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The spectral analysis of uniform or nonuniform sampling signal is one of the hot topics in digital
signal processing community. Theories and applications of uniformly and nonuniformly sampled
one-dimensional or two-dimensional signals in the traditional Fourier domain have been well
studied. But so far, none of the research papers focusing on the spectral analysis of sampled
signals in the linear canonical transform domain have been published. In this paper, we investigate
the spectrum of sampled signals in the linear canonical transform domain. Firstly, based on the
properties of the spectrum of uniformly sampled signals, the uniform sampling theorem of two
dimensional signals has been derived. Secondly, the general spectral representation of periodic
nonuniformly sampled one and two dimensional signals has been obtained. Thirdly, detailed
analysis of periodic nonuniformly sampled chirp signals in the linear canonical transform domain
has been performed.

1. Introduction

The sampling process is one of the fundamental concepts of digital signal processing, which
serves as a bridge between the continuous physical signals and discrete signals. The sampling
process can be marked as uniform sampling and nonuniform sampling according to the
sampling offsets. Theories and applications of uniformly and nonuniformly sampled one
and two-dimensional signals in traditional Fourier domain have been well studied [1–
3]. The spectral analysis of uniform and nonuniform samples has also been investigated
in the Fourier domain [4–6]. However, most of the theories and methods derived in the
literature are only suitable for bandlimited signals of Fourier transform (FT) domain, they
will derive the wrong (or at least suboptimal) conclusions about signals and systems that not
bandlimited in the Fourier domain [7]. For example, signals such as gravity waves, broad-
band chirp signals, and radar and sonar signals may behave as nonbandlimited in the Fourier
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domain. It is therefore worthwhile and interesting to explore the new nonstationary signal
processing tools and derive novel properties of nonbandlimited signals of the Fourier domain
in the new transform domain.

With the efforts of the scientists of signal processing community, many useful tools
such as the wavelet transform, the fractional Fourier transform [8], the Hilbert-Huang trans-
form [9], and the linear canonical transform (LCT) have been proposed to process nonsta-
tionary signals. The LCT, which was introduced during the 1970s with four parameters [10],
has been proven to be one of the most powerful tools for nonstationary signal processing.
The signal processing transforms, such as the Fourier transform (FT), the fractional Fourier
transform (FrFT), the Fresnel transform, and the scaling operations are all special cases of the
LCT [8]. The well-known concepts associated with the traditional Fourier transform, such
as the uncertainty principles [11], the convolution and product theorem [12, 13], the Hilbert
transform [14–16], and the Poisson summation formula [17] are well studied and extended
in the LCT domain. The expansion of the classical uniform or nonuniform sampling theorem
for the band-limited or time-limited signal in the LCT domain has recently been studied
[18–20]. Recently, the authors of [21, 22] address the multichannel sampling problems and
their novel results can be looked as the generalization of the well-known sampling theorem
for the LCT and FT domain. These sampling theorems establish the fact that a band-limited
or time-limited continuous signal in the LCT domain can be completely reconstructed by a
set of equidistantly spaced signal samples, but so far none of the research papers covering
the spectral analysis of sampled signals in the LCT domain have been published. Therefore,
exploring the spectral properties for sampled signals in the LCT domain is worthwhile and
interesting.

Focusing on the spectral analysis of uniformly or nonuniformly sampled signals in
the LCT domain, this paper investigates the spectrum of signals based on the uniform and
periodic nonuniform samples in the LCT domain. The paper is organized as follows. The
Preliminary is proposed in Section 2. In Section 3, the uniform sampling theorem of two-
dimensional LCT is derived based on the definition of LCT and the traditional sampling
theorem. The spectral analysis of one and two dimensional periodic nonuniform sampling
signals is derived in Section 4. Section 5 is the conclusion of the paper.

2. The Preliminary

2.1. The Linear Canonical Transform (LCT)

The LCT with parameters
(
a b
c d

)
of a signal f(t) is defined as [8]:

LA
f (u) = LA

f

[
f(t)
]
(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
1

j2πb

∫+∞

−∞
f(t)ej(1/2)[(a/b)t

2−(2/b)tu+(d/b)u2]dt, b /= 0,

√
dej(1/2)cdu

2
f(du), b = 0,

(2.1)

where

A ≡
(
a b

c d

)

, det(A) = ad − bc = 1. (2.2)
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The LCT of two-dimensional signal f(x, y) is defined as [16]:

LA,B
f

{
f
(
x, y
)}

= LA,B
f (u, v) =

∫∫+∞

−∞
f
(
x, y
)
KA,B

(
x, y, u, v

)
dx dy

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2πj

√
1

b1b2
· ej[(d1u

2/2b1)+(d2v
2/2b2)]

×
∫∫+∞

−∞
e−j[(ux/b1)+(vy/b2)] · ej[(a1x2/2b1)+(a2y2/2b2)]f

(
x, y
)
dx dy,

b1b2 /= 0, |A| = |B| = 1

√
d1d2 · ej[(c1d1u

2+c2d2v
2/2)]f(d1u, d2v), b1

2 + b2
2 = 0,

(2.3)

where

KA,B

(
x, y, u, v

)
= KA(x, u)KB

(
y, v
)
, KA(x, u) =

√
1

2πjb1
· ej(d1u

2/2b1)e−j(ux/b1)ej(a1x
2/2b1);

KB

(
y, v
)
=

√
1

2πjb2
· ej(d2v

2/2b2)e−j(vy/b2)ej(a2y
2/2b2), A =

(
a1 b1

c1 d1

)

, B =

(
a2 b2

c2 d2

)

.

(2.4)

In this paper we restrict ourselves to the class of the LCT with real parameters, that is, the
parameters in matrix A,B are real numbers.

2.2. The Sampling Theorem of One-Dimensional Signal in the LCT Domain

It is shown in [18, 19] that if a signal is nonbandlimited in the Fourier domain, then it can
be bandlimited in the LCT domain. Therefore, the common sampling theorem in Fourier
domain may not suitable for these nonbandlimited signals. In order to solve these problems,
the uniform sampling theorems for one-dimensional signal in the LCT domain have been
derived as shown below [18, 19].

Lemma 2.1. Assume a signal f(t) bandlimited to ΩA in the LCT domain with parameter A =
(
a b
c d

)

and b > 0; then the sampling theorem for signal f(t) can be expressed as:

f(t) = e−j(a/2b)t
2

+∞∑

n=−∞
f(nT)ej(a/2b)(nT)

2 sin [ΩA(t − nT)/b]
ΩA(t − nT)/b

, (2.5)

where T is the sampling period and satisfies T = πb/ΩA; and the Nyquist rate of sampling theorem
associated with the LCT is fs = ΩA/πb.

Proof. see [18, 19].
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Figure 1: The recurrent nonuniform sampling model [5].

2.3. The Periodic Nonuniform Sampling Model

The periodic nonuniform sampling [4–6, 21–23], which also named as recurrent nonuniform
sampling, arises in a broad range of applications. For example [4], we might consider
converting a continuous time signal to a discrete time signal using a series ofA/D converters,
and each is operating at a rate lower than the Nyquist rate such that the average sampling
rate is equal to the Nyquist rate. This may be beneficial in applications where high-rate A/D
converters are required. Typically, the cost and complexity of a converter will increase (more
than linearly) with the rate. In such cases, we can benefit from converting a continuous time
signal to a discrete time signal using N A/D converters [23], each is operating at one Nth
of the Nyquist rate. Since the converters are typically not synchronized, the resulting discrete
time signal is a combination ofN sequences of uniform samples. Thus, the resulting discrete
time signal corresponds to recurrent nonuniform samples of the continuous time signal.

In this form of sampling, the sampling points are divided into several groups of points.
The groups have a recurrent period, which is denoted by NT and equal to N times the
Nyquist period. Each period consists ofN nonuniform sampling points. Denoting the points
in one period by tn, n = 0, 1, . . . ,N − 1, the complete set of sampling points are tn + kNT ,
n = 0, 1, 2, . . . ,N − 1, k ∈ Z. Periodic nonuniform samples can be regarded as a combination
ofN sequences of uniform samples taken at oneNth of the Nyquist rate. An example of this
periodic nonuniform sampling distribution is depicted in Figure 1 [5].
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Besides the one-dimensional recurrent nonuniform sampling model, in real applica-
tions we often meet the multidimensional nonuniform sampling. Jenq investigates the two-
dimensional periodic nonuniform sampling model and obtains a perfect spectral recon-
struction method in the Fourier domain [5, 6], Feuer and Coodwin introduce the multi-
dimensional recurrent nonuniform sampling model in [4] and derive the reconstruction
methods based on the filterbanks. It is shown that a specific example of this situation arises
when one utilizes multiple identical digital cameras on the same scene [4].

The signal recovery from one or multidimensional recurrent nonuniform sampling
points are well studied in the Fourier domain; however, there are no paper published about
the spectral analysis from recurrent nonuniform sampling points in the LCT domain. It is
worthwhile and interesting to investigate the spectral analysis and reconstruction in the LCT
domain.

3. The Uniform Sampling Theorems

3.1. The Uniform Sampling Theorem of Two-Dimensional Signals

This section focuses on the uniform sampling theorem for two-dimensional signals in the LCT
domain. Let f(x, y) be an analog two-dimensional signal with its continuous LCT LA,B

f (u, v)

bandlimited to (Ωx,Ωy) in the LCT domain. In other words, LA,B
f

(u, v) = 0, when |u| ≥ Ωx

and |v| ≥ Ωy.
Suppose fs(x, y) is obtained by sampling the signal f(x, y) at uniformly spaced grids

Tx and Ty, Tx and Ty are uniform sampling period on X and Y -axis, respectively, we have

fs
(
x, y
)
=

∞∑

n=−∞

∞∑

k=−∞
f
(
x, y
)
δ(x − nTx)δ

(
y − kTy

)
. (3.1)

Then, the spectrum of these samples function fs(x, y) in the LCT domain can be shown in the
following theorem.

Theorem 3.1. Suppose fs(x, y) is obtained by sampling the continuous signal f(x, y) at uniformly
spaced grids Tx and Ty, then the spectrum of these uniformly samples can be represented as:

DLA,B
f (u, v) =

1
TxTy

ej[(d1u
2/2b1)+(d2v

2/2b2)]

×
+∞∑

k=−∞

+∞∑

l=−∞
LA,B
f

(

u − 2πk
Tx

b1, v − 2πl
Ty

b2

)

× e−j(d1/2b1)(u−(2πk/Tx)b1)2e−j(d2/2b2)(v−(2πl/Ty)b2)2 .

(3.2)
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Proof. Applying the LCT to both sides of (3.1), we obtain

DLA,B
f (u, v) =

∫∫+∞

−∞
fs
(
x, y
)
KA,B

(
x, y, u, v

)
dx dy

=
1

2πj

√
1

b1b2
· ej[(d1u

2/2b1)+(d2v
2/2b2)]

·
∫∫+∞

−∞
e−j[(ux/b1)+(vy/b2)]ej[(a1x

2/2b1)+(a2y2/2b2)]

×
+∞∑

n=−∞

+∞∑

k=−∞
f
(
x, y
)
δ(x − nTx)δ

(
y − kTy

)
dx dy.

(3.3)

Rearranging (3.3) and using the identity
∑+∞

k=−∞ δ(x − kTx)
∑+∞

k=−∞ δ(x − kTx) =
(1/Tx)

∑+∞
k=−∞ ej(2kπx/Tx)(1/Ty)

∑+∞
k=−∞ ej(2kπy/Ty), (3.3), can be rewritten as

DLA,B
f

=
1

2πj

√
1

b1b2
· ej[(d1u

2/2b1)+(d2v
2/2b2)]

·
∫∫+∞

−∞
f
(
x, y
)
e−j[(ux/b1)+(vy/b2)]ej[(a1x

2/2b1)+(a2y2/2b2)]

×
{

1
Tx

+∞∑

k=−∞
e(j2πkx/Tx) · 1

Ty

+∞∑

l=−∞
e(j2πly/Ty)

}

dx dy

=
1

2πj
1

TxTy

√
1

b1b2
· ej[(d1u

2/2b1)+(d2v
2/2b2)]

·
+∞∑

k=−∞

+∞∑

l=−∞

∫∫+∞

−∞
f
(
x, y
)
e−j[((u−(2πk/Tx)b1)x/b1)+(v−(2πk/Ty)b2y/b2)]ej[(a1x

2/2b1)+(a2y2/2b2)].

(3.4)

The final result can be obtained by the definition of the LCT.

From (3.2), the spectra of two-dimensional uniform sampling signal in the LCT
domain can be seen as the repetition of LA,B

f (u, v)e−j(d1/2b1)u2
e−j(d2/2b2)v2

, and these repetitions
do not overlap if we chose the sampling interval Tx ≤ πb1/Ωx, Ty ≤ πb2/Ωy. In order to
single out just one copy, we apply a low-pass filter to DLA,B

f
(u, v).

H(u, v) =

⎧
⎨

⎩

TxTy, |u| ≤ Ωx, |v| ≤ Ωy,

0, others.
(3.5)

So the original signal f(x, y) can be derived by the inverse LCT transform of DLA,B
f (u,

v)H(u, v). The reconstruction formula is presented in the following theorem.
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Theorem 3.2. suppose f(x, y) be an analog two-dimensional signal with its continuous LCT
LA,B
f

(u, v) bandlimited to (Ωx,Ωy) in the LCT domain. Then the original signal f(x, y) can be recon-
structed by the following uniform sampling formula

f
(
x, y
)
= e−j(a1/2b1)x

2−j(a2/2b2)y2

×
+∞∑

n=−∞

+∞∑

k=−∞
f
(
nTx, kTy

)
ej(a1/2b1)(nTx)

2+j(a2/2b2)(kTy)
2

· sin [Ωx(x − nTx)/b1]
Ωx(x − nTx)/b1

sin
[
Ωy

(
y − kTy

)
/b2
]

Ωy

(
y − kTy

)
/b2

,

(3.6)

where Tx, Ty is the sampling period in the X-axis and Y -axis, respectively, and satisfies Tx ≤
πbx/Ωx, Ty ≤ πby/Ωy.

Proof. From the definition ofDLA,B
f (u, v)H(u, v), the original signal can be derived by the in-

verse LCT transform ofDLA,B
f

(u, v)H(u, v). In other words, the original signal can be rewrit-
ten as:

f
(
x, y
)
= LA−1,B−1{

DLA,B
f (u, v)H(u, v)

}(
x, y
)

=
1

TxTy

∫∫+∞

−∞
KA−1(u, x)KB−1

(
v, y
)

×
∫∫+∞

−∞
f
(
xn,k, yn,k

)
KA(xn,k, u)KB

(
yn,k, v

)
H(u, v)dxn,kdyn,kdudv

=
∫+∞

−∞
f
(
xn,k, yn,k

)

×
∫+∞

−∞
KA−1(u, x)KA(xn,k, u)KB−1

(
v, y
)
KB

(
yn,k, v

)
H(u, v)dudv dxn,kdyn,k

=
(

1
2π

)2 1
b1b2

e−(a1/2b1)x
2−(a2/2b2)y2

×
∫∫+∞

−∞
f
(
xn,k, yn,k

)
e(a1/2b1)xn,k

2
e(a2/2b2)yn,k

2

×
∫∫+∞

−∞
e(1/b1)u(x−xn,k)e(1/b2)v(y−yn,k)H(u, v)dudv dxn,kdyn,k.

(3.7)
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Because

∫∫+∞

−∞
e(1/b1)u(x−xn,k)e(1/b2)v(y−yn,k)H(u, v)dudv

= TxTy

∫+Ωy

−Ωy

∫+Ωx

−Ωx

ej(1/b1)u(x−xl)e(1/b2)v(y−yn,k)dudv

= TxTy
2 sin[Ωx(x − xn,k)/b1]

(x − xn,k)/b1

2 sin
[
Ωy

(
y − yn,k

)
/b2
]

(
y − yn,k

)
/b2

.

(3.8)

Substitute (3.8) into (3.7)we obtain

f
(
x, y
)
= e−(a1/2b1)x

2−(a2/2b2)y2

×
∫∫+∞

−∞
f
(
xn,k, yn,k

)
e(a1/2b1)xn,k

2
e(a2/2b2)yn,k

2

× Tx sin [Ωx(x − xn,k)/b1]
π(x − xn,k)

Ty sin
[
Ωy

(
y − yn,k

)
/b2
]

π
(
y − yn,k

) dxn,kdyn,k.

(3.9)

The final result can be obtained by substituting (3.1) into above equation and letting the
sample interval to be Tx = πbx/Ωx, Ty = πby/Ωy.

3.2. Special Cases of the Uniform Sampling Theorem of
Two-Dimensional Signals

(1) Let A =
(

0 1
−1 0

)
and B =

(
0 1
−1 0

)
, then (3.2) and (3.6) reduce to

DLA,B
f (u, v) =

1
TxTy

+∞∑

k=−∞

+∞∑

l=−∞
LA,B
f

(

u − k2π
Tx

, v − l2π
Ty

)

, (3.10)

f
(
x, y
)
=

+∞∑

n=−∞

+∞∑

k=−∞
f
(
nTx, kTy

)sin [Ωx(x − nTx)]
Ωx(x − nTx)

sin
[
Ωy

(
y − kTy

)]

Ωy

(
y − kTy

) , (3.11)

which are the well known digital spectral representation and the reconstruction formula of
uniformly sampled two-dimensional signals in traditional Fourier transform domain.
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(2) Let A =
(

cos θ1 sin θ1
− sin θ1 cos θ1

)
and B =

(
cos θ2 sin θ2
− sin θ2 cos θ2

)
, then (3.2) and (3.6) reduce to

DLA,B
f (u, v) =

1
TxTy

ej[(cot θ1u
2/2)+(cot θ2v2/2)]

×
+∞∑

k=−∞

+∞∑

l=−∞
LA,B
f

(

u − 2πk
Tx

sin θ1, v − 2πl
Ty

sin θ2

)

× e−j(cot θ1/2)(u−(2πk/Tx) sin θ1)
2
e−j(cot θ2/2)(v−(2πl/Ty) sin θ2)

2
,

(3.12)

f
(
x, y
)
= e−j(cot θ1/2)x

2−j(cot θ2/2)y2

×
+∞∑

n=−∞

+∞∑

k=−∞
f
(
nTx, kTy

)
ej(cot θ1/2)(nTx)

2+j(cot θ2/2)(kTy)
2

· sin [csc θ1Ωx(x − nTx)]
csc θ1Ωx(x − nTx)

sin
[
csc θ2Ωy

(
y − kTy

)]

csc θ2Ωy

(
y − kTy

) .

(3.13)

They can be looked as the digital spectrum of a uniformly sampled signal and the reconstruc-
tion formula in fractional Fourier transform domain, respectively.

4. The Spectral Analysis of Nonuniformly Sampled Signals

It is shown in the preliminary Section that the recurrent nonuniform sampling occurs fre-
quently in real applications, and there are many published works on the spectral analysis
methods in the Fourier domain [4–6]. However, these results are only suitable for the band-
limited signals in the Fourier domain and may obtain incorrect results for nonbanlimited
signals of Fourier domain [19]. Because the nonbandlimited signals can be bandlimited in
the LCT domain [8], so it is worthwhile and interesting to investigate the spectral analysis
problems in the LCT domain.

4.1. Spectral Analysis of One-Dimensional Signal from Recurrent
Nonuniform Samples

In above-mentioned, one-dimensional periodic nonuniform sampling model, the mth sam-
pling sequence can be seen as uniformly sampling the signal with sampling period MT :

sm =
[
f(tm), f(tM+m), f(t2M+m), . . .

]
, (4.1)

the total sampling sequence can be represented as:

s =
{
f(tkm) | tkm = kMT + tm, m = 0, 1, 2, . . . ,M − 1, k ∈ Z

}
. (4.2)
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Let sm = [f(tm), 0, . . . , (M − 1) zeros, f(tM+m), 0, 0, . . .], m = 0, 1, . . . ,M − 1 and shift sm mT
positions to the right, for m = 0, 1, . . . ,M − 1 to obtain

smz
−m =

[
(m zeros)f(tm), 0, . . . , (M − 1) zeros, f(tM+m), 0, 0, . . .

]
, (4.3)

where z−1 is the unit delay operator. Finally, summing up all the subsequences to obtain the
original sequence s =

∑M−1
m=0 smz

−m, therefore the discrete LCT of the periodic nonuniformly
sampled signal sequence s can be derived by the summation of the LCT of M subsequence
smz

−m (m = 0 to M − 1). The result can be represented as the following theorem.

Theorem 4.1. Let f(t) be an analog signal with its CLCT LA
f
(u) bandlimited to (−Ωα,Ωα) in the

LCT domain; f(t) is sampled nonuniformly with recurrent period MT . Then, the digital spectrum of
these periodic nonuniformly sampled points can be represented as:

DLA
f

[
f(t)
]
(u) =

1
MT

×
∞∑

n=−∞

M−1∑

m=0

LA
f

[
u − 2πn

NT
b + armT

]

· ej(1/2)((a−a2d)/b)T2rm
2
ej(2πn/MT)d(u−(πn/MT)b)

· e−j[((1−ad)/b)u−(1−ad)(2πn/MT)]rmTe−j(2πnm/M),

(4.4)

where T is the nominal uniform sampling period, and rm = (mT − tm)/T, m = 0, 1, . . . ,M − 1 are
sampling time offsets.

Proof. The result can be derived by using the similar methods as in [5] and the properties of
LCT.

4.2. The Spectral Analysis of Two-Dimensional Signal

Firstly, consider the function fs(x, y) which are obtained by sampling a two-dimensional
signal f(x, y) at nonuniformly spaced grids. The sampling offsets on both X-axis and Y -axis
are periodic and have the period M and N, respectively. That means

xu,v = uTx + Δxu,v, yu,v = vTy + Δyu,v, (4.5)

where Tx and Ty are nominal uniform sampling periods on the X-axis and Y -axis,
respectively. Δxu,v and Δyu,v are periodic sequence with periodM on u andN on v. Because
of the periodic structure of Δxu,v and Δyu,v, we can let u = kM + m, v = lN + n, where
−∞ < k, l < ∞, 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. Then

xu,v = uTx + Δxu,v = (kM +m)Tx + ΔxkM+m,lN+n

= kMTx +mTx + Δxm,n = kMTx +mTx + rm,nTx,

yu,v = vTy + Δyu,v = (lN + n)Ty + ΔykM+m,lN+n

= lNTy + nTy + Δym,n = lNTy + nTy + sm,nTy,

(4.6)
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where rm,n = Δxm,n/Tx and sm,n = Δym,n/Ty are the ratios of sampling offsets to the nominal
uniform sampling periods. The sampling signal fs(x, y) can be represented as:

fs
(
x, y
)
= f
(
x, y
) × δ[x − (Mk +m + rm,n)Tx] × δ

[
y − (Nl + n + sm,n)Ty

]
. (4.7)

The DLCT of this two-dimensional signal f(xu,v, yu,v) can be obtained as:

DLA,B
f

(
u′, v′) =

+∞∑

u=−∞

+∞∑

v=−∞
f
(
xu,v, yu,v

)

× 1
2πj

√
1

b1b2
ej[(d1u

′2/2b1)+(d2v
′2/2b2)]e−j[u

′uTx/b1+v′vTy/b2]

× ej[a1(uTx)
2/2b1+a2(vTy)

2/2b2],

(4.8)

where b1b2 /= 0, |A| = |B| = 1.
Based on the properties of the DLCT and (4.8), the digital spectrum of the nonuni-

formly sampled two-dimensional signals can be represented in the following Theorem 4.2.

Theorem 4.2. Let f(x, y) be an analog two-dimensional signal with its continuous LCT bandlimited
in the LCT domain, f(x, y) is sampled periodically with period M and N in the x and y directions.
Then the digital spectrum of these periodic nonuniformly sampled points can be presented as:

DLA,B
f

(
u′, v′) =

1
TxTy

ej[(d1u
′2/2b1)+(d2v

′2/2b2)]

×
+∞∑

k=−∞

+∞∑

l=−∞
H
(
k, l, u′, v′)

× e−j[(d1/2b1)(u′+a1rm,nTx−(2πk/MTx)b1)
2+(d2/2b2)(v′+a2sm,nTy−(2πl/NTy)b2)

2]

· LA,B
f

(

u′ + a1rm,nTx − 2πk
MTx

b1, v
′ + a2sm,nTy − 2πl

NTy
b2

)

,

(4.9)

where

H
(
k, l, u′, v′) =

(
1

MN

)
×

M−1∑

m=0

N−1∑

n=0

ej[(u
′/b1+a1rm,nTx/2b1)rm,nTx−(2πk(m+rm,n)/M)]

× ej[(v
′/b2+a2sm,nTy/2b2)sm,nTy−(2πl(n+sm,n)/N)].

(4.10)
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Proof. Following the definition of the DLCT, the digital spectrum of the samples can be
written as:

DLA,B
f

(
u′, v′) =

+∞∑

u=−∞

+∞∑

v=−∞
fs
(
x, y
) 1
2πj

√
1

b1b2
× ej[(d1u

′2/2b1)+(d2v
′2/2b2)]

× e−j[u
′uTx/b1+v′vTy/b2] × ej[a1(uTx)

2/2b1+a2(vTy)
2/2b2]

=
+∞∑

k=−∞

+∞∑

l=−∞

M−1∑

m=0

N−1∑

n=0

1
2πj

√
1

b1b2
· ej[(d1u

′2/2b1)+(d2v
′2/2b2)]

· e−j[u′(kM+m)Tx/b1+v′(lN+n)Ty/b2]

· ej[a1(kM+m)2Tx2/2b1+a2(lN+n)2Ty2/2b2]

×
∫∫+∞

−∞
f
(
x, y
) × δ[x − (Mk +m + rm,n)Tx] × δ

[
y − (Nl + n + sm,n)Ty

]
dx dy.

(4.11)

By the Fourier series of δ[x − (Mk +m + rm,n)Tx] and δ[y − (Nl + n + sm,n)Ty], (4.11) can be
rearranged as:

DLA,B
f

(
u′, v′) =

1
2πj

√
1

b1b2
· ej[(d1u

′2/2b1)+(d2v
′2/2b2)]

·
M−1∑

m=0

N−1∑

n=0

∫∫+∞

−∞
f
(
x, y
) × ej[u

′rm,nTx/b1+v′sm,nTy/b2]

· ej[a1(rm,nTx)
2/2b1+a2(sm,nTy)

2/2b2]

× e−j[u
′x/b1+v′y/b2]ej[a1(x

2−2rm,nTxx)/2b1+a2(y2−2sm,nTyy)/2b2]

×
{

1
MTx

+∞∑

k=−∞
ej2πk[x−(m+rm,n)Tx]/MTx × 1

NTy

+∞∑

l=−∞
ej2πl[y−(n+sm,n)Ty]/NTy

}

dx dy.

(4.12)

The final result can be obtained by rearranging (4.12) and following the definition of the
LCT.

4.3. Special Cases of the Derived Results

Before introducing the new results, let us investigate the special cases of the derived results.
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(1) When the parameters of LCT reduce to A =
(

0 1
−1 0

)
and B =

(
0 1
−1 0

)
, (4.9) can be

reduced to

DLA,B
f

(
u′, v′) =

1
TxTy

+∞∑

k=−∞

+∞∑

l=−∞
H
(
k, l, u′, v′)LA,B

f

(

u′ − k2π
MTx

, v′ − l2π
NTy

)

, (4.13)

where

H
(
k, l, u′, v′) =

(
1

MN

)M−1∑

m=0

N−1∑

n=0

ej[(u
′+(k2π/MTx))rm,nTx−mk(2π/M)]

× ej[(v
′+(l2π/NTy))sm,nTy−nl(2π/N)],

(4.14)

which is the well known digital spectrum of periodic nonuniformly sampled two-dimension-
al signal in Fourier transform domain [6].

(2) Furthermore, when rm,n and sm,n are zeros, In this case, the periodic nonuniform
sampling model reduces to uniform sampling model. It is easy to verify thatH(k, l, u′, v′) = 1
when k is an integer multiple ofM and l is an integer multiple ofN; otherwiseH(k, l, u′, v′) =
0. Therefore,

DLA,B
f (u, v) =

1
TxTy

ej[(d1u
2/2b1)+(d2v

2/2b2)]

×
+∞∑

k=−∞

+∞∑

l=−∞
LA,B
f

(

u − 2πk
Tx

b1, v − 2πl
Ty

b2

)

e−j(d1/2b1)(u−(2πk/Tx)b1)2

× e−j(d2/2b2)(v−(2πk/Tx)b2)2 ,

(4.15)

which is the digital spectrum of a uniformly sampled two-dimensional signal in linear ca-
nonical transform domain derived in Section 3 (Theorem 3.1).

(3) When the parameter of LCT reduces to A =
(

cos θ1 sin θ1
− sin θ1 cos θ1

)
and B =

(
cos θ2 sin θ2
− sin θ2 cos θ2

)
,

then (4.6) reduces to

DLA,B
f

(
u′, v′) =

1
TxTy

ej[(d1u
′2/2b1)+(d2v

′2/2b2)]

×
+∞∑

k=−∞

+∞∑

l=−∞
H
(
k, l, u′, v′)

× e−j[(d1/2b1)(u′+a1rm,nTx−(2πk/MTx)b1)
2+(d2/2b2)(v′+a2sm,nTy−(2πl/NTy)b2)

2]

× LA,B
f

(

u′ + a1rm,nTx − 2πk
MTx

b1, v
′ + a2sm,nTy − 2πl

NTy
b2

)

,

(4.16)
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where

H
(
k, l, u′, v′) =

(
1

MN

)
×

M−1∑

m=0

N−1∑

n=0

ej[(u
′csc θ1+cot θ1rm,nTx/2+(k2π/MTx))rm,nTx−mk(2π/M)]

× ej[(v
′csc θ2+cot θ2sm,nTy/2+(l2π/NTy))sm,nTy−nl(2π/N)],

(4.17)

this result can be looked as the digital spectral of two-dimensional signals in the fractional
Fourier domain.

(4) For one-dimensional case, when the parameter of LCT reduces to A =
(

cos θ sin θ
− sin θ cos θ

)
,

the results of Theorem 4.1 reduce to the results of fractional Fourier transform domain of [24],
and reduce to the results of Fourier domain of [5]when θ = π/2.

From the above-mentioned special cases of the Theorem 4.2, we conclude that the
formula we derived is more general and more suitable for nonstationary signal processing.
Because of chirp signal is one of the mostly used nonstationary signal in the Radar signal
processing society. Therefore, the properties and potential applications of this result for chirp
signal processing are investigated in the following Sections.

4.4. The Spectrum of Chirp Signals in the LCT Domain

The chirp signal can be looked as one of the typical nonstationary signals in modern signal
processing community. It is shown that the LCT is one of the most important tools for
chirp signal processing. It is therefore worthwhile and interesting to investigate the spectrum
of chirp signal in the LCT domain. It is easy to derive that when (a1/b1) + m1 = 0,
(a2/b2) + m2 = 0, the continuous LCT of a two-dimensional chirp signal f(x, y) =
Cej(ω1x+(1/2)m1x

2)ej(ω2y+(1/2)m2y
2) can be obtained as:

LA,B
f (u, v) =

C

2πj

√
1

b1b2
ej[(d1u

2/2b1)+d2v
2/2b2] · δ

(
ω1 − u

b 1

)
· δ
(
ω2 − v

b2

)
. (4.18)

Substitute (4.18) in (4.9), the digital spectrum of two-dimensional chirp signal can be repre-
sented as following theorem.

Theorem 4.3. Let f(x, y) = Cej(ω1x+(1/2)m1x
2)ej(ω2y+(1/2)m2y

2), then the digital spectrum from the
periodic nonuniformly sampled signal points with period M and N in the x and y directions, respec-
tively, can be represented by the following:

DLA,B
f

(
u′, v′) =

C
√
2πj

√
1

b1b2

1
TxTy

ej[(d1u
′2/2b1)+(d2v

′2/2b2)]
+∞∑

k=−∞

+∞∑

l=−∞
H(k, l)

· δ
[
ω1 −

(
u′

b1
+
a1

b1
rm,nTx − 2πk

MTx

)]
δ

[

ω2 −
(

v′

b2
+
a2

b2
sm,nTy − 2πl

NTy

)]

,

(4.19)
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Figure 2: The spectrum of uniform sampling points.
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Figure 3: The spectrum of nonuniform sampling points with M = 3.

where

H(k, l) =
1

MN
×

M−1∑

m=0

N−1∑

n=0

ej[(ω1−(a1/2b1)rm,nTx+(4πk/MTx))rm,nTx−mk(2π/M)]

× ej[(ω2−(a2/2b2)sm,nTy+(4πl/MTy))sm,nTy−nl(2π/N)].

(4.20)

Proof. This formula can be derived by substituting (4.18) in (4.9), and applying the properties
of the discrete Fourier transform.

This theorem indicates that the LCT of a two-dimensional chirp signal from periodic
nonuniform sampling points contains line spectra components in the LCT domain, with
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Figure 4: The spectrum of nonuniform sampling points with M = 4.
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Figure 5: The spectrum of nonuniform sampling points with M = 5.

the magnitude at (k, l) being H(k, l). The difference between the uniform and periodic
nonuniform sampling points is that for periodic nonuniform sampling signals, it will pro-
duce some additional pseudo spectra in the same LCT domain besides the main spectral
component.

4.5. The Simulation Results

In order to show the importance of spectrum analysis of the sampling points associated with
the LCT, we choose the recurrent nonuniform sampling model as an example to perform the
simulation in the LCT domain.
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Figure 7: The spectral of nonuniformly sampled signal with N = 4,M = 3.

Firstly, we choose the chirp signal as f(t) = exp{j(5t − 6t2)}, the sampling period
T = 0.2 s in a period [−10, 10]. The spectral of uniformly sampled signal is plotted in Figure 2,
it is shown that the uniform sampling in the time domain will produce the periodic spectrum
in the LCT domain as reflected in Lemma 2.1. Figures 3, 4, and 5 plot the spectrum of
nonuniformly sampling points forM = 3, 4, and 5, respectively. From these simulation results,
we can see that it will produce additional M − 1 pseudospectra in the same LCT domain
besides the main spectral component. This was coinciding with the derived results shown in
Theorem 4.1.

Secondly, we choose the two-dimensional chirp signal as f(x, y) = exp{j(5x −
6x2)} exp{j(y − y2)}, the sampling period of x and y is equal and choose to be T = 0.2 s
in a period [−10, 10]. The spectral of uniformly sampled signal is plotted in Figure 6, it is
shown in the simulation that the spectra of two-dimensional uniform sampling signal in the
LCT domain are periodic as reflected in Theorem 3.1 of the paper. The spectral of periodic
nonuniformly sampled signal withN = 4, M = 3 is plotted in Figure 7.
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From Figures 6 and 7, we can conclude that the LCT spectrum of periodic nonuniform
sampling points for two-dimensional chirp signals will produce the pseudospectra in the
same LCT domain besides the main spectral component, as reflected in Theorem 4.3 of the
paper.

5. Conclusion

Based on the spectral properties of uniform and nonuniform samples in the LCT domain,
this paper investigates the spectrum of one and two dimensional periodic nonuniformly
sampled signals in the LCT domain. The digital spectral representation of one- and two-
dimensional periodic nonuniformly sampled signals in the LCT domain has been obtained,
and a detailed analysis for chirp signals has been carried out. The derived results can be
looked as the generalization of the traditional results in the Fourier domain and fractional
Fourier transform domain and more suitable for the nonstationary signal analysis and
processing. The future work direction will be the spectrum analysis of Nth order periodic
nonuniform sampling [23] points and the spectrum reconstruction from the periodic or Nth
order periodic nonuniform sampling signals in the LCT domain.
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