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We examine optimality and performance of a tandem manufacturing line driven by a surplus-
based decentralized production control strategy. The main objective of this type of production
strategies is to guarantee that the cumulative number of produced products follows the cumulative
production demand on the output of the given network. The basic idea of surplus-based control
strategy is presented for the case of one manufacturing machine. We prove that this strategy is
optimal. Then, a flow model of a line composed of arbitrarily many machines with bounded buffers
is analyzed. We prove that the surplus-based production control enables this network to efficiently
follow the product demand and establish the relation between the efficiency in the production
tracking error and the intermediate inventory levels of a line. Performance and robustness of the
flow model of the closed-loop manufacturing line are illustrated by computer simulations.

1. Introduction

Nowadays, the highly dynamic market environment requires that production control policies
implemented in manufacturing industries should be capable of providing quick and accurate
responses to constant and rapid changes in the production demand. This strongly shifts the
interests of manufacturers to the need of theoretical analysis of the currently existing policies,
that is, the study of conformity between the production output and the demand of their pro-
duct, as well as the relation between stock level (buffer content) and the production surplus
of the manufacturing network.
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Currently, there is a substantial literature on manufacturing control policies and their
performance. A number of classifications of these policies were introduced by various
authors. In this paper, we follow the classification introduced in [1], which puts the control
policies into three categories: token-based, time-based, and surplus-based, respectively. In
token-based approaches, the so-called tokens are generated and utilized to trigger certain
events in the manufacturing system. The famous examples of such a policy are Kanban [2, 3],
Conwip [4], and Basestock [5]. The time-based approaches offer to make the control decisions
on the basis of the time when a certain operation should take place, they are exemplified by
Material Resource Planning, Least Stack, and Earliest Due Date strategies (see, e.g., [6]). In
the surplus approach, control decisions are based on the production tracking error, (here the
term “production tracking” refers to the action of following or keeping track of the produc-
tion demand trajectory on the output of a given network) which is the difference between the
cumulative demand and output of the system. For extensive surveys and further details
concerning, in particular, the production line control mechanisms, we refer the reader to [1, 7–
9].

In the afore-mentioned literature, considerable research effort has been invested into
the issue of optimality. In [10], the authors showed that for unreliable manufacturing systems
with parameters from a certain domain, the zero-inventory policies are optimal even if there is
an uncertainty in the manufacturing capacity. This was demonstrated under the assumption
that the demand rate is constant and the production rate can be adjusted proceeding from the
deviation from the optimal inventory level. In [11], the optimality of pull controlled flow shop
was established in the case where the performance index encompasses the buffer holding
costs and system shortfall/inventory costs. This research treated the production demand and
processing rates as deterministic.

In [12], a broad class of dynamic scheduling problems associated with single-server,
multiclass, continuous-flow, flexible manufacturing systems was considered. The objective
was to minimize the integral of an instantaneous cost function defined on the inventory/
backlog state of the system. The authors provide sufficient conditions under which the opti-
mal solution comes to implementation of the myopic scheduling policy. The paper also
presents examples and counterexamples that explicitly illustrate the behavior and limitations
of the myopic scheduling policies.

In [13], a model based on stochastic discrete-time controlled dynamical systems was
developed in order to derive optimal policies for controlling the material flow in supply
networks. Contrary to most studies in the area, which typically assume a given (parameter-
ized) control strategy and analyze how the dynamics depends on the parameters, the authors
do not assume a certain family of strategies a priori, thus allowing any control law in the form
of a function of the current state of the system. The individual nodes are controlling their
inflows in a decentralized fashion by placing orders to their immediate suppliers. An explicit
optimal state-feedback control is derived with respect to the cost functional that typically
takes into account both inventory holding costs and ordering costs.

Extended reviews on optimal control in production networks can be found in, for ex-
ample, [8, 9, 14].

This paper offers the extension of our previous results (see [15]) on an analytical analy-
sis for pull-type policies that concern a single machine and a line of machines with both being
driven by the cumulative production demand. In addition to our previous work (see [15]),
where we also examined the performance of one machine and the line, here we present some
novel results. In this paper, in case of one machine, we find the optimal control policy that
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minimizes the mismatch between the cumulative production output and cumulative de-
mand. Then, we examine a tandem line, where each machine is driven by the obtained opti-
mal policy. For this network, we obtain the bounds of the production surplus for all machines,
as well as in [15], but now assuming that the manufacturing line has a limited inventory
(buffer content) for storing its intermediate production. Also in this paper we provide the
analytical results obtained on the tradeoff relationship between the production tracking error
bounds and the inventory level (buffer capacity) of a manufacturing line. In our simulation
results, we show that this relation have an important meaning and can be used as a tool in
practice.

Thus, we first tackle the problem of optimal control for one manufacturing machine
that nominally produces products in lots of a given size and is controlled by carrying out only
two commands (“on” and “off”), unlike [13], where the size of the lot was controllable and
the set of feasible controls was a polygon. Another difference is that we deal with a deter-
ministic model of the system. Similarly to [13] and contrary to the bulk of the literature in the
area, we do not limit the class of the strategies a priori and take into account all control laws
that are fed by the currently available data, which concerns not only the current system
state but also the past states. The system is influenced by uncertain disturbances that are
due to both market fluctuations in demand rate and random fluctuations in the production
rate of the machine. By assuming known bounds on these disturbances and by applying the
min-max dynamical programming, we prove that surplus-based pull control policy is opti-
mal.

Further, we apply classical tools from the control theory in order to evaluate the per-
formance of this technique for a unidirectional production line of N machines with limited
capacity intermediate buffers.

The production flow process is described by means of difference equations and in
order to analyze performance, Lyapunov theory approach is employed (see, e.g., [16, 17]
and references therein). Each machine in the line coordinates its individual production with
those of the rest of the system. Its primary objective may be viewed as manufacturing of
sufficient quantity of parts to satisfy the demand of its immediate downstream machine and
some desired amount as backup material storage in its downstream buffer. The production
strategy itself is intuitive and we will show that it can be associated with existing tech-
niques.

To the best of our knowledge, concerning the previous results on performance analysis
of surplus-based approaches (see, e.g., [9, 10, 18–23], as well as the references from our re-
view), the novelty of our result can be summarized as follows. The studied tandem pro-
duction model is considered in discrete time, where the production speed of each machine
is defined as deterministic with bounded perturbations. The future production demand is
assumed to be unknown and with bounded fluctuations. As the result, for a line of N ma-
chines with limited capacity intermediate buffers, strict “worst case” bounds on production
tracking errors were obtained as well as their relation with the system inventory levels. In
our simulation results, it is shown that the obtained relation can be a very important tool to
be used in the decision-making process by a production line manager.

The paper is organized as follows. In Section 2, a discrete-time flow model of a single
manufacturing machine is presented and the optimal control strategy is obtained. Section 3
is devoted to study of a flow model of a unidirectional manufacturing line. Performance of
the closed-loop production line is illustrated by computer simulations in Section 4. Finally,
Section 5 presents conclusions and discussions of future work.
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2. Analysis of One Manufacturing Machine

2.1. Flow Model

At discrete time k and for one manufacturing machine, the cumulative number of produced
products can be described as the sum of its production rates at each time step till time k. So,
the flow model of one manufacturing machine in discrete time is defined as

y(k + 1) = y(k) + u(k) + f(k), ∀k ∈ N, (2.1)

where y(k) ∈ R is the cumulative output of the machine in time k, u(k) ∈ R is the control
signal, f(k) ∈ R is an unknown external disturbance that affects on the production rate of the
machine and N is a set of naturals.

Under the assumption that there is always sufficient quantity of the raw material to
feed the machine, the control aim is to track the nondecreasing cumulative production de-
mand. We define the cumulative production demand by using yd(k) ∈ R given by

yd(k) = yd0 + vdk + ϕ(k), (2.2)

where yd0 is a positive constant that represents the initial production demand, vd is a posi-
tive constant that defines the average desired demand rate, and ϕ(k) ∈ R is the bounded
fluctuation that is imposed on the linear demand vdk, for example, market fluctuation.

At each time step k, the control input u can take only two values: 1 or 0. With regard to
(2.1), this means that the nominal size of the lot produced by the machine for the unit time
is assumed to be 1. (The unity is taken for the definiteness. The case of arbitrary production
rate can be reduced to that at hand by proper scaling of all variables involved.)

To efficiently fulfill the control aim, we are going to minimize the production error
ε(k) = yd(k) − y(k) over the class of all control strategies fed by the available data:

u(k) = Uk

[
y(0), . . . , y(k), yd(0), . . . , yd(k)

] ∈ {0; 1}. (2.3)

Due to (2.1) and (2.2), the evolution of the production error ε(k) obeys the following
equation:

ε(k + 1) = ε(k) − u(k) + ξ(k), where ξ(k) := vd + Δϕ(k) − f(k), (2.4)

and Δϕ(k) = ϕ(k + 1) − ϕ(k) is the deviation of the demand rate Δϕ(k) + vd from its average
desired value vd. We assume that despite of the disturbances, the demand rate is realistic, that
is, it lies within the nominal bounds u(k)+f(k)|u(k)=0 = f(k) and u(k)+f(k)|u(k)=1 = f(k)+1 of
the actual production rate u(k) +f(k). As a result, the signed deviation ε(k) = yd(k)−y(k) of
the cumulative output from the cumulative demand is controllable: it can be both decreased
ε(k+1) ≤ ε(k) and increased ε(k+1) ≥ ε(k) by applying the proper feasible control u(k) = 0, 1.

This implies the following condition (also known as capacity condition):

0 < ξ(k) < 1, ∀k ∈ N. (2.5)
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2.2. Optimal Control Strategy

In this section, we examine the following two optimization problems:

JT = sup
ξ(0),...,ξ(T−1)

T∑

k=0

|ε(k)|p −→ min
U

, (2.6)

J∞ = lim sup
k→∞

sup
ξ(·)

|ε(k)|p −→ min
U

. (2.7)

Here, p ≥ 1 is a given constant, sup is taken over all ξ(·) satisfying (2.5), and U = {Uk(·)}∞k=0
is the set of all possible control strategies given by (2.3).

The problem (2.6) is to optimize the worst-case summary error, where the sum is over
the given and finite time horizon T and the worst case is considered with respect to feasible
perturbations ϕ(k), f(k), and demand rate vd. This optimization provides the best perfor-
mance guarantees in the face of uncertainties in vd, ϕ(k), and f(k). The performance criterion
(2.7) is aimed at minimization of the worst-case production error at large enough times via,
maybe, sacrificing the exactness of tracking the production demand during an initial time
interval. Though the control objectives in (2.6) and (2.7) are different, the main result of this
section (Theorem 2.1) shows that they are achieved by a common control strategy.

In (2.6) and (2.7), the larger values of the parameter p are used to penalize large pro-
duction errors more severely. In the literature, the most popular values are p = 1, 2. We con-
sider arbitrary p ∈ [1,+∞) partly in order to show that the solution of the optimization prob-
lem is not influenced by the value of p. This is presumably due to the use of discrete controls
u = 0, 1; if the set of feasible controls is not finite, the solution typically depends on p.

The following theorem is the main result of the section.

Theorem 2.1. The following control strategy

u(k) = sign+(ε(k)) (2.8)

is optimal with respect to the performance index (2.6) for any given T , as well as with respect to the
performance criterion (2.7). This is true irrespective of the choice of p ∈ [1,+∞).

Here, the control action is given by

u = sign+(ε) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if ε > 0

0 if ε < 0

0, 1 if ε = 0.

(2.9)

Basically, this controller works as a pull control that authorizes the machine to produce if the
product surplus is negative, stops the machine if the surplus is positive, and randomly selects
between the two previous decisions if the surplus is on the boundary.

The proof of Theorem 2.1 is given in Appendix A.
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Figure 1: Schematics of a line of N manufacturing machines.

Now that for one machine the optimal tracking controller is derived, we can extend our
analysis of this strategy by applying it to a line of N manufacturing machines with bounded
intermediate buffers.

3. A Line of Machines with Bounded Buffers

3.1. Flow Model

The flow model of a manufacturing line is presented in this section. Figure 1 shows a sche-
matics of a line of N manufacturing machines with machines Mj , buffers Bj , and infinite pro-
duct supply. The optimal control strategy from the previous section is modified with respect
to the buffers and the machines present in the line. New limitations such as desired buffer
content and buffer capacity restriction are considered in the model.

The flow model of the manufacturing line is defined as

y1(k + 1) = y1(k) + β1(k)sign−
(
w2(k) − γ2

)
, (3.1)

yj(k + 1) = yj(k) + βj(k)signBuff

(
wj(k) − βj(k)

)
sign−

(
wj+1(k) − γj+1

)
, j = 2, . . . ,N − 1,

(3.2)

yN(k + 1) = yN(k) + βN(k)signBuff

(
wN(k) − βN(k)

)
, (3.3)

where yj(k) is the cumulative output of machine Mj in time k, wj(k) = yj−1(k) − yj(k) is the
content of buffer Bj , βj(k) = uj(k) + fj(k), for all j = 1, . . . ,N, fj is the external disturbance
affecting machine Mj (e.g., production speed variations, undesired delay or setup time), uj

is the control input of machine Mj , signBuff(x) = (1, if x ≥ 0 | 0, otherwise), sign−(x) = (1, if
x ≤ 0 | 0, otherwise), and γj+1 is the threshold value of the buffer content wj+1.

In order to give a solution to the demand tracking problem, we propose the following
control inputs:

uj(k) = μj sign+

(
εj+1(k) +wdj+1 −wj+1(k)

)
, ∀j = 1, . . . ,N − 1,

uN(k) = μN sign+

(
yd(k) − yN(k)

)
,

(3.4)

where μj is the constant processing speed of machine j, wdj+1 is the constant that represents
the desired inventory level of buffer Bj+1, and εj+1 is the production error of machine Mj+1.
Here, for simplicity, we restrict the value of sign+ function, which was defined in the previous
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Figure 2: Flow model diagram for a line of N manufacturing machines.

section, to sign+(x) = (1, if x > 0 | 0, otherwise). The tracking error of each machine is given
by

εj(k) = εj+1(k) +
(
wdj+1 −wj+1(k)

)
, ∀j = 1, . . . ,N − 2, (3.5)

εN−1(k) = εN(k) + (wdN −wN(k)), (3.6)

εN(k) = yd(k) − yN(k). (3.7)

It follows from (3.7) that the error of machine MN is defined exactly as for the single machine
case. The buffer restriction, as seen from (3.3), is the only difference in the flow model of
machine MN with the flow model of (2.1). For (3.5), (3.6) new considerations are applied
for the production error of each machine Mj , where j = 1, . . . ,N − 1. Here, εj(k) depends
on number of produced products yj(k) with respect to current demand yd(k) and desired
buffer content (buffer inventory level)wdj+1 of each downstream buffer. This means that every
upstream machine needs to produce wdj+1 lots more than the downstream one. Constant
parameter wd is introduced in order to prevent downstream machines from starvation, for
example, in case of a sudden growth of the product demand.

Figure 2 shows a schematic of the information flow throughout the manufacturing line
of N machines. The squares represent the manufacturing machines each with inside label Mj

and outside short thick black arrows denoting the external perturbations (fi), which are af-
fecting its production rates. Each machine (exept for M1) has a buffer connected to it, each
one denoted by 3 joined squares. The product flow directions are denoted by a thick white
arrows with a thin black frame. The transferring of the production tracking error (εj) infor-
mation is shown by arched thin black arrows, going from one machine to another in upstream
manner. For each machine, the upstream and downstream inventory level (wj) information
transfer is depicted by a curved thin black arrow coming from each buffer and the desired
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downstream buffer inventory level is shown by a short thin black arrow pointing to each
machine.

The substantial difference in the model for N machines compared to the model of one
machine can be appreciated through the flow model (3.2) as well as graphically through the
Figure 2. For each machine, we introduce an extra restriction on production that is based on
the buffer content of its upstream and downstream buffer. Functions signBuff(wj(k) − βj(k))
and sign−(wj+1(k)−γj+1) together with the control input uj(k) are acting as the restrictions that
are imposed on production of Mj . Thus, any machine Mj , with j = 2, . . . ,N − 1, is activated
only if three authorizations are given. The first authorization comes from control input of
Mj , which is based on the current production error value of this machine (εj(k)). The second
authorization comes from the restriction on the upstream buffer content that is granted if
the buffer contains at least the minimal number of products required (βj(k)) in order for the
machine Mj to start its work. Finally, the third authorization comes from the downstream
buffer of given machine. This authorization is possible only if the downstream buffer have
sufficient storage in order to accept incoming production.

Note that we could easily associate this control algorithm with Basestock policy (see
[7] and references there in) as well as with Hedging Point policy (see [1] and references there
in). From (3.5) the production error of each intermediate machine can be interpreted as
εj(k) = yd(k) − yj(k) +wdj+1 + · · · +wdN , j = 1, . . . ,N − 2.

This means that each machine is keeping track of the current demand as well as of its
Hedging point or its Basestock level, which in this case is the sum of the desired buffer con-
tents of all the downstream buffers of Mj . Also, due to our intermediate buffer content limi-
tation (γj), this policy could be associated to a Kanban or a combination of local Conwip con-
trollers (one for each intermediate machine) and a surplus-based pull control (for the output
machine MN).

It is also important to take into account that the control actions are decentralized
throughout the network. In other words, the control action of each machine in the line de-
pends only on the production error of its neighboring downstream machine (except for ma-
chine MN , which control action depends directly on cumulative demand input) and the cur-
rent buffer content of its upstream and downstream buffer (see Figure 2). This gives our flow
model an extra robustness with respect to the undesired events such as temporal machine
setup or breakdown.

For further analysis, let us rewrite flow model (3.1), (3.2), and (3.3) in feedback with
(3.4) as

Δε1(k) = vd + Δϕ(k) − f1(k) − μ1 sign+(ε1(k))sign−
(
w2(k) − γ2

)
, (3.8)

Δεj(k) = vd + Δϕ(k) − fj(k) − μj sign+

(
εj(k)

)
signBuff

(
wj(k) − βj(k)

)
sign−

(
wj+1(k) − γj+1

)
,

(3.9)

ΔεN(k) = vd + Δϕ(k) − fN(k) − μN sign+(εN(k))signBuff

(
wN(k) − βN(k)

)
, (3.10)

where Δεj(k) = εj(k + 1) − εj(k).
For system (3.8), (3.9), and (3.10), let us introduce the following assumptions.
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Assumption 3.1 (Boundedness of perturbations). There are constants α1, α2, and α3 such that
Wj(k) = Δϕ(k) − fj(k), for all j = 1, . . . ,N, satisfies

α1 < Wj(k) < α2, ∀k ∈ N, (3.11)

and fj(k) satisfies

fj(k) ≤ α3, ∀k ∈ N. (3.12)

Assumption 3.2 (Capacity condition). Constants α1, α2 satisfy the following inequalities

α2 < μj − vd, (3.13)

α1 > −vd. (3.14)

Thus, from (3.11), (3.13), and (3.14), the following condition holds:

0 < vd +Wj(k) < μj, ∀j = 1, . . . ,N. (3.15)

It is important to notice that each machine Mj in the line has a processing speed of μj

lots per time unit, which can differ from the rest of the machines.
The buffer content condition is considered as

βj(k) ≤ wj(k) < γj , ∀j = 2, . . . ,N. (3.16)

Note that the physical restriction on buffer content is given as

0 ≤ wj(k) ≤ γj + μj−1 + α3, ∀j = 2, . . . ,N. (3.17)

Here, γj = μj + α2 − α1 + wdj . Thus, from (3.5), (3.6) and (3.16), the following tracking error
condition holds

εj(k) ≥ βj(k) −wdj + εj−1(k), ∀j = 2, . . . ,N, (3.18)

where wdj satisfies the following assumption.

Assumption 3.3 (Desired buffer content condition). The constants wdj comply with the fol-
lowing inequality:

wdj ≥ μj + μj−1 + α3 + α2 − α1, (3.19)

from where it follows that

wdj ≥ βj(k) + μj−1 + α2 − α1, ∀k ∈ N, j = 2, . . . ,N. (3.20)



10 Mathematical Problems in Engineering

One can note the following relation between the buffer content and the tracking errors
of its neighboring machines. That is, if the first part of inequality (3.16) is not satisfied, that
is, the buffer content is lower than the minimum, then

εj−1(k)
(3.6),(3.17)

> μj−1 + α2 − α1 + εj(k). (3.21)

In case the second part of (3.16) is unsatisfied, that is, the buffer is full, then

εj(k)
(3.6)
≥ μj + α2 − α1 + εj−1(k). (3.22)

3.2. Results on Performance

In this section, we present obtained results on the production tracking error trajectories be-
havior of flow model (3.8).

Theorem 3.4. Assume that the discrete time system defined by (3.8), (3.9), and (3.10) satisfies
Assumptions 3.1, 3.2, and 3.3. Then, all solutions of (3.8), (3.9), and (3.10) are uniformly ultimately
bounded by

lim sup
k→∞

εj(k) ≤ vd + α2,

lim inf
k→∞

εj(k) ≥ vd + α1 − μj.
(3.23)

Proof. The proof of Theorem 3.4 is given in Appendix B.

Theorem 3.5. Assume that the discrete time system defined by (3.8), (3.9), and (3.10) satisfies
Assumptions 3.1 and 3.2. Then, all solutions of (3.8), (3.9), and (3.10) are uniformly ultimately
bounded by

lim sup
k→∞

εj(k) ≤ vd + α2 + xj , (3.24)

lim inf
k→∞

εj(k) ≥ vd + α1 − μj, (3.25)

where x1 = 0 and xj =
∑j

i=2 max((μi−1 − α1 + α2 −wdi + (μi + α3︸ ︷︷ ︸
βi

)), 0) for all j = 2, . . . ,N.

Proof. The proof of Theorem 3.5 is given in Appendix C.

Now, in order to support the proposed development, let us supplement our analysis
by a simulation example.
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Figure 3: Tracking error εj(k).

4. Simulation Examples

Consider the following example of a production line of 4 manufacturing machines (see Figure
1) operating under surplus-based regulators (3.4). The processing speed for each machine is
set to μj = 6 lots per time unit for all j = 1, 3 and μj = 4 lots per time unit for all j = 2, 4,
the desired inventory level of each buffer is selected considering (3.20) as wdj = 12 lots, with
j = 2, . . . , 4, and the mean demand rate vd = 3.5 lots per time unit with fluctuation rate of
Δϕ(k) = 0.2 sin(5k). The tracking error of each machine in the line is depicted in Figure 3.
Here, the initial conditions (yd0, y1(0), y2(0), y3(0), y4(0)) were set to the zero value. After
the first 40 time steps, as it is shown in Figures 4 and 3, the system reaches its steady state.
Tracking errors (see the dashed lines of Figure 3) are maintained inside [−2.7, 3.7] lots for
machine M1, [−0.7, 3.7] lots for machine M2, [−2.7, 3.7] lots for machine M3, and [−0.7,
3.7] lots for machine M4, which satisfy the bounds (3.23). From Figure 5 it can be observed
that the inventory level of each buffer satisfies the buffer limit given by the second part of
inequality (3.17) and the capacity condition (3.16) is sometimes violated due to the discrete
nature of the model. Here, γ2 = 14.8 (lots), γ3 = 16.8 (lots), γ4 = 14.8 (lots).

Now, let us show the effectiveness of Theorem 3.5 by means of a following example.
Consider a similar production line of 4 manufacturing machines (see Figure 1) operating
under surplus-based regulators (3.4). The nominal speed for each machine is μ1 + f1(k) =
10.56 + 0.5 sin(180k), μ2 + f2(k) = 10.7 + 0.5 sin(20k), μ3 + f3(k) = 15.5 + 0.5 sin(45k) and
μ4 + f4(k) = 20.5+ 0.5 sin(90k) lots per time unit. The desired inventory level of each buffer is
selected as wdj = μjρ lots, with j = 2, . . . , 4 and ρ as a constant. The experiment was executed
37 times. Thus, the value of constant ρ was modified 37 times as well, starting from ρ = 1
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Figure 5: Buffer content wj(k).

and with increments of 0.25 units till ρ = 10. The demand rate was selected as vd + Δϕ(k) =
10 + 0.05 cos(45k) lots per time unit. Here, each γj was selected according to (3.16). For this
experiment, the initial conditions (yd0, y1(0), y2(0), y3(0), y4(0)) were set to the zero value.

The relation between the maximal value of steady-state (SS) production tracking errors
of machines M2, M3, M4 (see Figure 1) and the desired inventory levels of there upstream
buffers is depicted in Figure 6. Each graphic of Figure 6 shows the maximal value of each
εj in SS with its values from simulation and from analytical result given by (3.24). It could
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Figure 6: Production tracking errors versus desired inventory levels.

be appreciated that our analytical result describes in rather accurate manner the tradeoff be-
tween the desired inventory level and the accuracy of the production demand satisfaction. It
is important to notice that the production tracking error precision is limited. Thus, for each of
3 machines, the production surplus can be decreased by incrementing the desired inventory
level till some threshold value, which is given by (3.20), after which the bound on the surplus
value remains constant. Doing so improves the service level of the network but increases the
inventory costs. At the same time, lowering the inventory level further than the threshold
decreases the service level of the network. This trade-off relationship plays an important role
in the decision-making process of a production line manager. By using the relation provided
beforehand in Theorem 3.5, a number of scheduling related decisions can be significantly
reduced, which in consequence can decrease a computational time spent on planning for an
efficient distribution of resources in a production line. In conclusion, presented simulation
results reflect the desired flow model behavior, that is, all technical conditions proposed in
this section correspond to analytical results described in Section 3. Also, the result shown on
Figure 6 underlines the practical importance of the obtained theoretical results.

5. Conclusion

In the case of a single manufacturing machine in isolation, a surplus-based pull controller was
proven to be optimal for the cumulative production demand tracking problem. This control
strategy was extended to a tandem production line with variable processing speed of each
machine and restrictions on the sizes of intermediate buffers. The performance of the closed-
loop system was addressed in the form of bounds on the production tracking errors that occur
for each machine in the line, respectively. The analytical results describing the tradeoff
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relationship between the production tracking errors and the inventory level in the manu-
facturing line were obtained. All theoretical results were illustrated and confirmed by com-
puter simulation. In simulation results, it was shown that our analytical results on perfor-
mance can be used as an important tool in the decision-making process of the production line
manager.

Our future work includes study of performance of re-entrant networks, and multiple
part type production systems. A special attention will be given to detailed production analy-
sis of these networks in the presence of unexpected delays and setup times.

Appendices

A. Proof of Theorem 2.1

Based on (2.4), it is easy to see that without any loss of generality, the class of admissible
control strategies (2.3) can be reduced to those processing only the tracking errors:

u(k) = Uk[ε(0), . . . , ε(k)] ∈ {0; 1}. (A.1)

We start with the problem (2.6). The proof is based on the min-max dynamic prog-
ramming. So, we first introduce the cost-to-go:

Vτ(a) = min
Uτ (·),...,UT−1(·)

sup
ξ(·)

T∑

k=τ

|ε(k)|p, VT [a] := |a|p, (A.2)

where the minimum is over all functions Uk(εk, . . . , εT−1) ∈ {0; 1}, and ε(k) is obtained from
(2.4), where k = τ, . . . , T − 1 and ε(τ) = a. This function satisfies the Bellman equation ([24]):

Vτ−1(a) = min
u=0;1

sup
ξ∈(0;1)

{|a|p + Vτ[a − u + ξ]
}
, (A.3)

and the optimal strategy is given by u(τ − 1) = U0
τ−1[ε(τ − 1)], where U0

τ−1[a] is the point u
furnishing the minimum in (A.3).

Lemma A.1. The cost-to-go (A.2) is the piece-wise smooth even function depicted in Figures 7 and 8,
and

U0
τ(a) = sign+(a) for τ = 0, . . . , T − 1. (A.4)

Proof. We first note that (A.3) can be shaped into

Vτ−1(a) = min

⎧
⎪⎨

⎪⎩

S0︷ ︸︸ ︷
sup
ξ∈(0;1)

Vτ[a + ξ];

S1︷ ︸︸ ︷
sup
ξ∈(0;1)

Vτ[a − ξ]

⎫
⎪⎬

⎪⎭
+ |a|p. (A.5)

Here, S0 and S1 correspond to u = 0 and u = 1, respectively. So, U0
τ−1(a) = σmin, where σmin =

0, 1 is the index of the term Sσ furnishing the minimum in (A.5). We also note that since
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the function a �→ |a|p is even, simple induction on τ = T, . . . , 0 and the last equation from (A.2)
show that Vτ[·] is even for any τ . With this in mind, it becomes clear that firstly, σmax = 0, 1 for
a = 0 and secondly, substitution a := −a in (A.5) switches σmin to the alternative value. This
permits us to focus on a > 0 in the subsequent proof. For a > 0, formula (A.4) (to be justified)
takes the form U0

τ(a) = 1.
We proceed with immediate proof of the lemma, arguing by induction on τ = T −n, n =

0, 1, . . ..

(i) n = 0. The claim is immediate from the last equation in (A.2).

(ii) n = 1.

(a) a ≥ 1/2. Then evidently, S1 = |a|p, and S0 = |a + 1|p > S1. So, due to (A.5),
VT−1(a) = 2|a|p, as is depicted in Figure 7(b), and U0

τ(a) = 1.

(b) 0 < a < 1/2. Since VT (·) is even, S1 = |a − 1|p < |a + 1|p = S0. So VT−1 =
|a − 1|p + |a|p, as is depicted in Figure 7(b), and U0

τ(a) = 1.
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(iii) n = 2.
(a) a ≥ 1. Similarly, in (A.5), the supremum S0 is equal to 2|a + 1|p, whereas S1 =

2|a|p < S0.
(b) 1/2 ≤ a < 1:

S1 =

⎧
⎨

⎩

2|a|p a > p
√

1/2

1 a < p
√

1/2

⎫
⎬

⎭
< 2|a + 1|p = S0, (A.6)

(c) 0 ≤ a < 1/2:

S1 =

⎧
⎨

⎩

2|a − 1|p a < 1 − p
√

1/2

1 a > 1 − p
√

1/2

⎫
⎬

⎭
< 2|a + 1|p = S0. (A.7)

Thus

VT−2(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3|a|p a ≥ p
√

1/2

1 + |a|p 1 − p
√

1/2 ≤ a < p
√

1/2

2|a − 1|p + |a|p a < 1 − p
√

1/2,

(A.8)

as is depicted in Figure 8(a), so U0
τ(a) = 1.

Figure 8(a) is a particular case of Figure 8(b). So to complete the proof, it suffices to
show that:

(D) Figure 8(b) is correct and U0
T−n(a) = 1 for n = 2, 3, . . ., arguing by induction on n.

Suppose that (D) is true for some n ≥ 2. To compute VT−n−1(a), we consider separately
several cases.

(i) a ≥ p
√
n/(n + 1). Here p

√
n/(n + 1) > p

√
(n − 1)/n. It follows that in (A.5) the supre-

mum S1 is attained at ξ = 0 and thus equals (n+1)|a|p, whereas S0 = (n+1)|a+1|p >
S1. Thus, (D) does hold for n := n + 1.

(ii) p
√
(n − 1)/n ≤ a ≤ p

√
n/(n + 1). Then evidently S1 = n, whereas S0 = (n+1)|a+1|p >

S1. Thus (D) does hold for n := n + 1.
(iii) 1 − p

√
(n − 1)/n ≤ a ≤ p

√
(n − 1)/n. Since the left end a − 1 of the interval [a − 1, a] is

still to the right of the first fracture point of the graph from Figure 3(b), the situation
replicates the previous one.

(iv) 1− p
√
n/(n + 1) ≤ a ≤ 1− p

√
(n − 1)/n. That end is to the left of the first fracture point.

So either S1 = n (and is attained at the third fracture point) or S1 = (n + 1)|a − 1|p
(and is attained at ξ = 1). Elementary comparison shows that in fact S1 = n, and so
the situation still replicates the previous two ones.

(v) 0 ≤ a ≤ 1 − p
√
n/(n + 1). Then, conversely, S1 = (n + 1)|a − 1|p, whereas S0 = (n + 1)

|a + 1|p > S1. Thus, (D) does hold for n := n + 1, which completes the proof.

For the performance index (2.6), Theorem 2.1 is straightforward from Lemma A.1 and
the dynamic programming principle ([24]).
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To deal with (2.7), we introduce the following intermediate performance criterion:

Jav = lim sup
T →∞

sup
ξ(0),...,ξ(T−1)

1
T

T∑

k=0

|ε(k)|p. (A.9)

It is clear that

inf
U

Jav ≥ lim sup
T →∞

1
T

min
U

JT
(A.2)
=== lim sup

T →∞

V T
0 (a)
T

, (A.10)

where the upper index T in V T
τ underscores that the cost-to-go is computed for the time ho-

rizon [0 : T]. As a result, Lemma A.1 and the evident inequality J∞ ≥ Jav imply the following
lower estimates:

inf
U
J∞ ≥ inf

U
Jav ≥

⎧
⎨

⎩

|a|p if |a| ≥ 1

1 otherwise.
(A.11)

Now, we are going to show that this lower estimate of J∞ is attained at the control strategy
(2.8), which will complete the proof.

Let the system (2.4) be driven by the control law (2.8). By invoking (2.5), we conclude
that

ε[k + 1] ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ε[k] − 1, ε[k]) if ε(k) > 0

(ε[k], ε[k] + 1) if ε(k) < 0

(ε[k] − 1, ε[k] + 1) if ε(k) = 0.

(A.12)

Hence,

f−[ε(k)] ≤ ε(k + 1) ≤ f+[ε(k)], where f−(ε) := min{ε;−1}, f+(ε) := max{ε; 1}. (A.13)

It follows that

ε−(k) ≤ ε(k) ≤ ε+(k) ∀k, (A.14)

where ε−(k) and ε+(k) are the solutions of the following recursions:

ε±(k + 1) = f±[ε±(k)], ε±(0) = a. (A.15)

It is evident that

ε±(k) ∈ [min{−|a|,−1}; max{|a|; 1}], (A.16)

which completes the proof.
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B. Proof of Theorem 3.4

Proof. Let us prove that Theorem 3.4 holds for a line of 2 manufacturing machines (j = 1, 2)
defined by (3.8) and (3.10). With this goal, let us introduce the following Lyapunov function:

V 2M(ε1; ε2) = max{V1(ε1), V2(ε2)}, (B.1)

where

Vj

(
εj
)
= max

{−εj − μj + vd + α1, εj − vd − α2, 0
}
> 0, ∀εj /∈

[
vd + α1 − μj, vd + α2

]
, j = 1, 2.

(B.2)

Here, for the sake of brevity V 2M(ε1(k), ε2(k)) = V 2M
k

, Vj(εj(k)) = Vj,k, with V 2M = 0 for all
εj ∈ [vd + α1 − μj, vd + α2].

Thus, ΔV 2M
k along the solutions of ε1(k) and ε2(k) is given by

ΔV 2M
k = V 2M

k+1 − V 2M
k = max{V1,k+1, V2,k+1} + min{−V1,k,−V2,k}, (B.3)

where

Vj,k+1 = max

⎧
⎪⎪⎨

⎪⎪⎩

−εj(k) −Wj(k) + α1 − μj + μjηj,k,

εj(k) +Wj(k) − α2 − μjηj,k,

0

⎫
⎪⎪⎬

⎪⎪⎭
, j = 1, 2. (B.4)

Here, for the sake of brevity we introduce ηj,k as

η1,k = sign+(ε1(k))sign−
(
w2(k) − γ2

)
,

η2,k = sign+(ε2(k))signBuff

(
w2(k) − β2(k)

)
.

(B.5)

In order to perform a more detailed analysis on ΔV 2M
k , let us divide this proof into 3 cases.

Case 1 (Sufficient buffer content). Suppose that w2(k) satisfies the following inequality:

β2(k) ≤ w2(k) < γ2, (B.6)

which means that machine M2 has sufficient material in its buffer B2 in order to start working
and machine M1 always has an access to the infinite raw material supply. Thus, these ma-
chines have an independent behavior and it will be sufficient to analyse the increment of
only one of the functions Vj,k in order to determine the behavior of ΔV 2M

k
.

Let us assume that εj(k) satisfies the following condition:

εj(k) > 0, (B.7)

and in consequence from (B.5) it follows that ηj,k = 1.
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Then, ΔVj,k along the solutions of εj(k) is given by

ΔVj,k = max

⎧
⎪⎪⎨

⎪⎪⎩

−εj(k) −Wj(k) + α1,

εj(k) +Wj(k) − α2 − μj,

0

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

Vj,k+1

+ min

⎧
⎪⎪⎨

⎪⎪⎩

εj(k) + μj − vd − α1,

−εj(k) + vd + α2,

0

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

−Vj,k

, j = 1, 2.
(B.8)

From where with help of Assumptions 3.1 and 3.2, it can be easily deduced that

ΔVj,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if εj(k) ≤ vd + α2,

−εj(k) + vd + α2 < 0 if vd + α2 < εj(k) ≤ μj + α2 −Wj(k),

−μj + vd +Wj(k) < 0 if εj(k) > μj + α2 −Wj(k).

(B.9)

Now, suppose that for εj(k) the following condition holds:

εj(k) ≤ 0, (B.10)

and in consequence from (B.5) it yields that ηj,k = 0. Then, ΔVj,k along the solutions of εj(k)
is given by

ΔVj,k = max

⎧
⎪⎪⎨

⎪⎪⎩

−εj(k) −Wj(k) + α1 − μj,

εj(k) +Wj(k) − α2,

0

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

Vj,k+1

+ min

⎧
⎪⎪⎨

⎪⎪⎩

εj(k) + μj − vd − α1,

−εj(k) + vd + α2,

0

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

−Vj,k

, j = 1, 2.
(B.11)

Here, with help of Assumptions 3.1 and 3.2 it can be easily deduced that

ΔVj,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if vd + α1 − μj ≤ εj(k) ≤ 0,

−vd −Wj(k) < 0 if εj(k) < −μj + α1 −Wj(k),

εj(k) + μj − vd − α1 < 0 if − μj + α1 +Wj(k) ≤ εj(k) < vd + α1 − μj.

(B.12)

Summarizing, for conditions (B.6), (B.7), and (B.10) from (B.9) and (B.12) it holds that
if Vj,k > 0, its increment ΔVj,k < 0. From the definition of min, it yields that for ΔV 2M

k
given

by (B.3) the following inequality is satisfied:

ΔV 2M
k ≤ Vi,k+1 − Vi,k ≤ 0, (B.13)

where i = arg maxj=1,2{Vj,k+1}. Note that ΔVj,k = Vj,k+1 −Vj,k = 0 only if either first condition of
(B.9) or first condition of (B.12) is satisfied and for all εj(k) /∈ [vd + α1 − μj, vd + α2] it follows
that ΔV 2M

k < 0. Thus, in this case it holds that for V 2M
k > 0 given by (B.1) its increment

ΔV 2M
k

< 0.
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Case 2 (Insufficient buffer content). Let us assume that w2(k) satisfies the following in-
equality:

w2(k) < β2(k), ∀k ∈ N, (B.14)

and ε2(k) satisfies

ε2(k) ≤ 0, ∀k ∈ N. (B.15)

Then, from (3.21) it holds that

ε1(k) > μ1 + α2 − α1 + ε2(k). (B.16)

Here, similarly to Case 1, the behavior of these two machines can be considered inde-
pendently. Thus, for ε1(k) satisfying (B.16), it holds that ΔV1,k is given by (B.9) or (B.12)
if ε2(k) < −μ1 − α2 + α1 or ΔV1,k is given by (B.9) if −μ1 − α2 + α1 ≤ ε2(k) ≤ 0. For ε2(k) satis-
fying (B.15) the increment ΔV2,k is given by (B.12). In consequence for ΔV 2M

k
given by (B.3),

the inequality (B.13) in this case is also satisfied.
Now, let us assume that ε2(k) satisfies

ε2(k) > 0, ∀k ∈ N. (B.17)

Then, from (3.21), it holds that ε1(k) is given by (B.16). In this case, M2 has a positive tracking
error, but its buffer B2 has insufficient raw material content (B.14) in order to start working
(η2,k = 0). Machine M1 has a positive error as well, but due to its infinite raw material supply
access, it can immediately initiate its production process (η1,k = 1). Thus, for (B.17) and (B.16),
let us rewrite ΔV 2M

k
from (B.3) as

ΔV 2M
k = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε1(k) −W1(k) + α1,

ε1(k) +W1(k) − α2 − μ1,

−ε2(k) −W2(k) + α1 − μ2,

ε2(k) +W2(k) − α2,

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

V 2M
k+1

+ min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1(k) + μ1 − vd − α1,

−ε1(k) + vd + α2,

ε2(k) + μ2 − vd − α1,

−ε2(k) + vd + α2,

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

−V 2M
k

.
(B.18)

It follows from (3.11), (B.17), and (B.16) that ΔV 2M
k

from (B.18) can be reduced to

ΔV 2M
k = max

⎧
⎪⎪⎨

⎪⎪⎩

ε1(k) +W1(k) − α2 − μ1,

ε2(k) +W2(k) − α2,

0

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

V 2M
k+1

+ min

⎧
⎪⎪⎨

⎪⎪⎩

−ε1(k) + vd + α2,

−ε2(k) + vd + α2,

0

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

−V 2M
k

.
(B.19)
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Now, let us prove that, for ε1(k) given by (B.16), inequality

ε1(k) +W1(k) − α2 − μ1 > ε2(k) +W2(k) − α2 (B.20)

is satisfied.
Indeed, from condition (B.16), it yields that

ε1(k) +W1(k) − α2 − μ1 > ε2(k) +W1(k) − α1
(3.11)
> ε2(k) +W2(k) − α2. (B.21)

Thus, inequality (B.20) is satisfied. Also, from (B.21), it holds that

ε1(k) +W1(k) − α2 − μ1
(3.11),(B.17)

> 0. (B.22)

Now, considering (B.20) and (B.22), we can rewrite V 2M
k+1 given by the first term of (B.19) as

V 2M
k+1 = ε1(k) +W1(k) − α2 − μ1. (B.23)

Let us prove that, for ε1(k) given by (B.16), inequality

−ε2(k) + vd + α2 > −ε1(k) + vd + α2 (B.24)

is satisfied. Here, from condition (B.16), it yields that

−ε2(k) + vd + α2 > −ε1(k) + μ1 + α2 − α1 + vd + α2
(3.11),(3.14)

> −ε1(k) + vd + α2. (B.25)

Thus, inequality (B.24) is satisfied. From inequalities (B.16), (3.13), it follows that

−ε1(k) + vd + α2 < 0. (B.26)

From (B.24), (B.26), we can rewrite V 2M
k given by the second term of (B.19) as

V 2M
k = ε1(k) − vd − α2

(B.26)
> 0. (B.27)

Having V 2M
k+1 given by (B.23) and V 2M

k
given by (B.27), we can finally reduce ΔV 2M

k
from

(B.19) to

V 2M
k = −μ1 + vd +W1(k)

(3.15)
< 0. (B.28)

Thus, for this case, it holds that for V 2M
k

> 0 given by (B.1) its increment ΔV 2M
k

< 0.
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Case 3 (Limited buffer content). Suppose that w2(k) satisfies the following inequality:

w2(k) ≥ γ2, ∀k ∈ N, (B.29)

and let us first assume that ε2(k) satisfies

ε2(k) ≤ 0, ∀k ∈ N. (B.30)

Then, from (3.22), it holds that

ε1(k) ≤ ε2(k) − μ2 − α2 + α1, (B.31)

where −μ2 − α2 + α1
(3.11)
< 0.

In this case, machines M1 and M2 are not working (ηj,k = 0) and their behavior can
be considered similar to the first part of Case 2. It follows that for (B.30) and (B.31) the incre-
ments ΔV1,k and ΔV2,k are given by (B.12), respectively. Thus, for ΔV 2M

k given by (B.3) the
inequality (B.13) in this case is also satisfied.

Now, let us assume that ε2(k) satisfies

ε2(k) > 0, ∀k ∈ N. (B.32)

In this case, M2 has sufficient material to start working (η2,k = 1) and M1 is stopped (η1,k = 0)
due to the limited capacity of its downstream buffer B2. Thus, two situations may occur. Firs,
consider that M1 is stopped, but its tracking error ε1(k) ≤ 0. This may occur if ε2(k) satisfies

0 < ε2(k)
(B.31)
≤ μ2 +α2 −α1. The behavior of these 2 machines can be considered independently

and by following the procedure from Case 1, we arrive to the conclusion that for V 2M
k > 0

given by (B.1) its increment ΔV 2M
k < 0. In the second situation, consider that ε1(k) satisfies

ε1(k) > 0, ∀k ∈ N, (B.33)

which by (B.31) implies that

ε2(k) > μ2 + α2 − α1. (B.34)
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Then, for (B.33) and (B.34), let us rewrite ΔV 2M
k from (B.3) as

ΔV 2M
k = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε1(k) − μ1 −W1(k) + α1,

ε1(k) +W1(k) − α2,

−ε2(k) −W2(k) + α1,

ε2(k) +W2(k) − α2 − μ2,

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

V 2M
k+1

+ min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1(k) + μ1 − vd − α1,

−ε1(k) + vd + α2,

ε2(k) + μ2 − vd − α1,

−ε2(k) + vd + α2,

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

−V 2M
k

.
(B.35)

It follows from (3.11) and (3.15) that ΔV 2M
k

from (B.35) can be reduced to

ΔV 2M
k = max

⎧
⎪⎪⎨

⎪⎪⎩

ε1(k) +W1(k) − α2,

ε2(k) +W2(k) − α2 − μ2,

0

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

V 2M
k+1

+ min

⎧
⎪⎪⎨

⎪⎪⎩

−ε1(k) + vd + α2,

−ε2(k) + vd + α2,

0

⎫
⎪⎪⎬

⎪⎪⎭
︸ ︷︷ ︸

−V 2M
k

.
(B.36)

Now, let us derive from (B.31) that the following inequality

ε2(k) +W2(k) − α2 − μ2 > ε1(k) +W1(k) − α2 (B.37)

is satisfied. Indeed, from (B.31), it holds that

ε2(k) +W2(k) − α2 − μ2 ≥ ε1(k) + μ2 + α2 − α1 +W2(k) − α2 − μ2

(3.11)
> ε1(k) +W1(k) − α2.

(B.38)

Thus, inequality (B.37) is satisfied. From (B.34) and (3.11), it also holds that

ε2(k) +W2(k) − α2 − μ2 > 0. (B.39)

Considering (B.37) and (B.39), we can rewrite V 2M
k+1 from the first part of (B.36) as

V 2M
k+1 = ε2(k) +W2(k) − α2 − μ2. (B.40)

Let us show that from (B.31) the following inequality:

−ε1(k) + vd + α2 > −ε2(k) + vd + α2 (B.41)

is satisfied. Here, from condition (B.31), it yields that

−ε1(k) + vd + α2 > −ε2(k) + vd + α2 + μ2 + α2 − α1
(3.11),(3.14)

> −ε2(k) + vd + α2. (B.42)
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Thus, inequality (B.41) is satisfied. From inequalities (B.31), (3.13), it follows that

−ε2(k) + vd + α2 < 0. (B.43)

From (B.41), (B.43), we can rewrite V 2M
k given by the second part of (B.36) as

V 2M
k = ε2(k) − vd − α2

(B.43)
> 0. (B.44)

Having V 2M
k+1 given by (B.40) and V 2M

k
given by (B.44), we can finally reduce ΔV 2M

k
from

(B.36) to

ΔV 2M
k = −μ2 + vd +W2(k)

(3.15)
< 0. (B.45)

Thus, for this case it holds that for V 2M
k

> 0 given by (B.1) its increment ΔV 2M
k

< 0. Summa-
rizing for 3 cases, we have shown that for V 2M

k > 0 given by (B.1) its increment ΔV 2M
k < 0 for

all εj(k) /∈ [vd + α1 − μj, vd + α2] and ΔV 2M
k

= 0 for all εj(k) ∈ [vd + α1 − μj, vd + α2]. Thus,
lim supk→∞V

2M
k = 0 which completes our proof.

In this proof, we have analyzed the increment of the proposed Lyapunov function by
means of 3 cases. Now, for a line of N manufacturing machines (j = 1, . . . ,N) defined by (3.8),
(3.9), and (3.10), the Lyapunov function (B.1) is extended to

VNM
k = max{V1(ε1), . . . , VN(εN)}. (B.46)

Here, the same reasoning is followed as for the proof for 2 machines.

C. Proof of Theorem 3.5

For a different value of the desired buffer inventory level constant, the Lyapunov function is
modified as follows. The function for j = 1 remains as in (B.2), and for j = 2, . . . ,N, it is now
given by

Vj

(
εj
)
= max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εj − μj + vd + α1,

εj − vd − α2 −
j∑

i=2

max

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝μi−1 − α1 + α2 −wdi +

⎛

⎜⎜
⎝μi + α3︸ ︷︷ ︸

βi

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠, 0

⎞

⎟⎟
⎠

︸ ︷︷ ︸
xj

,

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

> 0,

∀εj /∈
[
vd + α1 − μj, vd + α2 + xj

]
, j = 2, . . . ,N.

(C.1)
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Thus, ΔVNM
k along the solutions of εj(k) is given by

ΔVNM
k = VNM

k+1 − VNM
k = max{V1,k+1, . . . , VN,k+1} + min{−V1,k, . . . ,−VN,k}, (C.2)

where for j = 2, . . . ,N,

Vj,k+1 = max

⎧
⎪⎪⎨

⎪⎪⎩

−εj(k) −Wj(k) + α1 − μj + μjηj,k,

εj(k) +Wj(k) − α2 − μjηj,k − xj ,

0

⎫
⎪⎪⎬

⎪⎪⎭
. (C.3)

Here, ηj,k is given by

η1,k = sign+(ε1(k))sign−
(
w2(k) − γ2

)
,

ηj,k = sign+

(
εj(k)

)
signBuff

(
wj(k) − βj(k)

)
sign−

(
wj+1(k) − γj+1

)
,

ηN,k = sign+(εN(k))signBuff

(
wN(k) − βN(k)

)
.

(C.4)

The analysis of (C.2) is subdivided into the same 3 cases. Case 1 (Sufficient buffer con-
tent) and the first part of Case 2 (wj(k) < βj(k) and εj(k) ≤ 0, for all j = 2, . . . ,N) are solved
identically to the proof for the line of 2 machines. For the second part of Case 2 and for the
Case 3 (just as in proof of Theorem 3.4), the proof relies on the condition (3.16) in combination
with (3.5) and (3.6). Due to the extensive technical details and the similarity of the procedure
with the proof of Theorem 3.5, we omit the complete analysis for a line of N machines and
restrict ourselves by only giving this general idea of the procedure.
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