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The problem of robust H∞ filtering is investigated for the class of uncertain two-dimensional
(2D) discrete systems described by a Roesser state-space model. The main contribution is a
systematic procedure for generating conditions for the existence of a 2D discrete filter such that,
for all admissible uncertainties, the error system is asymptotically stable, and the H∞ norm of the
transfer function from the noise signal to the estimation error is below a prespecified level. These
conditions are expressed as parameter-dependent linear matrix inequalities. Using homogeneous
polynomially parameter-dependent filters of arbitrary degree on the uncertain parameters, the
proposedmethod extends previous results in the quadratic framework and the linearly parameter-
dependent framework, thus reducing its conservatism. Performance of the proposed method, in
comparison with that of existing methods, is illustrated by two examples.

1. Introduction

Many practical systems can be modeled as two-dimensional (2D) systems, such as many
systems in image data processing and transmission, in thermal processes, in gas absorption
and water stream heating, and so forth [1, 2]. Therefore, in recent years much attention has
been devoted to the analysis and synthesis problems for 2D discrete systems, and many
important results are available in the literature. For example, the stability of 2D systems
based on Lyapunov approaches was investigated in [3–8]; a 2D dynamic output feedback
control, based on solving a set of 2D polynomial equations, was investigated in [9], whereas
the model approximation problem for these systems was addressed in [10].
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In the filtering literature, the most popular method is probably the celebrated Kalman
filtering approach, which provides an optimal estimation of the state variables, in the sense
that the covariance of the estimation error is minimized [11]. For the 2D system filtering
problem, there are already a significant number of results based on the Kalman filtering
approach [12–16], using state-space or polynomial approaches.

This paper concentrates onH∞ filtering, as it makes it possible to consider uncertainty
explicitly and provides guaranteed bounds. For 1D systems, H∞ filtering has been
extensively studied: see, for example, [17–21] and the references therein. However, for 2D
systems we can just cite [22, 23], where H∞ filter designs were proposed, by using an LMI
approach, for 2D Roesser models and Fornasini-Marchesini second models, respectively. The
major difficulty in developing results in this framework is the lack of the bounded real
lemma for 2D systems: most of the 1D system H∞ filtering results are based on this lemma,
which relates the H∞ performance measure to the solution of certain Riccati equations or
inequalities, see [24, 25].

Thus, in this paper we propose a solution to the robust H∞ filtering problem for
uncertain 2D systems by using a structured polynomially parameter-dependent method.
The idea exploits the positivity of the uncertain parameters belonging to the unit simplex,
constructed in such a way that additional free variables are generated when the degree g

of the polynomial filter matrices increases. This makes it possible to define a sequence of
sufficient LMI conditions of increasing precision and smaller conservatism. For any fixed
degree, these LMI conditions are constructed following simple rules derived from the vertices
of the polytope. It is also shown that if the LMI conditions are fulfilled for a certain degree,
then a feasible solution exists for higher degrees. Moreover, the condition proposed reduces,
when g = 0, to the filter design method in the quadratic framework given in [26] and are
equivalent to the sufficient LMI tests based on an affine parameter-dependent Lyapunov
function for g = 1, which shows the reduced conservatism of the proposed approach.

2. Problem Formulation

Consider a 2D discrete system described by the following Roesser’s state-space model:
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where xh(i, j) ∈ �nh and xv(i, j) ∈ �nv are the horizontal and vertical states, respectively, with
the boundary conditions xh(0, k) = xh

0 , x
v(k, 0) = xv

0 for all k, y(i, j) ∈ �p is the measured
output, z(i, j) ∈ �r is the signal to be estimated and w(i, j) ∈ �m is the exogenous input.
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To describe the uncertainty, all matrices are assumed to be real, belonging to the pol-
ytope

P �

⎧⎨
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C1(α) D1(α)
C(α) D(α)

⎤
⎦ =

N∑
i=1

αi

⎛
⎝Ai Bi

C1i D1i

Ci Di

⎞
⎠, α ∈ Ω

⎫⎬
⎭ , (2.2)

where Ω is the unit simplex, defined by

Ω =

{
(α1, α2, . . . , αN) :

N∑
i=1

αi = 1, αi ≥ 0

}
. (2.3)

The 2D transfer function from the noise ω(t1, t2) to the estimated output z(t1, t2) is then given
by

Tzw(z1, z2) = C(α)(I(z1, z2) −A(α))−1B(α) +D(α), (2.4)

where

I(z1, z2) = diag(z1Inh , z2Inv). (2.5)

This 2D transfer function will be central in the rest of the paper, so the following definition of
H∞ norm is given explicitly for this transfer function.

Definition 2.1. The H∞ norm of the transfer function Tzw(ω1, ω2) of the 2D discrete system
(2.1) is given by

‖Tzw(z1, z2)‖∞ = sup
ω1, ω2∈[0 2π]

σmax

[
Tzw

(
ejω1 , ejω2

)]
. (2.6)

In this paper, the basic objective is to find a filter of the form
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(2.7)

in order to estimate the signal z from the measurements of y, where xh
f(i, j) ∈ �nh and

xv
f
(i, j) ∈ �nv are, respectively, the horizontal and vertical states of the filter, zf(i, j) ∈ �p

is the estimate of z(i, j), and Af(α), Bf(α), and Cf(α), are the filter parameter matrices, to be
determined using the technique developed in this paper.
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We now give a proper definition of theH∞ norm of the filtering error. First, define the
augmented state vectors and the filtering error output signal, respectively, by
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(2.8)

Then, combining these definitions with (2.1) and (2.7), the error dynamic equations are just
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where

Ã(α) = ΦA(α)ΦT , C̃(α) = C(α)ΦT , B̃(α) = ΦB(α), D̃(α) = D(α), (2.10)

and the augmented matrices are given by

A(α) =
[

A(α) 0
Bf(α)C1(α) Af(α)

]
, (2.11)

B(α) =
[

B(α)
Bf(α)D1(α)

]
, (2.12)

C(α) =
[
C(α) −Cf(α)

]
, (2.13)

Φ =

⎡
⎢⎢⎣
Inh 0 0 0
0 0 Inh 0
0 Inv 0 0
0 0 0 Inv

⎤
⎥⎥⎦. (2.14)

The problem addressed in this paper is then defined as follows.

Definition 2.2. The robust H∞ filtering problem consists of finding a filter (2.7) such that the
filtering error dynamics (2.9) is asymptotically stable and the transfer function of the error
system, given as

Tz̃w = C̃(α)
[
I(z1, z2) − Ã(α)

]−1
B̃(α) + D̃(α), (2.15)

satisfies

‖Tz̃w‖∞ < γ, (2.16)

with γ > 0 a given real number.
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3. Robust H∞ Filter Design

3.1. Preliminaries: Constant P Matrix

In order to solve the filtering problem presented in the previous section we first introduce
a lemma presented in [27] which considers a parameter-independent structure for P(α),
that is, P(α) = P = PT . This still corresponds to a quadratic framework, but it will be
the base behind the nonquadratic approach presented in the rest of the paper (alternative
nonquadratic approaches can be found in [17, 18]).

Lemma 3.1. Given a scalar γ > 0, the 2D discrete system (2.9) is asymptotically stable and satisfies
the H∞ performance ‖Tz̃w‖ < γ if there exists a matrix P̃ = diag(P̃h, P̃v) > 0, with P̃h ∈ �nh×nh and
P̃v ∈ �nv×nv , such that the following LMI holds:

⎛
⎜⎜⎜⎝

−P̃ P̃ Ã(α) P̃ B̃(α) 0
∗ −P̃ 0 C̃(α)T

∗ ∗ −γ2I D̃(α)T

∗ ∗ ∗ −I

⎞
⎟⎟⎟⎠< 0. (3.1)

Now, we are in a position to present a preliminary solvability condition for the robust
H∞ filtering problem.

Theorem 3.2. Given a scalar γ > 0 and the uncertain 2D discrete system (2.1), then, the robust H∞
filtering problem is solvable if there exists matrices Z(α),Θ(α),Ψ(α), X = diag(Xh,Xv) > 0, and
Y = diag(Yh, Yv) > 0 with Xh, Yh ∈ R

nh×nh and Xv, Yv ∈ R
nv×nv such that the following LMIs hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Y −Y YA(α) YA(α) YB(α) 0
∗ −X XA(α) + Ψ(α)C1(α) + Z(α) XA(α) + Ψ(α)C1(α) M24 0
∗ ∗ −Y −Y 0 C(α)T −Θ(α)T

∗ ∗ ∗ −X 0 C(α)T

∗ ∗ ∗ ∗ −γ2I D(α)T

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.2)

X − Y > 0, (3.3)

whereM24 = XB(α) + Ψ(α)D1(α).

In this case, a 2D discrete filter in the form of (2.7) is obtained when the parameters
are selected as follows:

Af(α) = X−1
12Z(α)Y−1Y−T

12 ,

Bf(α) = X−1
12Ψ(α),

Cf(α) = Θ(α)Y−1Y−T
12 ,

(3.4)
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where

X12 =
[
Xh12 0
0 Xv12

]
, Y12 =

[
Yh12 0
0 Yv12

]
, (3.5)

in which Xh12, Xv12, Yh12, and Yv12 are nonsingular matrices satisfying

X12Y
T
12 = I −XY−1. (3.6)

Proof. Let Yh = Y−1
h , Yv = Y−1

v , Y = Y−1 then the relations (3.3), can be written as

(
X I

I Y

)
> 0. (3.7)

By the Schur complement formula, it follows from (3.7) that

Y −X−1 > 0, (3.8)

which implies I − XY is nonsingular. Therefore, by noting the structure of X and Y , there
always exist nonsingular matrices Xh12, Xv12, Yh12, and Yv12 such that (3.6) is satisfied, that is,

Xh12Y
T
h12 = I −XhYh,

Xv12Y
T
v12 = I −XvYv.

(3.9)

Set

Πh1 =

[
Yh I
YT
h12 0

]
, Πv1 =

[
Yv I
YT
v12 0

]
,

Πh2 =
[
I Xh

0 XT
h12

]
, Πv2 =

[
I Xv

0 XT
v12

]
,

Π1 =
[
Πh1 0
0 Πv1

]
, Π2 =

[
Πh2 0
0 Πv2

]
.

(3.10)

Then, by some calculations, it can be verified that

P̃ := Π2Π−1
1 =

[
P̃h 0
0 P̃v

]
, (3.11)

where

P̃h =

[
Xh Xh12

XT
h12 XT

h12(Xh − Yh)−1Xh12

]
,

P̃v =

[
Xv Xv12

XT
v12 XT

v12(Xv − Yv)−1Xv12

]
.

(3.12)
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Observe that

Xh −Xh12

[
XT

h12(Xh − Yh)−1Xh12

]−1
XT

h12 = Yh > 0,

Xv −Xv12

[
XT

v12(Xv − Yv)−1Xv12

]−1
XT

v12 = Yv > 0.
(3.13)

Therefore, it is easy to see that P̃h > 0 and P̃v > 0. Now, before and after multiplying (3.2) by
diag{Y, I, Y , I, I, I}, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Y −In A(α)Y A(α) B(α) 0
∗ −X M23 XA(α) +X12Bf(α)C1(α) XB(α) +X12Bf(α)D1(α) 0
∗ ∗ −Y −In 0 YC(α)T − Y12(α)T

∗ ∗ ∗ −X 0 C(α)T

∗ ∗ ∗ ∗ −γ2I D(α)T

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.14)

where M23 = XA(α)Y +X12Bf(α)C1(α)Y +X12Af(α)YT
12.

Let Af(α), Bf(α), and Cf(α) are given in (3.4), Φ is given in (2.14). By (3.11), the
inequality (3.14) can be rewritten as

⎡
⎢⎢⎢⎣

−ΦTΠT
1 P̃Π1Φ ΦTΠT

1 P̃ΦA(α)ΦTΠ1Φ ΦTΠT
1 P̃ΦB(α) 0

ΦTΠT
1ΦA(α)TΦT P̃Π1Φ −ΦTΠT

1 P̃Π1Φ 0 ΦTΠT
1ΦC(α)T

B(α)TΦT P̃Π1Φ 0 −γ2I D̃(α)T

0 C(α)ΦTΠ1Φ D̃(α) −I

⎤
⎥⎥⎥⎦ < 0.

(3.15)

Pre- and postmultiplying (3.15) by diag(Π−T
1 Φ−T ,Π−T

1 Φ−T , I, I) and diag(Φ−1Π−1
1 ,Φ−1Π−1

1 , I, I)
result in

⎛
⎜⎜⎜⎝

−P̃ P̃ Ã(α) P̃ B̃(α) 0
∗ −P̃ 0 C̃(α)T

∗ ∗ −γ2I D̃(α)T

∗ ∗ ∗ −I

⎞
⎟⎟⎟⎠ < 0. (3.16)

Finally, by Lemma 3.1, it follows that the error system (2.9) is asymptotically stable, and the
transfer function of the error system satisfies (2.16). This completes the proof.

Remark 3.3. Theorem 3.2 provides a method for designing H∞ for fixed α, which casts the
nonlinear matrix inequality in Lemma 3.1 into a linear matrix inequality. It is noted that
the condition in Theorem 3.2 is dependent on the parameter α, and therefore the decision
variables X and Y cannot be used due to the infinite-dimensional nature of the parameter α.
In what follows, based on Theorem 3.2, we propose a new method for designing robust H∞
filters via a structured polynomially parameter-dependent approach.
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3.2. Homogenous Polynomially Parameter-Dependent (HPPD) Matrices

Before presenting the main result, some definitions and preliminaries are needed to represent
and to handle products and sums of homogeneous polynomials. First, define the HPPD
matrices of arbitrary degree g as follows:

Ψg(α) =
J(g)∑
j=1

αk1
1 αk2

2 · · ·αkN
N ΨKj (g),

Θg(α) =
J(g)∑
j=1

αk1
1 αk2

2 · · ·αkN
N ΘKj (g),

Zg(α) =
J(g)∑
j=1

αk1
1 αk2

2 · · ·αkN
N ZKj (g),

(3.17)

with

k1k2 · · · kN = Kj(g). (3.18)

The above notations are explained as follows: αk1
1 αk2

2 · · ·αkN
N , α ∈ Ω, ki ∈ N, i = 1, . . . ,N are

the monomials; ΨKj (g), ΘKj (g), and ZKj (g), are matrices with the corresponding coefficients;
Kj(g) is the jth N-tuple of K(g), lexically ordered, with j = 1, . . . , J(g); finally, K(g) is the set
ofN-tuples obtained as all possible combinations of k1k2 · · · kN , with ki ∈ N, i = 1, . . . ,N, that
fulfill k1 + k2 + · · · + kN = g. Since the number of vertices in the polytope P is equal to N, the
number of elements in K(g) is given by J(g) = (N + g − 1)!/(g!(N − 1)!).

Next, for each i = 1, . . . ,N define the N-tuples Ki
j(g), that are equal to Kj(g), but with

ki > 0 replaced by ki − 1. Note that these Ki
j(g) are defined only when the corresponding ki is

positive. Note also that, when applied to the elements of K(g+1), theN-tuples Ki
j(g+1) define

subscripts k1k2 · · · kN of matricesΨk1k2···kN ,Θk1k2···kN , and Zk1k2···kN associated to homogeneous
polynomial parameter-dependent matrices of degree g.

Finally, define the scalar constant coefficients βij(j + 1) = g!/(k1!k2! · · · kN !), with
k1k2 · · · kN ∈ Ki

j(g + 1).

To clarify this notation, consider as an example a possible polytope with N = 3
vertices. The polynomials of degree g = 2 are obtained as follows: First, J(2) = 6, K(2) =
{002, 011, 020, 101, 110, 200}, so the polynomials of degree 2 are

Ψ2(α) = α2
3Ψ002 + α2α3Ψ011 + α2

2Ψ020 + α1α3Ψ101 + α1α2Ψ110 + α2
1Ψ200,

Θ2(α) = α2
3Θ002 + α2α3Θ011 + α2

2Θ020 + α1α3Θ101 + α1α2Θ110 + α2
1Θ200,

Z2(α) = α2
3Z002 + α2α3Z011 + α2

2Z020 + α1α3Z101 + α1α2Z110 + α2
1Z200.

(3.19)

Moreover, the 3 tuples are K3
1(2) = 001, K2

2(2) = 001, K3
2(2) = 010, K2

3(2) = 010, K1
4(2) = 001,

K3
4(2) = 100, K1

5(2) = 010, K2
5(2) = 100, and K1

6(2) = 100: these are the only possible triples (3
tuples) Ki

j(2), j = 1, . . . , J(2) associated to K(2).
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3.3. Main Result

Using Lemma 3.1 and the homogeneous polynomials just presented, we can derive our main
result.

Theorem 3.4. Given a scalar γ > 0 and the uncertain 2D discrete system (2.1), then, the robust
H∞ filtering problem given in Definition 2.2 is solvable if there exist matrices ZKj(g), ΘKj(g), ΨKj(g),
Kj(g) ∈ K(g), j = 1, . . . , J(g), X = diag(Xh,Xv) > 0, and Y = diag(Yh, Yv) > 0 with Xh, Yh ∈ R

nh

and Xv, Yv ∈ R
nv , such that for all Kl(g + 1) ∈ K(g + 1), l = 1, . . . , J(g + 1) such that the following

LMIs hold:

∑
i∈Nl(g+1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−βi
l(g + 1)Y −βi

l(g + 1)Y βi
l(g + 1)YAi βi

l(g + 1)YAi βi
l(g + 1)YBi 0

∗ −βil(g + 1)X J23 J24 J25 0

∗ ∗ −βil(g + 1)Y −βil(g + 1)Y 0 J36

∗ ∗ ∗ −βi
l(g + 1)X 0 J46

∗ ∗ ∗ ∗ −γ2I J56

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.20)

X − Y > 0, (3.21)

where

J13 = βil(g + 1)YAi,

J15 = βil(g + 1)YBi,

J23 = βil(g + 1)XAi + ΨKi
l(g+1)

C1i + ZKi
l(g+1)

,

J24 = XA(α) + ΨKi
l(g+1)

C1i,

J25 = βil(g + 1)XBi + ΨKi
l(g+1)

D1i,

J36 = βil(g + 1)CT
i −ΘT

Ki
l(g+1)

,

J46 = βil(g + 1)CT
i ,

J56 = βil(g + 1)DT
i ,

(3.22)

then the homogeneous polynomially parameter-dependent matrices given by (3.17) ensure (3.2) for
all α ∈ Ω. Moreover, if the LMIs of (3.20)-(3.21) are fulfilled for a given degree g, then the LMIs
corresponding to any degree g > ĝ are also satisfied.
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In this case, the matrices of the 2D discrete-time HPPD filter are given by

Afg(α) =
J(g)∑
j=1

αk1
1 αk2

2 · · ·αkN
N AfKj (g),

Bfg(α) =
J(g)∑
j=1

αk1
1 αk2

2 · · ·αkN
N BfKj (g),

Cfg(α) =
J(g)∑
j=1

αk1
1 αk2

2 · · ·αkN
N CfKj (g),

(3.23)

with

k1k2 · · · kN = Kj

(
g
)
,

AfKj (g) = X−1
12ZKj (g)Y

−1Y−T
12 ,

BfKj (g) = X−1
12ΨKj (g),

CfKj (g) = ΘKj (g)Y
−1Y−T

12 .

(3.24)

Proof. Note that (3.2) for (A(α), B(α), C1(α), D1(α), C(α), D(α)) ∈ P, and Ψ(α),Θ(α), Z(α)
given by (3.17) are homogeneous polynomial matrices equations of degree g + 1 that can be
written as

J(g+1)∑
l=1

αk

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈Nl(g+1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−βi
l(g + 1)Y −βi

l(g + 1)Y J13 J13 J15 0
∗ −βi

l(g + 1)X J23 J24 J25 0
∗ ∗ −βil(g + 1)Y −βil(g + 1)Y 0 J36
∗ ∗ ∗ −βi

l(g + 1)X 0 J46
∗ ∗ ∗ ∗ −γ2I J56
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

< 0,

k1k2 · · · kN = Kl(g + 1),

αk = αk1
1 αk2

2 · · ·αkN
N .

(3.25)

Condition (3.20), when imposed for all l = 1, . . . , J(g + 1), ensure condition (3.2) for all
α ∈ Ω, and thus the first part is proved.

Suppose that the LMIs of (3.20)-(3.21) are fulfilled for a certain degree ĝ, that is, there
exist J(ĝ)matricesΨKj (ĝ),ΘKj (ĝ), andZKj (ĝ), j = 1, . . . , J(ĝ), such thatΨĝ(α),Θĝ(α), andZĝ(α)
are homogeneous polynomially parameter-dependent matrices assuring condition in (3.2)-
(3.3). Then, the terms of the polynomial matrices Ψĝ+1(α) = (α1 + · · · + αN)Ψĝ(α), Θĝ+1(α) =
(α1 + · · · + αN)Θĝ(α) and Zĝ+1(α) = (α1 + · · · + αN)Zĝ(α) satisfy the LMIs of Theorem 3.4
corresponding to the degree ĝ + 1, which can be obtained in this case by a linear combination
of the LMIs of Theorem 3.4 for ĝ.
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Remark 3.5. Note that when g = 0, we have Ψg(α) = Ψ, Θg(α) = Θ, and Zg(α) = Z, then
Af(α) = Af , Bf(α) = Bf , andCf(α) = Cf , which will lead to the standard filtering result in the
quadratic framework. In addition, when g = 1, they are linearly dependent on the parameter
α. This is why we say the polynomial α-dependence encompasses the linear α-dependence as
a special case. It is also worth noting that since all coefficients αi, i = 1, . . . ,N, are such that
α ∈ Ω. As the degree g of the polynomial increases, the conditions become less conservative
since new variables are added to LMIs. Although the number of LMIs is also increasing, each
LMI becomes easier to be fulfilled due to the extra degrees of freedom provided by the new
variables.

4. Illustrative Examples

In this section, some numerical examples are presented to illustrate the proposed technique
for robust H∞ HPPD filters.

Example 4.1. A stationary random field can be modeled as the following 2D system [13]:

η
(
i + 1, j + 1

)
= a1η

(
i, j + 1

)
+ a2η

(
i + 1, j

) − a1a2η
(
i, j
)
+w1

(
i, j
)
, (4.1)

where η(i, j) is the state of the random field of spacial coordinate (i, j),w1(i, j) is a noise input,
a2
1 < 1, and a2

2 < 1 as a1 and a2 represent, respectively, the vertical and horizontal correlations
of the random field. The output is then

y
(
i, j
)
= a1η

(
i, j + 1

)
+ (1 − a1a2)η

(
i, j
)
+w2

(
i, j
)
, (4.2)

where w2(i, j) is the measurement noise. The signal to be estimated is

z
(
i, j
)
= Cη

(
i, j
)
+Dw

(
i, j
)
. (4.3)

As in [28], define xh(i, j) = η(i, j + 1) − a2η(i, j) and xv(i, j) = η(i, j). It is easy to see
that (4.1)–(4.3) can be converted into a 2D Roesser model of the form (2.1) with w(i, j) =
[w1(i, j) w2(i, j)]

T and the following system matrices:

A =
[
a1 0
1 a2

]
, B =

[
1 0
0 0

]
, C1 =

[
a1 0

]
,

D1 =
[
0 1

]
, C =

[
0 1

]
, D =

[
0 0

]
.

(4.4)

Suppose that the uncertain parameters a1 and a2 are bounded by 0.15 ≤ a1 ≤ 0.45 and 0.35 ≤
a2 ≤ 0.85, so the above system can be represented by a four-vertex polytopic system. TheH∞
filtering design approach presented in this paper was applied to this system. The results of
a comparison with the techniques proposed in [29, 30] are shown in Table 1, which shows
the smaller conservativeness of the approach proposed in this paper. For the filter designed
when g = 2, the actual H∞ norms calculated at the four vertices are shown in Table 2; the
corresponding frequency responses of the error system are given in Figures 1, 2, 3, and 4 for
each of the vertices, all of which are clearly below the guaranteed bound 1.5713.
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Figure 1: Frequency response of error system for vertex 1.
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Figure 2: Frequency response of error system for vertex 2.

Example 4.2. In this example we show that less conservative designs are achieved as the
degree of the polynomial grows, when applying the HPPD approach. For this, consider the
same system of Example 4.1 but this time with C1 = [−1 1.6 − a1], 0.15 ≤ a1 ≤ 0.65. The
results are given in Table 3, which also provides a comparison with previous results in the
literature.
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Figure 3: Frequency response of error system for vertex 3.
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Figure 4: Frequency response of error system for vertex 4.

Table 1: Example 4.1: comparison with previous published results.

g γ in this paper γ in [29] γ in [30]
0 2.4342 2.4373 3.8709
1 1.5713 1.8627 2.5450
2 1.5713 1.8290 2.5028
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Table 2: H∞ norms at the vertices.

a1 0.15 0.15 0.45 0.45
a2 0.35 0.85 0.35 0.85
‖Tz̃w‖∞ 1.1682 1.3326 1.5694 1.4070

Table 3: Example 4.2: comparison with previous published results.

g γ in this paper γ in [29] γ in [30]
0 7.5981 7.5981 11.4157
1 5.5216 5.8886 8.2321
2 5.4884 5.7694 8.1109
3 5.4870 5.7636 8.1050
4 5.4870 5.7636 8.1050

5. Conclusions

This paper has studied the robust H∞ filtering problem for 2D discrete systems described
by Roesser state-space model. The proposed method, based on using homogeneous
polynomially parameter-dependent matrices of arbitrary degree, is less conservative than
previous ones in the literature. Moreover, by increasing the degree of the polynomials
involved, the obtained filter gets less conservative, which has been demonstrated by two
illustrative examples, which provides comparisons with previous results.
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