,

θ1
(
η
)
=

−1.35η + 0.30η2

1.0 + 0.31η + 0.07η2 + 0.03η3
,

(3.11)

and finally the two term perturbation solutions of (3.3) are
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f
(
η
)
= f0

(
η
)
+ εf1

(
η
)
,

θ
(
η
)
= θ0

(
η
)
+ εθ1

(
η
)
,

(3.12)

or

f
(
η
)
=

1
c

(
1 − e−cη) + ε(0.13η2 − 0.27η4 + 0.009η5 − 0.001η6 + 0.0002η7

)
,

θ
(
η
)
=

1.0 + 0.60η + 0.21η2

1.0 + 1.23η + 0.71η2 + 0.22η3 + 0.04η4 + 0.008η5 + 0.001η6

+ ε

(
−1.35η + 0.30η2

1.0 + 0.31η + 0.07η2 + 0.03η3

)
.

(3.13)

4. Discussion

The effects of various physical parameters on the velocity, temperature, local skin friction, and
local Nusselt number are discussed. In Table 1, comparison between analytical and numerical
results is presented showing a very good agreement. To compare our results with the earlier
work for the steady state fluid flow, we take α = λ = d = A∗ = B∗ = 0 in (2.9). These
results are compared with those given in [7, 9, 11, 24] in Table 2. In Tables 3 and 4, the skin
friction coefficient and the Nusselt number, for various values of Pr and d, are presented and
compared with [23]. The comparisons made in Tables 2–4 make a perfect match. Henceforth,
the results discussed in the following paragraph are due to the shooting method (Figures
2–7).

The variation of the skin friction coefficient and the local Nusselt number are shown
in Figures 2(a) and 2(b). It is observed that there is an increase in the skin friction coefficient
for an assisting buoyant flow (λ > 0) and it is opposite for an opposing flow (λ < 0). This is
reasonable because one would expect the velocity to increase as the buoyancy force increases
and the corresponding wall shears stress to increase as well. This in turn increases the skin
friction coefficient and the heat transfer rate at the surface. The unsteady effects are shown
by the variation of α for fixed values of λ = 0.1, Pr = 0.72, d = 0.1, and A∗ = B∗ = 0.1
(see Figures 3(a) and 3(b)). It is seen that the horizontal velocity and the boundary layer
decreases with the increase of α which must be the case for decreasing wall velocity. Figures
4(a) and 4(b) represent the graph of velocity and temperature profiles for different increasing
values of Prandtl number Pr. It is clearly seen that the effect of the Prandtl number Pr
is to decrease the temperature throughout the boundary layer resulting in the decrease of
the thermal boundary layer thickness. The effects of porous medium on flow velocity and
temperature are realized through the permeability parameter (d = 1/D) as shown in Figures
5(a) and 5(b). It is obvious that an increase in porosity causes greater obstruction to the fluid
flow, thus reducing the velocity and decreasing the temperature. It is well known that λ = 0
corresponds to pure forced convection and with an increase of λ the buoyancy force becomes
stronger and the velocity profile of the fluid increases in the region near the surface of the
sheet, which is evident from Figures 6(a) and 6(b). These figures also show that the fluid
velocity increases while the temperature decreases with an increase of the mixed convection
parameter λ. Figures 7(a) and 7(b) describe the effects of heat source on temperature profile.
It is revealed that there is an increase of temperature and the thermal boundary layer with
the increase of the parameters A∗ and B∗. The sink naturally has the opposite effect.
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5. Conclusions

The unsteady Darcy Brinkman mixed convection flow in a fluid saturated porous medium
adjacent to a heated or cooled semi-infinite stretching surface in the presence of a heat source
is investigated. Perturbation method with Padé approximation is used for the analytical
solution and the shooting method for numerical solution reaching a good agreement between
the two. A comparison is made with the earlier work to show the accuracy and reliability
of our results. The effects of different parameters on the fluid flow and heat transfer
characteristics are presented.

From these investigations the following conclusions are drawn.

(i) The Prandtl number Pr, permeability parameter d, and heat source/sink parame-
ters A∗ and B∗ have significant effects whereas the unsteadiness parameter α and
mixed convection parameter λ have a little effect on the flow and temperature fields.

(ii) The skin friction coefficient increases for an assisting buoyant flow (λ > 0) and
decreases for an opposing buoyant flow (λ < 0).

(iii) The horizontal velocity and the boundary layer thickness decrease as the
unsteadiness parameter α increases.

(iv) The velocity and temperature decrease throughout the boundary layer with the
increase of Prandtl number Pr.

(v) The velocity and temperature both decrease with an increase of the porosity of the
medium.

(vi) The fluid velocity increases while the temperature decreases with the increase of
the mixed convection parameter λ.

(vii) Temperature increases substantially with the increase of a heat source and decreases
substantially for a heat sink.

All these observations are well supported by the physics and the boundary value
problem at hand.
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