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For a class of MIMO nonaffine block nonlinear systems, a neural network- (NN-) based dynamic
feedback backstepping control design method is proposed to solve the tracking problem. This
problem is difficult to be dealt with in the control literature, mainly because the inverse controls
of block nonaffine systems are not easy to resolve. To overcome this difficulty, dynamic feedback,
backstepping design, sliding mode-like technique, NN, and feedback linearization techniques are
incorporated to deal with this problem, in which the NNs are used to approximate and adaptively
cancel the uncertainties. It is proved that the whole closed-loop system is stable in the sense of
Lyapunov. Finally, simulations verify the effectiveness of the proposed scheme.

1. Introduction

In the last two decades, a number of efforts have been made on developing systematic
design tools for control of uncertain nonlinear systems. Among the obtained results, feedback
linearization techniques [1], adaptive backstepping design [2], and NN control [3, 4] are
the representative theoretical achievements. The common assumptions made in most of the
researches are that the systems to be controlled are affine and the nonlinearities are linearly
parameterized by unknown parameters [2, 5]. NN-based adaptive control has relaxed the
assumption on linear parameterized nonlinearities mostly in affine systems [4, 6, 7], which
can deal with nonlinear parameterized nonlinearities. But some systems, such as chemical
reactions [8] and flight control systems [9], cannot be expressed in an affine form.

There are three kinds of methods to deal with the controller design for nonaffine
systems.

The idea of the first method is to transform a nonaffine system into an affine system
with respect to a new control input by introducing an integrator [9–12]. In these attempts, an
augmented system affine in u̇ is derived for control design by differentiation [13].
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The second method directly controls a nonaffine system without transformation to
an affine system [14–19]. Under the assumption that a control Lyapunov function (CLF)
was available, Moulay and Perruquetti [16] obtained a sufficient condition to guarantee the
existence of a continuous stabilizing control for nonaffine systems. Lin [14, 15] presented
how nonaffine passive systems theory, together with the techniques of feedback equivalence
and bounded control, could be used to explicitly construct a smooth state feedback control
law that solved the problem of global stabilization for nonaffine nonlinear systems. New
state feedback stabilizing controllers and sufficient conditions of asymptotic stability were
proposed by Shiriaev and Fradkov [18] under assumptions similar to those in [14]. But it is
difficult to find a CLF and to deal with controller design for systems with uncertainties.

The third one employs NNs, PI, or fuzzy-neural models to approximate the inverse
system or the uncertainties in controller design for nonaffine nonlinear systems [20–28]. For a
class of general nonaffine nonlinear systems, virtual-linearized-system- (VLS-) based design
methods were proposed, in which the T-S fuzzy-neural model was employed to approximate
a VLS of a real system with modelling errors and external disturbances [20, 26, 27]. Teo et
al. [25] constructed a proportional-integral (PI) controller for the minimum-phase nonaffine
system, which was an equivalent realization of an approximate dynamic inversion controller.
Ge and Zhang [21] suggested usingNNs as emulators of inverse systems for controller design
of general nonlinear systems. Using the implicit function theory and the mean value theorem,
an NN was employed to approximate an ideal control signal which solved the tracking
problem in [22]. In [29–32], instead of seeking a direct solution to the inverse problem, a
solution was obtained by introducing an analytically invertible model and then employing
an NN to compensate inversion error. By using implicit function theorem and Taylor series
expansion, an observer-based adaptive fuzzy-neural control scheme was presented for the
nonaffine nonlinear system in the presence of unknown structure of nonlinearities [33]. A
neural synthesis method was considered for a class of multivariable nonaffine uncertain
systems [28]. The method extended the previous approach developed in a single-input
single-output system to a multi-input multi output system without resorting to a fixed-point
assumption or boundedness assumption on the time derivative of a control effectiveness
term. The difficulty associated with these methods for nonaffine control systems is that an
explicit inverting control design is, in general, not possible even if the inverse exists by the
implicit function theorem [28]. Moreover, this kind of method relies on the approximation
ability of NN.

Backstepping method is one of the breakthroughs in design of nonlinear control
systems. Therefore, it has become one of the important and popular approaches for nonlinear
systems [2]. This approach is based on a systematic procedure for the design of feedback
control strategies suitable for the design of a large class of nonlinear systems with unmatched
uncertainties, and it guarantees global regulation and tracking for the class of nonlinear
systems transformable into the strict-feedback form. Developing a systematic synthesis
method for general nonaffine systems still remains a challenging problem.

In this paper, we discussed the NN-based backstepping design for a class of uncertain
nonaffine systems in block control form. The main contributions of this paper can be
summarized as follows: (1) the proposed method avoids the difficulties to solve the inverse
control in most literatures; (2) it does not rely on implicit function theorem and Taylor
series expansion which makes the output tracking difficult; (3) it can deal with the systems
with unmatched uncertainties; (4) introducing the sliding mode surface-like variables into
backstepping procedure makes the design and stability analysis clear and simple; (5) a
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systematic procedure is proposed for tracking control design for a class of block nonlinear
systems that are nonaffine in the control inputs.

The rest of the work is organized as follows. The problem formulation is introduced
in Section 2. The controller design and stability analysis are given in Section 3. Simulation
example is given in Section 4 and followed by Section 5 which concludes the work.

2. Problem Formulation

The uncertain block nonaffine system considered in this paper is given by

ẋ1 = f1(x1, x2),

ẋ2 = f2(x2, x3),

...

ẋn = fn(xn, u),

y = x1,

(2.1)

where xi = [xi1 · · ·xim]
T ∈ Rm, xi = [xT

1 · · ·xT
i ]

T , i = 1, 2, . . . , n, u ∈ Rm, and y ∈ Rm, are state
variables, input and output, respectively.

Remark 2.1. Although we assume xi ∈ Rm, the proposed method is easy to extend to the other
cases by using pseudoinversion.

Assumption 2.2. fi(xi+1) = [fi1(xi+1), fi2(xi+1), . . . , fim(xi+1)]
T , i = 1, 2, . . . , n, is an unknown

smooth function vector.
The control objective is to design an adaptive NN controller for the system (2.1) such

that the output tracks the desired signal yd and all signals in the closed-loop system remain
bounded. Let ‖ · ‖ denote the 2-norm, and let ‖ · ‖F denote the Frobenius norm.

3. Controller Design and Stability Analysis

In the following, introducing sliding mode-like technique, a systematic design method is
proposed for a class of the uncertain block nonaffine systems.

Consider the following NN:

h(x) = WTS
(
V Tx

)
, (3.1)

where W = [w1 w2 · · ·wl ]
T ∈ Rp×l and V = [v1v2 · · ·vi]

T ∈ RN×l are the first-to-second layer
and the second-to-third layer weights, respectively, h(x) ∈ Rp, p ≥ 1, x ∈ RN is the input
vector, and the node number is l > 1:

S
(
V Tx

)
=
[
sv
(
vT
1 x

)
sv
(
vT
2 x

) · · · sv
(
vT
l−1x

)
1
]T
, (3.2)

where sv(xa) = 1/(1 + e−γxa)with the constant γ > 0.
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Before designing the controller, we make the following assumptions.

Assumption 3.1. One has a function vector h(x) : Ω → Rp; for any σ > 0, there always
exist a Gauss function array S : RN → Rl and an optimal weight matrix W∗ such that
‖h(x) − W∗TS(V ∗Tx)‖ ≤ σ, for all x ∈ Ω, where Ω is a compact subset of RN , W∗TS(V ∗Tx)

is the optimal approximation of h(x) using NN, and h(x) − W∗TS(V ∗Tx) def= Δh(x) is called
reconstruction error. Define W̃ = Ŵ −W∗ and Ṽ = V̂ − V ∗, where Ŵ and V̂ are the estimated
values ofW∗ and V ∗.

Assumption 3.2. J−1xi0
and J−1u0 , i = 2, . . . , n, exist. Jxi(xi−1, xi) = ∂fi−1(xi−1, xi)/∂xi and

Ju(xn, u) = ∂fn(xn, u)/∂u denote the Jacobians with respect to xi and u, respectively.
Let fi−1(xi−1, xi) = f(i−1)0(xi−1, xi) + Δf(i−1)0(xi−1, xi), fn(xn, u) = fn0(xn, u) + Δfn0(xn, u),
Jxi(xi−1, xi) = Jxi0(xi−1, xi) + ΔJxi0(xi−1, xi), and Ju(xn, u) = Ju0(xn, u) + ΔJu0(xn, u),
where f(i−1)0(xi−1, xi), fn0(xn, u), Jxi0(xi−1, xi), and Ju0(xn, u) are the nominal parts of the
functions fi−1(xi−1, xi), fn(xn, u), Jxi(xi−1, xi), and Ju(xn, u), respectively, and Δf(i−1)0(xi−1, xi),
Δfn0(xn, u), ΔJxi0(xi−1, xi), and ΔJu0(xn, u) are the unknown parts.

Remark 3.3. Assumption 3.2 is not a strong condition imposed on the system. In fact, because
Jxi0(xi−1, xi) and Ju0(xn, u) are the nominal parts of the functions Jxi(xi−1, xi) and Ju(xn, u),
respectively, we can modify the values of the elements of Jxi0(xi−1, xi) and Ju0(xn, u) such that
J−1xi0

, and J−1u0 , i = 2, . . . , n, exist.

Lemma 3.4 (see [31, 34]). For the NN approximator, the approximation error can be described as

ŴTS
(
V̂ TX

)
−W∗TS

(
V ∗TX

)
= W̃T

(
Ŝ − Ŝ′V̂ TX

)
+ ŴT Ŝ′Ṽ TX + du, (3.3)

where Ŝ = S(V̂ TX), Ŝ′ = diag{s′v1, s′v2, . . . , s′vl}ŝ′vi = s′v(v̂
T
i X) = d[sv(xa)]/dxa|xa=v̂T

i X
, and the

residual term du satisfies the following inequality:

‖du‖ ≤ ‖V ∗‖F
∥∥∥ŴT Ŝ′

∥∥∥
F
‖X‖ + ‖W∗‖F

∥∥∥Ŝ′V̂ TX
∥∥∥
F
+ ‖W∗‖F

√
l. (3.4)

Step 1. Consider the first subsystem of (2.1) ẋ1 = f1(x1, x2). Taking its derivative gives

ẍ1 = Jx1(x1, x2)f1(x1, x2) + Jx2(x1, x2)ẋ2, (3.5)

where Jx1(x1, x2) = ∂f1(x1, x2)/∂x1 denotes the Jacobian with respect to x1. Equation (3.5)
can be rewritten as

ẍ1 = Jx10(x1, x2)f10(x1, x2) + Jx20(x1, x2)ẋ2 + Δf1(x1, x2), (3.6)

where

Δf1(x1, x2) = ΔJx10(x1, x2)f10(x1, x2) + Jx10(x1, x2)Δf10(x1, x2)

+ ΔJx10(x1, x2)Δf10(x1, x2) + ΔJx20(x1, x2)ẋ2.
(3.7)
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Let z1 = x1 −x1d and s1 = z1 +c1ż1, where c1 > 0 is a constant, s1 is a sliding mode surface-like
vector, and x1d is the reference signal of x1. Taking the time derivative of s1, we can obtain

ṡ1 = ż1 + c1z̈1

= ż1 + c1Jx10(x1, x2)f10(x1, x2) + c1Jx20(x1, x2)ẋ2 + c1Δf1(x1, x2) − c1ẍ1d

= ż1 + c1Jx10(x1, x2)f10(x1, x2) + c1Jx20(x1, x2)ẋ2d

− Jx20(x1, x2)z2 + c1Δf1(x1, x2) − c1ẍ1d + Jx20(x1, x2)s2.

(3.8)

Let z2 = x2 − x2d and s2 = z2 + c1ż2, where x2d is the desired signal of x2 and s2 is a sliding
mode surface-like vector.

Choose the virtual control as

ẋ2d = −[c1Jx20(x1, x2)]−1
[
c1Jx10(x1, x2)f10(x1, x2) + ̂̇z1 − Jx20(x1, x2)z2 + v1

]
, (3.9)

where vi = kisi − ciẍid + vNNi − vir , i = 1, 2, . . . , n, v1r will be defined in (3.20), ki is a diagonal
matrix with its elements positive, and ̂̇zi is the output of a tracking differentiator [35]with zi
as its input. The error between ̂̇zi and żi can be approximated by a neural network. vNNi is the
NN compensator, which is used to overcome the influence of the uncertainties in the system.
According the approximation ability, we can assume that

ciΔfi(xi, xi+1) + Δi = W∗T
i Si

(
V ∗T
i Xi

)
+ εi, (3.10)

where W∗T
i Si(V ∗T

i Xi) + εi is the optimal approximation of Δfi(xi, xi+1) + Δi, Δi is the
uncertainty induced by the error between the output of the tracking differentiator ̂̇zi and
żi, namely, Δi = żi − ̂̇zi, and Xi = [xT

i , x
T
i+1, ẋ

T
i , 1]

T
is the input of NN. ‖εi‖ ≤ εiu is the

approximation error with constant εiu > 0.
Let

vNNi = ŴT
i Si

(
V̂ T
i Xi

)
, i = 1, 2, . . . , n. (3.11)

Substituting (3.9) into (3.8) leads to

ṡ1 = c1Δf1(x1, x2) + Δ1 − c1ẍ1d + Jx20(x1, x2)s2 − v1

= −c1ẍ1d + Jx20(x1, x2)s2 − v1 +W∗T
1 S1

(
V ∗T
1 X1

)
+ ε1.

(3.12)

Substituting the expressions of v1 and vNN1 into (3.12) gives

ṡ1 = −k1s1 − ŴT
1 S1

(
V̂ T
1 X1

)
+W∗T

1 S1

(
V ∗T
1 X1

)
+ ε1 + Jx20(x1, x2)s2 + v1r . (3.13)
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According to Lemma 3.4, (3.13) can be transformed into

ṡ1 = −k1s1 + Jx20(x1, x2)s2

− W̃T
1

(
Ŝ1 − Ŝ′

1V̂
T
1 X1

)
− ŴT

1 Ŝ
′
1Ṽ

T
1 X1 − du1 + ε1 + v1r .

(3.14)

We choose Lyapunov function as

V1 =
1
2
sT1 s1 +

1
2
tr
{
W̃T

1 Γ
−1
W1W̃1

}
+
1
2
tr
{
Ṽ T
1 Γ

−1
V 1Ṽ1

}
, (3.15)

where ΓW1 = ΓTW1 > 0 and ΓV 1 = ΓTV 1 > 0 are constant design parameters. Taking the derivative
of V1, we have

V̇1 = sT1 ṡ1 + tr
{
W̃T

1 Γ
−1
W1

˙̂W1

}
+ tr

{
Ṽ T
1 Γ

−1
V 1

˙̂V 1

}

= sT1

[
−k1s1 + Jx20(x1, x2)s2 − W̃T

1

(
Ŝ1 − Ŝ′

1V̂
T
1 X1

)
− ŴT

1 Ŝ
′
1Ṽ

T
1 X1 − du1 + ε1 + v1r

]

+ tr
{
W̃T

1 Γ
−1
W1

˙̂W1

}
+ tr

{
Ṽ T
1 Γ

−1
V 1

˙̂V 1

}

= −k1‖s1‖2 + tr
{
W̃T

1 Γ
−1
W1

˙̂W1

}
+ tr

{
Ṽ T
1 Γ

−1
V 1

˙̂V 1

}
+ sT1 Jx20(x1, x2)s2

− sT1

[
W̃T

1

(
Ŝ1 − Ŝ′

1V̂
T
1 X1

)
+ ŴT

1 Ŝ
′
1Ṽ

T
1 X1

]
+ sT1 (−du1 + ε1 + v1r).

(3.16)

Choose the following adaptive tuning laws as

˙̂W1 = ΓW1

[(
Ŝ1 − Ŝ′

1V̂
T
1 X1

)
sT1 − σW1Ŵ1

]
,

˙̂V 1 = ΓV 1

(
X1s

T
1 Ŵ

T
1 Ŝ

′
1 − σV 1V̂1

)
,

(3.17)

where σW1 > 0 and σV 1 > 0 are small design parameters. Substituting (3.17) into (3.16) results
in

V̇1 = −k1‖s1‖2 + tr
{
W̃T

1

[(
Ŝ1 − Ŝ′

1V̂
T
1 X1

)
sT1 − σW1Ŵ1

]}

+ tr
{
Ṽ T
1

(
X1s

T
1 Ŵ

T
1 Ŝ

′
1 − σV 1V̂1

)}
− sT1 (du1 − ε1 − v1r)

− sT1

[
W̃T

1

(
Ŝ1 − Ŝ′

1V̂
T
1 X1

)
+ ŴT

1 Ŝ
′
1Ṽ

T
1 X1

]
+ sT1 Jx20(x1, x2)s2.

(3.18)

With the property tr{yxT} = xTy, (3.18) can be simplified as

V̇1 = −k1‖s1‖2 − σW1 tr
{
W̃T

1 Ŵ1

}
− σV 1 tr

{
Ṽ T
1 V̂1

}
− sT1 (du1 − ε1 − v1r) + sT1 Jx20(x1, x2)s2.

(3.19)
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Design the robust term vir as

vir = −
si

(∥∥∥ŴT
i Ŝ

′
i

∥∥∥
2

F
‖Xi‖2 +

∥∥∥Ŝ′
iV̂

T
i Xi

∥∥∥
2

F
+ 2

)

ηi
, i = 1, 2, . . . , n, (3.20)

where ηi > 0 is a small constant. After applying Lemma 3.4 and substituting (3.20) into (3.19),
V̇1 is upper bounded by

V̇1 ≤ −k1‖s1‖2 − σW1 tr
{
W̃T

1 Ŵ1

}
− σV 1 tr

{
Ṽ T
1 V̂1

}

−
‖s1‖2

(∥∥∥ŴT
1 Ŝ

′
1

∥∥∥
2

F
‖X1‖2 +

∥∥∥Ŝ′
1V̂

T
1 X1

∥∥∥
2

F
+ 2

)

η1
+ sT1 Jx20(x1, x2)s2

+
∥∥∥sT1

∥∥∥
(∥∥V ∗

1

∥∥
F

∥∥∥ŴT
1 Ŝ

′
1

∥∥∥
F
‖X1‖ +

∥∥W∗
1

∥∥
F

∥∥∥Ŝ′
1V̂

T
1 X1

∥∥∥
F
+
√
l
∥∥W∗

1

∥∥
F + ε1u

)
.

(3.21)

With the following properties [31]:

−σW1 tr
{
W̃T

1 Ŵ1

}
≤ σW1

2
∥∥W∗

1

∥∥2
F − σW1

2

∥∥∥W̃1

∥∥∥
2

F
,

−σV 1 tr
{
Ṽ T
1 V̂1

}
≤ σV 1

2
∥∥V ∗

1

∥∥2
F − σV 1

2

∥∥∥Ṽ1

∥∥∥
2

F
,

∥∥∥sT1
∥∥∥∥∥V ∗

1

∥∥
F

∥∥∥ŴT
1 Ŝ

′
1

∥∥∥
F
‖X1‖ ≤

∥∥sT1
∥∥2

η1

∥∥∥ŴT
1 Ŝ

′
1

∥∥∥
2

F
‖X1‖2 +

η1
4
∥∥V ∗

1

∥∥2
F,

∥∥∥sT1
∥∥∥
∥∥W∗

1

∥∥
F

∥∥∥Ŝ′
1V̂

T
1 X1

∥∥∥
F
≤

∥∥sT1
∥∥2

η1

∥∥∥Ŝ′
1V̂

T
1 X1

∥∥∥
2

F
+
η1
4
∥∥W∗

1

∥∥2
F,

∥∥∥sT1
∥∥∥
(√

l
∥∥W∗

1

∥∥
F + ε1u

)
≤ 2

∥∥sT1
∥∥2

η1
+
lη1
4
∥∥W∗

1

∥∥2
F +

η1
4
ε21u,

(3.22)

Equation (3.21) can be simplified as

V̇1 ≤ −k1‖s1‖2 − σW1

2

∥∥∥W̃1

∥∥∥
2

F
− σV 1

2

∥∥∥Ṽ1

∥∥∥
2

F
+ b1 + sT1 Jx20(x1, x2)s2, (3.23)

where b1 = [η1((1/4)‖W∗
1‖2F+(1/4)‖V ∗

1 ‖2F+(l/4)‖W∗
1‖2F+ε21u)+(σW1/2)‖W∗

1‖2F+(σV 1/2)‖V ∗
1 ‖2F]

is a bounded constant.

Step 2. Let us consider the subsystem ẋ2 = f2(x2, x3). Taking its derivative leads to

ẍ2 = Jx2(x2, x3)f2(x2, x3) + Jx3(x2, x3)ẋ3, (3.24)
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where Jx2(x2, x3) = ∂f2(x2, x3)/∂x2 denotes the Jacobian with respect to x2. Equation (3.24)
can be rewritten as

ẍ2 = Jx20(x2, x3)f20(x2, x3) + Jx30(x2, x3)ẋ3 + Δf2(x2, x3), (3.25)

where

Δf2(x2, x3) = ΔJx20(x2, x3)f20(x2, x3) + Jx20(x2, x3)Δf20(x2, x3)

+ ΔJx20(x2, x3)Δf20(x2, x3) + ΔJx20(x2, x3)ẋ3.
(3.26)

Taking its time derivative of s2, we can obtain

ṡ2 = ż2 + c1Jx20(x2, x3)f20(x2, x3) + c1Jx30(x2, x3)ẋ3d

− Jx30(x2, x3)z3 + c1Δf2(x2, x3) − c1ẍ2d + Jx30(x2, x3)s3.
(3.27)

Let z3 = x3 − x3d and s3 = z3 + c1ż3, where x3d is the desired signal of x3 and s3 is a sliding
mode surface-like vector.

Design a virtual control signal as

ẋ3d = −[c1Jx30(x2, x3)]
−1

·
{
c1Jx20(x2, x3)f20(x2, x3) + ̂̇z2 − Jx30(x2, x3)z3 + JTx20(x1, x2)s1 + v2

}
.

(3.28)

Choose Lyapunov function as

V2 = V1 +
1
2
sT2 s2 +

1
2
tr
{
W̃T

2 Γ
−1
W2W̃2

}
+
1
2
tr
{
Ṽ T
2 Γ

−1
V 2Ṽ2

}
, (3.29)

where ΓW2 = ΓTW2 > 0 and ΓV 2 = ΓTV 2 > 0 are constant design parameters.
Choose the following adaptive tuning laws:

˙̂W2 = ΓW2

[(
Ŝ2 − Ŝ′

2V̂
T
2 X2

)
sT2 − σW2Ŵ2

]
,

˙̂V 2 = ΓV 2

(
X2s

T
2 Ŵ

T
2 Ŝ

′
2 − σV 2V̂2

)
,

(3.30)

where σW2 > 0 and σV 2 > 0 are small constants.
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Figure 1: Curve of x11 in case of the system without uncertainties.

Taking (3.25)–(3.30) into account, we have

V̇2 ≤ −k1‖s1‖2 − k2‖s2‖2 − σW1

2

∥∥∥W̃1

∥∥∥
2

F
− σV 1

2

∥∥∥Ṽ1

∥∥∥
2

F
− σW2 tr

{
W̃T

2 Ŵ2

}

− σV 2 tr
{
Ṽ T
2 V̂2

}

−
‖s2‖2

(∥∥∥ŴT
2 Ŝ

′
2

∥∥∥
2

F
‖X2‖2 +

∥∥∥Ŝ′
2V̂

T
2 X2

∥∥∥
2

F
+ 2

)

η2
+ sT2 Jx30(x2, x3)s3

+ ‖s2‖
(∥∥V ∗

2

∥∥
F

∥∥∥ŴT
2 Ŝ

′
2

∥∥∥
F
‖X2‖ +

∥∥W∗
2

∥∥
F

∥∥∥Ŝ′
2V̂

T
2 X2

∥∥∥
F
+
√
l
∥∥W∗

2

∥∥
F + ε2u

)
+ b1.

(3.31)

Similar to Step 1, (3.31) can be simplified as

V̇2 ≤ −k1‖s1‖2 − k2‖s2‖2 − σW1

2

∥∥∥W̃1

∥∥∥
2

F
− σV 1

2

∥∥∥Ṽ1

∥∥∥
2

F

− σW2

2

∥∥∥W̃2

∥∥∥
2

F
− σV 1

2

∥∥∥Ṽ2

∥∥∥
2

F
+ b1 + b2 + sT2 Jx30(x2, x3)s3,

(3.32)

where b2 = [η2((1/4)‖W∗
2‖2F+(1/4)‖V ∗

2 ‖2F+(l/4)‖W∗
2‖2F+ε22u)+(σW2/2)‖W∗

2‖2F+(σV 2/2)‖V ∗
2 ‖2F]

is a bounded constant.
Steps 3 to n − 1 are similar to Step 2, which are omitted here.

Step n. Let us consider the system ẋn = fn(xn, u). Taking its derivative leads to

ẍn = Jxn(xn, u)fn(xn, u) + Ju(xn, u)u̇, (3.33)
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Figure 2: Curve of x12 in case of the system without uncertainties.
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Figure 3: Curve of x21 in case of the system without uncertainties.

where Jxn(xn, u) = ∂fn(xn, u)/∂xn denotes the Jacobian with respect to xn. Equation (3.33)
can be rewritten as

ẍn = Jxn0(xn, u)fn0(xn, u) + Ju0(xn, u)u̇ + Δfn(xn, u), (3.34)

where

Δfn(xn, u) = ΔJxn0(xn, u)fn0(xn, u) + Jxn0(xn, u)Δfn0(xn, u)

+ ΔJxn0(xn, u)Δfn0(xn, u) + ΔJxn0(xn, u)u̇.
(3.35)
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Figure 4: Curve of x22 in case of the system without uncertainties.

Let zn = xn − xnd and sn = zn + c1żn, where xnd is the desired signal of xn and sn is a sliding
mode surface-like vector. Taking its time derivative, we can obtain

ṡn = żn + c1z̈n

= żn + c1Jxn0(xn, u)f20(xn, u)

+ c1Ju(xn, u)u̇ + c1Δfn(xn, u) − c1ẍnd.

(3.36)

We choose the control law as

u̇ = −[c1Ju0(xn, u)]
−1[c1Jxn0(xn, u)fn0(xn, u) + ̂̇zn + JTxn−10(xn−1, xn)sn−1 + vn

]
. (3.37)

Let

vNNn = ŴT
n Sn

(
V̂ T
n Xn

)
. (3.38)

Let us consider the following Lyapunov function:

Vn =
n−1∑
i=1

Vi +
1
2
sTnsn +

1
2
tr
{
W̃T

n Γ
−1
WnW̃n

}
+
1
2
tr
{
Ṽ T
n Γ

−1
VnṼn

}
, (3.39)

where ΓWn = ΓTWn > 0 and ΓVn = ΓTVn > 0 are constant design parameters.
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Figure 6: Curve of x12 in case of the system with uncertainties.

Choose the adaptive tuning law as

˙̂Wn = ΓWn

[(
Ŝn − Ŝ′

nV̂
T
n Xn

)
sTn − σWnŴn

]
,

˙̂V n = ΓVn

(
Xns

T
nŴ

T
n Ŝ

′
n − σVnV̂n

)
,

(3.40)

where σWn > 0 and σVn > 0 are small parameters.
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Similar to the derivation process in Step 1, we have

V̇n ≤ −
n∑
i=1

[
ki‖si‖2 + σWi

2

∥∥∥W̃i

∥∥∥
2

F
+
σV i

2

∥∥∥Ṽi

∥∥∥
2

F
− bi

]

≤ −kVn + b,

(3.41)

where bn = [ηn((1/4)‖W∗
n‖2F+(1/4)‖V ∗

n‖2F+(l/4)‖W∗
n‖2F+ε2nu)+(σWn/2)‖W∗

n‖2F+(σVn/2)‖V ∗
n‖2F]

is a bounded constant, k = minj=1,...,n{2ki, σWj/λmax(Γ−1Wj), σV j/λmax(Γ−1V j)}, and b =
∑n

j=1 bj .
Integrating (3.41) over [0, t], it can be shown that

Vn(t) ≤ Vn(0)e−kt +
1
k
b ≤ Vn(0) +

b

k
, ∀ t ≥ 0. (3.42)

Defining λmin(Γ−1W ) = minj=1,2,···n{λmin(Γ−1Wj)}, and λmin(Γ−1V ) = minj=1,2,···n{λmin(Γ−1V j)},
and from (3.39), it can be shown that

n∑
j=1

∥∥∥W̃j

∥∥∥
2

F
≤ 2Vn(t)

λmin
(
Γ−1W

) ,
n∑
j=1

∥∥∥Ṽj

∥∥∥
2

F
≤ 2Vn(t)

λmin
(
Γ−1V

) . (3.43)

It is clear that

Vn(t) ≥ 1
2

n∑
j=1

∥∥sj
∥∥2

. (3.44)

It can be seen from (3.41)–(3.44) that all the closed-loop signals are uniformly ultimately
bounded. Inequality (3.41) implies that V̇n(t) ≤ (−k/2)∑n

j=1 ‖sj‖2 + b holds. Integrating it
yields

∫ t

0

∥∥sj(τ)
∥∥2
dτ ≤ 2[Vn(0) + tb]

k
, j = 1, . . . , n. (3.45)

Summarizing the previous discussion, we have the following results.

Theorem 3.5. Considering the system (2.1), if Assumptions 2.2–3.2 hold, the NN weights are
updated according to (3.17), (3.30), (3.40), and the control u̇ is given in (3.37), and then the following
results hold.
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Figure 7: Curve of x21 in case of the system with uncertainties.
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Figure 8: Curve of x22 in case of the system with uncertainties.

(1) The sliding surfaces sj and the estimated parameter errors ofNN are bounded and converge
to the neighbourhoods of the origins exponentially:

Ωj =

⎧
⎨
⎩sj , W̃j , Ṽj

∣∣∣∣∣∣
n∑
j=1

∥∥sj
∥∥2 ≤ 2[Vn(0) + (b/k)] ,

n∑
j=1

∥∥∥W̃j

∥∥∥
2 ≤ 2[Vn(0) + (b/k)]

λmin
(
Γ−1W

) ,

n∑
j=1

∥∥∥Ṽj

∥∥∥
2 ≤ 2[Vn(0) + (b/k)]

λmin
(
Γ−1V

) , j = 1, . . . , n

⎫
⎬
⎭.

(3.46)
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0 5 10 15 20

0

50

100

150

200

250

300

Time (s)

u
2

−50

Figure 10: Control signal u2 in case of the system with uncertainties.

(2) The following inequality holds:

lim
t→∞

1
t

∫ t

0

∥∥sj(τ)
∥∥2dτ ≤ 2b

k
. (3.47)

Remark 3.6. It is obvious that the bounded sj , j = 1, . . . , n, implies the bounded zj and xj .
Furthermore, if sj → 0 as t → ∞, we also can conclude that zj → 0 and xj → xjd as t → ∞.

Remark 3.7. The result (1) of Theorem 3.5 indicates that adjusting the values of ki, ΓWi , ΓV i,
σWi, and σV i can control the convergence rate and the size of the convergence region. It
is shown from the expression (3.46) that larger gains ki, ΓWi , ΓV i, σWi, and σV i may result
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in smaller convergence region. However, in practice, we do not suggest the use of high
adaptation gains because such a choice may cause large oscillations in the control outputs
[36].

4. Simulation Study

In order to check the effectiveness of the algorithm, consider the following system:

ẋ1 = f1(x1, x2),

ẋ2 = f2(x2, u),

y = x1,

(4.1)

where x1 = [x11 x12]
T , x2 = [x21 x22]

T,

f1(x1, x2) =
[
x12 + x22 x11x

2
12 − x11x12 + (2 + 0.3 sinx12)x21 + cos(0.1x21)

]T
,

f2(x2, u) =
[
x22 + 0.8 cos(u1) −x21 + x22 + u2 +

(
x2
21 + x2

22

) (1 − e−u2)
(1 + e−u2)

− x2
21x22

]T
.

(4.2)

Let the desired output of the system be yd = [x11d x12d]
T = [5 0]T , and let the initial

conditions be [ x11(0) x12(0) x21(0) x22(0) ] = [0.5 0.25 0.01 0],W1(0) = W2(0) = [0]11 × 2, and V1(0) =
V2(0) = [0]5 × 11.

According to Remark 3.7, we choose the parameters of the controller as follows: k111 =
6.6, k122 = 6.6, k211 = 12.4, k222 = 12.4, ΓW1 = 0.01, ΓW2 = 0.28, σW1 = σW2 = 0.05, ΓV1 = 0.11,
ΓV2 = 0.07, σV1 = σV2 = 0.052, η1 = η2 = 0.001, and c1 = 0.69.

The following two cases will be considered.

Case 1. All the parameters in (4.1) are known.

Case 2. One has the system with uncertainties f10(x1, x2) = 0.8f1(x1, x2), Δf10(x1, x2) =
0.2f1(x1, x2), f20(x2, u) = 0.8f2(x2, u), and Δf20(x2, u) = 0.2f2(x2, u).

The simulation results are shown in Figures 1–8. Figures 1–4 show the state responses
in case of the system without uncertainties (Case 1), where Figure 1 shows the tracking
response curve of the state x11, Figure 2 shows the response curve of the state x12, Figure 3
shows the response curve of the state x21, and Figure 4 shows the response curve of the
state x22. Figures 5–8 show the state responses in case of the system with uncertainties (Case
2), where Figure 5 shows the tracking response curve of the state x11, Figure 6 shows the
response curve of the state x12, Figure 7 shows the response curve of the state x21, and Figure 8
shows the response curve of the state x22. The control signals are shown in Figures 9 and 10.

Although no exact model of the plant is available and the initial NN weights are set to
zero, through the NN learning phase and the action of the robust term, it can be seen that the
output tracking performance shown in Figure 5 is quite well and the output tracking error
converges to a quite small set after 4 s in Case 2.

From the figures, one can conclude that the proposed control method presents a good
quality control in both cases.
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5. Conclusions

In this paper, an NN-based sliding mode-like controller is presented for a class of uncertain
block nonaffine systems. The controller is designed using NN control, dynamic feedback,
backstepping design, sliding mode-like technique, and feedback linearization techniques,
which makes the stability analysis simple for block nonaffine systems and guarantees the
stability of the closed-loop system. The sliding mode-like technique can be applied to
other classes of nonlinear systems in strict feedback form. The simulation results show the
effectiveness of the proposed scheme.
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