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Motivated by the study of a class of large-scale stochastic systems with Markovian switching, this
correspondence paper is concerned with the practical stability in the pth mean. By investigating
Lyapunov-like functions and the basic comparison principle, some criteria are derived for various
types of practical stability in the pth mean of nonlinear stochastic systems. The main contribution
of these results is to convert the problem of practical stability in the pth mean of stochastic systems
into the one of practical stability of the comparative deterministic systems.

1. Introduction

The practical dynamical systems in real-world applications, such as engineering, physics, and
economics, usually exhibit the stochastic nature due to the uncertain resulting from the exter-
nal environment. Examples include traffic systems, flexible manufacturing systems, and eco-
nomic systems. All of these dynamical systems can be modeled by Itô stochastic differential
equations. Therefore, it is not surprising that various problems of Itô stochastic differential
equations have received considerable attention. As the development of the stochastic theory
including stochastic processes, stochastic integral, and stochastic partial differential equa-
tions, the theory on the stochastic differential equations in infinite dimensional spaces has ad-
vanced greatly, and, so far, a rich body of literature has been reported.

Stability is one of the most important issues in the analysis and synthesis of stochastic
systems and often regarded as the first characteristic of the dynamical systems (or models) to
be studied. Currently, there have already been many kinds of stability concepts such as asym-
ptotic stability, stability in probability, almost sure exponential stability, and mean-square
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exponential stability. These stabilities are analyzed in terms of the theory of functional anal-
ysis which, however, makes it difficult for a newcomer to enter this interesting and impor-
tant field. The concepts of stability mentioned above are defined in the sense of Lyapunov.
In many real-world applications, however, the systems might not be asymptotically stable in
the sense of Lyapunov and stay nearby a state with an acceptable fluctuation. For example,
an aircraft or a missile may oscillate around a mathematically unstable course, and its perfor-
mance may be acceptable yet. To treat with such situations, a new stability concept, that is,
the practical stability, has been proposed by LaSalle and Lefschetz [1] and, subsequently, has
been developed in [2–4].

With respect to stochastic systems, the practical stability in the pth mean and the sta-
bility in probability have been introduced in [5] and [6], respectively. In these papers, both
the stochastic system and its corresponding auxiliary equation have deterministic initial con-
ditions. By using the powerful comparison theorem, which is developed in [7, 8], these con-
cepts have been extended to amore general class of stochastic systems in [9], where the result-
ing auxiliary system has random initial conditions. Recently, stochastic differential equations
with Markovian switching have also stirred a great deal of research interests due primarily
to their insight into applications. The fundamental theory of existence and uniqueness of the
solution of stochastic differential equations with Markovian switching has been studied well
in [10, 11], while the stability issues have been investigated in [12–15].

To be more specific, during the research of practical stability, one of the foremost chal-
lenges to system theory in the present-day advanced technological world is to overcome the
increasing size and complexity of the corresponding mathematical models [9, 16]. This is the
so-called large-scale systems, which is more closed to the actual circumstances, and, therefore,
it has a wider significance. However, since the computational efforts are enormous, the pra-
ctical stability of large-scale systems has received relatively little attention. Recently, several
important results have been obtained in the area of practical stability for large-scale Itô stocha-
stic systems, see [17], for example, in which the large amount of computational efforts of a
large-scale complex system become simpler and more economical by decomposition into a
number of interconnected subsystems; these subsystems, to some extent, can be considered
to be independent so that some of the qualitative behaviors of the corresponding subsystems
can be combined with interconnection constraints to come upwith the qualitative behavior of
the overall large-scale systems. Like all other systems, the stability issue should be examined
first in the large-scale systems. However, the problem of pth mean practical stability for
large-scale Itô stochastic systems withMarkovian switching has not been addressed properly,
which motives the current research.

In this paper, the problem of the pth mean practical stability for large-scale Itô stocha-
stic systems with Markovian switching is studied. First, the notion of practical stability in the
pth mean is introduced and extended for the large-scale stochastic systems with Markovian
switching. Then, the concepts of Lyapunov-like vector-valued functions coupled with the de-
composition-aggregation techniques are utilized to develop a comparison principle. In addi-
tion, some general criteria of practical stability for the large-scale Itô stochastic systems with
Markovian switching are obtained. Finally, an example is given to show the usefulness of the
developed criteria.

2. Preliminaries

Let {Ω,F,Ft≥0, P} be a complete probability space with a filtration satisfying the usual con-
ditions, that is, the filtration is continuous on the right and F0 contains all P -zero sets.
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W(t) = (W1(t),W2(t), . . . ,Wm(t))
T is anm-dimensional Wiener process defined on the proba-

bility space. {r(t), t ∈ R+} denotes a right-continuous Markov chain on the probability space
{Ω,F,Ft≥0, P}, taking values in a finite state space S = {1, 2, . . . ,N} with generator Γ =
(γij)N×N given by

P
{
r(t + Δ) = j | r(t) = i

}
=

⎧
⎨

⎩

γijΔ + o(Δ), if i /= j,

1 + γiiΔ + o(Δ), if i = j,
(2.1)

where Δ > 0 and γij ≥ 0 is the transition rate from i to j if i /= j while γii = −Σj /= iγij . We assume
that the Markov chain r(·) is independent of Wiener process W(·). It is known that almost
every sample path of r(t) is a right-continuous step function with a finite number of simple
jumps in any finite subinterval of R.

Consider the following Itô stochastic differential equations withMarkovian switching:

dx(t) = f(t, r(t), x(t))dt + σ(t, r(t), x(t))dw(t) (2.2)

with the initial condition x0 = ξ. Here ξ is assumed to be independent of W(·). The nonlinear
functions f : R+ × S × Rn → Rn and σ : R+ × S × Rn → Rn×m satisfy Lipschitz condition and
Linear growth condition.

In this paper, we always assume that (2.2) has a unique continuous solution x(t, ξ) such
that E(sup ‖x(t, ξ)‖p) < ∞ for each t ≥ 0 and p ≥ 0. Further, it is also assumed that f(t, j, 0) = 0
and σ(t, j, 0) = 0 for all j ∈ S and, accordingly, (2.2) has a trivial solution x(t, 0) ≡ 0.

Now, we decompose (2.2) into n interconnected subsystems described by

dxi =
[
pi(t, r(t), xi) + hi(t, r(t), x)

]
dt +

m∑

r=1

[
lir(t, r(t), xi) + ki

r(t, r(t), x)
]
dwr(t),

xi(t0) = x0, i = 1, 2, . . . , n,

(2.3)

where nonlinear functions pi(t, r(t), xi), and lir(t, r(t), xi) ∈ R+ × S × R → R, hi(t, r(t), x) and
ki
r(t, r(t), x) ∈ R+ × S × Rn → R, respectively.

3. Comparison Principle

The comparison principle has proved to be a useful tool in the study of the qualitative and
quantitative properties of solution processes of Itô-type stochastic system with Markovian
switching. In this section, by employing the concept of Lyapunov vector-valued function cou-
pled with decomposition-aggregation techniques, and together with the theory of differen-
tial inequalities, the comparison theorems for the large-scale system (2.3) are developed.

The L-operator for the n-interconnected subprocedures (2.3) is defined as

LcVi

(
t, j, x(t)

)
=

∂Vi

(
x, t, j

)

∂t
+

n∑

j=1

(
∂Vi

(
x(t), t, j

)

∂xj

)
[
pj
(
t, j, xi

)
+ hj

(
t, j, x

)]

+
1
2

n∑

j,r=1

∂V 2
i

(
t, j, x

)

∂xj∂xr
ajr +

N∑

j=i

γijVi

(
t, j, x

)
,

(3.1)
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where

(
ajr

)
= lij(t, i, xi)T lir(t, i, xi) + lij(t, i, xi)Tki

r(t, i, x) + ki
j(t, i, x)

T lir(t, i, xi) + ki
j(t, i, x)

Tki
r(t, i, x),

j, r = 1, 2, . . . , n, s = 1, 2, . . . ,N.

(3.2)

Now, consider now the following auxiliary random differential system:

du = g(t, u)dt, u(t0) = u0, (3.3)

where g(t, u) ∈ C[J × Rn
+,Rn] is concave and quasi-monotone nondecreasing in u for each

fixed t ∈ J and u0 is an n-dimensional random vector. Let u(t, t0, u0) be any solution of the
system (3.3) and r(t, t0, u0) the maximal solution process of the system (3.3) through (t0, u0).

We need the following corresponding definitions of practical stability for the auxiliary
system (3.3).

Definition 3.1. System (3.3) is said to be practically stable, if for all given (λ,A) with 0 < λ <
A, E

∑n
i=1 ui0 < λ implies

∑n
i=1 ui(t, t0, u0) < A, for all t ≥ t0 for some t0 ∈ R+.

Definition 3.2. Set α = (α1, α2, . . . , αs) and β = (β1, β2, . . . , βs). If αi ≤ βi, ∀i = 1, 2, . . . , s, one
denotes α < β.

In this section, by employing the Lyapunov-like functions and the basic comparison
principle of stochastic systems, some results on various types of practical stability in the pth
mean are obtained for the interconnected system (2.3).

Theorem 3.3. Assume that there exist functions Vi(t, x) and g(t, u) satisfying the following condi-
tions:

(i) for every Vi(t, x) ∈ C[J×Rn,R+], ∂Vi(t, x)/∂t, ∂Vi(t, x)/∂x2, and ∂2Vi(t, x)/∂x2 exist
and are continuous for (t, x) ∈ (J × Rn), and LVi(t, j, x) ≤ gi(t, Vi(t, j, x)) holds for all
(t, x) ∈ J × Rn, i = 1, 2, . . . , n, j = 1, 2, . . . ,N;

(ii) g(t, u) ∈ C[J ×Rn,Rn
+] is a quasi-monotone nondecreasing concave function in u for each

t ∈ J, and satisfies g(t, 0) ≡ 0;

(iii) the maximal solution of the auxiliary differential system (3.3), that is, r(t, t0, u0) exists for
all t ≥ t0, where u0 is an n-dimensional random vector;

(iv) for the solution process xi(t) = xi(t, t0, x0) of system (2.3), if E[Vi(t, x(t), j)] exists for all
t ≥ t0, then

E
[
V
(
t, x(t), j

)]
≤ r(t, t0, u0) (3.4)

whenever t ≥ t0 and V (t0, x0, j) ≤ u0, where

V
(
t, x, j

)
=
[
V1
(
t, x, j

)
, V2
(
t, x, j

)
, . . . , Vn

(
t, x, j

)]T
. (3.5)
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Proof. By applying generalized Itô formula, we have

EVi

(
x, t, j

)
− EVi

(
x(t0), t0, j

)
=
∫ t

t0

ELVi

(
x, s, j

)
ds. (3.6)

Setting mi(t) = EVi(x, t, j), we obtain

mi(t) −mi(t0) =
∫ t

t0

ELVi

(
x, s, j

)
ds, (3.7)

based on which, letting ρ → 0+, it can be obtained that

mi

(
t + ρ

)
−mi(t) =

∫ t+ρ

t

ELVi

(
x, s, j

)
ds

≤
∫ t+ρ

t

Egi
(
t, Vi

(
x, s, j

))
ds

≤
∫ t+ρ

t

gi
(
t, EVi

(
x, s, j

))
ds.

(3.8)

That is, for each i = 1, 2, . . . , n, we have

D+mi(t) ≤ gi(t,mi(t)), (3.9)

where D+ denotes the upper right Dini-derivative operator andmi(t) = EVi(x, t, j).
Denoting D+m(t) = (D+m1(t), D+m2(t), . . . , D+mn(t)), we have

D+m(t) ≤ g(t,m(t)). (3.10)

According to comparison theorem in [17], it immediately follows that

E
[
V
(
t, x(t), j

)]
≤ r(t, t0, u0) (3.11)

whenever t ≥ t0 and V (t0, x0, j) ≤ u0, and hence the proof is complete.

4. Practical Stability Criteria

In this section, by employing Lyapunov-like functions and basic comparison principles for
interconnected systems developed in the previous section, we give various types of practical
stability in the pth mean of the interconnected system (2.3).

Definition 4.1. System (2.3) is said to be practically stable in the pth mean, if for all given
(λ,A)with 0 < λ < A, E‖x0‖p < λ implies E‖x(t, t0, x0)‖p < A for all t ≥ t0.
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Definition 4.2. A function ϕ(u) is said to belong to the class K, if ϕ ∈ K(R+,R+) satisfies
ϕ(0) = 0; ϕ(t, u) is said to belong to the class CK, if ϕ ∈ CK(R+ × R+,R+) is continuous, con-
cave, and strictly increasing in u for each t ∈ R+ and satisfies ϕ(t, 0) = 0; ϕ(u) is said to belong
to the class VK, if ϕ ∈ VK[R+,R+] is continuous, convex, and strictly increasing for each
u ∈ R+ and satisfies ϕ(0) = 0.

The following theorem gives the criteria of practical stability.

Theorem 4.3. Assume that

(i) all the hypotheses of Theorem 3.3 hold;

(ii) for (t, x) ∈ J × Rn, the following inequality holds:

b
(
‖x‖p

)
≤

n∑

i=1

Vi

(
t, x, j

)
≤ a
(
t, ‖x‖p

)
, (4.1)

where b ∈ VK[R+,R+] and a ∈ CK[R+,R+] satisfy b(0) = 0 and a(t, 0) = 0, respectively;

(iii) the maximal solutions of the auxiliary differential system (3.3) on t ≥ t0, that is, r(t) =
r(t, t0, u0) and E[r(t, t0, u0)] both exist;

(iv) for the given λ andA (0 < λ < A), system (3.3) is practically stable with a(t0, λ) < b(A).

Then, the interconnected system (2.3) is practically stable in the pth mean.

Proof. Let xi(t) = xi(t, t0, x0) (i = 1, 2, . . . , n) be any solution process of system (2.3). It can be
obtained from Theorem 3.3 that

E
[
V
(
t, x(t), j

)]
≤ r(t, t0, u0) (4.2)

whenever t ≥ t0 and V (t0, x0, j) ≤ u0, where r(t, t0, u0) is the maximal solution of system (3.3)
on [t0,∞), and thus,

n∑

i=1

E
[
Vi

(
t, j, x(t)

)]
≤

n∑

i=1

ri(t, t0, u0). (4.3)

Considering that r(t, t0, u0) is practically stable, we have

n∑

i=1

ui0 < a(t0, λ), (4.4)

which implies that

n∑

i=1

ri(t, t0, u0) < b(A) ∀t ≥ t0. (4.5)
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We claim that E‖x0‖p < λ implies E‖x(t, t0, x0)‖p < A, for all t ≥ t0 for some t0 ∈ R+,
where x(t) = (x1(t), x2(t), . . . , xn(t)) is any solution of system (2.3) with E‖x0‖p < λ. Suppose
that this claim is not true, then there exists a t1 > t0 and a solution x(t) = x(t, t0, x0) of system
(2.3) with E‖x0‖p < λ satisfying

E‖x(t1)‖p = A, E‖x(t)‖p < A for t0 ≤ t < t1. (4.6)

Then, it follows from assumption (ii) that

n∑

i=1

E
[
Vi

(
t, j, x(t1)

)]
≥ b
(
E‖x(t1)‖p

)
= b(A). (4.7)

Choosing u0 such that V (t0, x0) = u0 and
∑n

i=1 ui0 = a(t0, E‖x0‖p), we have

n∑

i=1

E
[
Vi

(
t1, j, x(t1)

)]
≤

n∑

i=1

ri(t1, t0, u0) < b(A). (4.8)

Therefore, we arrive at the following contradiction:

b(A) ≤
n∑

i=1

E
[
Vi

(
t1, j, x(t1)

)]
< b(A). (4.9)

This completes the proof.

Theorem 4.4. Assume the following:

(i) all hypotheses of Theorem 3.3 hold;

(ii) for (t, x) ∈ T × Rn, V (t, x) satisfies the following inequality:

Φ
(
‖x‖p

)
≤

n∑

i=1

Vi

(
t, x, j

)
, (4.10)

where Φ ∈ VK[R+,R+] and VK[R+,R+] is the collection of all continuous, convex, and
increasing functions defined on R+ into itself with Φ(0) = 0;

(iii) the maximal solution r(t) of system (3.3) through (t0, u0) converges to the zero vector as
t → ∞. Then, the interconnected system (2.3) is practically stable in the pth mean.

Proof. An application of Theorem 3.3 gives the following inequality:

EV
(
t, j, x(t)

)
≤ r(t, t0, u0), (4.11)

where r(t, t0, u0) is the maximal solution of system (3.3).
From assumption (ii), it can be seen that Φ(λ) > 0 for everyA > λ > 0. Let λ be a posi-

tive real number satisfying ‖x0‖p < λ. By choosing u0 such that V (t0, x0) = u0 and noting as-
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sumption (ii) and the continuity of V , there exists λ∗ such that ‖x0‖p < λ implies∑n
i=1 E[Vi(t, j, x0)] ≤ λ∗.

From assumption (iii) and the practical stability of r(t) of system (3.3), we have∑n
i=1 Vi(t, j, x0) =

∑n
i=1 ui0 < λ∗ which implies that

n∑

i=1

ri(t, t0, u0) < Φ(A). (4.12)

It follows from (4.11) that

n∑

i=1

E
[
Vi

(
t, j, x(t)

)]
≤

n∑

i=1

ri(t, t0, u0), t ≥ t0, (4.13)

and from (4.10), we arrive at the following inequality:

E
[
Φ
(
‖x‖p

)]
≤

n∑

i=1

E
[
Vi

(
t, j, x(t)

)]
. (4.14)

By noting that Φ is a convex function and using the Tensen’s inequality [18], we have

Φ
[
E
(
‖x‖p

)]
≤ E
[
Φ
(
‖x‖p

)]
. (4.15)

Then, from (4.12)–(4.15), we obtain

Φ[E(‖x‖p)] < Φ(A) (4.16)

whenever ‖x0‖p < λ, which implies

E[(‖x(t)‖p)] < A, ∀t ≥ t0. (4.17)

Thus the proof is complete.

5. Example

Consider the following stochastic differential equation with Markovian switching:

dx(t) = f(t, r(t), x(t))dt + σ(t, r(t), x(t))dw(t), (5.1)

where x = [x1 x2]
T ∈ R2 is the sate vector, w(t) is a normalized scalar wiener process.

The nonlinear vector function σ = [σ1 σ2]
T ∈ C[R+×S×R2,R2] satisfies σ(t, r(t), 0) ≡ 0,

[σ1(t, r(t), x(t)) + σ2(t, r(t), x(t))]2 ≤ (x1 + x2)2λ(t),

[σ1(t, r(t), x(t)) − σ2(t, r(t), x(t))]2 ≤ (x1 − x2)2λ(t),
(5.2)

where λ ∈ C[R+,R+]
⋂
L1[0,∞).
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The nonlinear function f(t, r(t), x(t)) is taken as

f(t, r(t), x(t)) =

(
e−t + sin(t)x1

e−t + sin(t)x2

)

. (5.3)

We choose

V (t, r(t), x) =

(
V1(t, x)

V2(t, x)

)

=

(
(x1 + x2)2

(x1 − x2)2

)

(5.4)

as the Lyapunov function for (5.1). It is not difficult to obtain

|x|2 ≤
2∑

i=1

Vi(t, r(t), x(t)) ≤ 2|x|2. (5.5)

Now, consider the following auxiliary random differential system:

du = g(t, u)dt u(t0) = u0, (5.6)

where u ∈ R2, g(t, u) is given by

g(t, u) =

((
2e−t + 2 sin(t) + λ(t)

)
u1

(
2e−t + 2 sin(t) + λ(t)

)
u2

)

. (5.7)

We obtain

LVi(t, r(t), x(t)) ≤ gi(t, Vi(t, r(t), x(t))) for (t, x) ∈ R+ × R2; (5.8)

let a(r) = b(r) = r. Obviously, the functions a(r) and b(r) are both convex and concave. More-
over, it is easy to see that g(t, u) is concave and quasi-monotone nondecreasing in u for the
fixed t, and hence the system (5.1) is uniformly practically stable.

6. Conclusions

In this paper, the notion of practical stability in the pth mean is introduced and extended for
the large-scale stochastic systems with Markovian switching. By employing Lyapunov-like
functions and the basic comparison principle, sufficient conditions are established for various
types of practical stability in the pth mean of nonlinear stochastic systems. The advantage of
these results is to convert the problem of practical stability in the pth mean of stochastic sys-
tems into the problem of practical stability of the comparative deterministic systems. Future
research topics include the investigation on the filtering and control problems for uncertain
nonlinear stochastic systems, see for example, [19–28].
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related control problems,” Dynamic Systems and Applications, vol. 6, no. 1, pp. 107–124, 1997.
[7] G. S. Ladde and B. A. Lawrence, “Stability and convergence of large scale stochastic approximation

procedures,” International Journal of Systems Science, vol. 26, no. 3, pp. 595–618, 1995.
[8] L. Shaikhet, “Stability of stochastic differential systems with Markovian Switching,” Stochastic

Processes, vol. 2, no. 18, pp. 180–184, 1996.
[9] S. Sathananthan, Practical Stability Criteria for Nonlinear Ito-Type Stochastic Control Systems, Academic

Press, New York, NY, USA, 2000.
[10] M. A. O. Xuerong, A. Matasov, and A. B. Piunovskiy, “Stochastic differential delay equations with

Markovian switching,” Bernoulli, vol. 6, no. 1, pp. 73–90, 2000.
[11] P. Zhao, “Practical stability, controllability and optimal control of stochastic Markovian jump systems

with time-delays,” Automatica, vol. 44, no. 12, pp. 3120–3125, 2008.
[12] X.Mao, “Robustness of stability of stochastic differential delay equationswithMarkovian Switching,”

Stability and Control: Theory and Applications, vol. 3, no. 1, pp. 48–61, 2000.
[13] H. Gilsing, “On the stability of the Euler scheme for an affine stochastic delay differential equation

with the delay,” Tech. Rep. 20,SFB 373, Humboldt University, Berlin, Germany, 2001.
[14] A. V. Swishchuk and Y. I. Kazmerchuk, “Stability of stochastic of differential delay Ito’s equationswith

Possion Jumps andwithMarkovian Switching. Application to Financial Models,” Teoriya Veroyatnostei
i Matematicheskaya Statistika, vol. 63 (63), 2001.

[15] J. Luo, J. Zou, and Z. Hou, “Comparison principle and stability criteria for stochastic differential delay
equations with Markovian switching,” Science in China. Series A, vol. 46, no. 1, pp. 129–138, 2003.
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