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We present two new analytic methods that are used for solving initial value problems that model
polytropic and stellar structures in astrophysics and mathematical physics. The applicability,
effectiveness, and reliability of the methods are assessed on the Lane-Emden equation which is
described by a second-order nonlinear differential equation. The results obtained in this work are
also compared with numerical results of Horedt (1986) which are widely used as a benchmark
for testing new methods of solution. Good agreement is observed between the present results
and the numerical results. Comparison is also made between the proposed new methods and
existing analytical methods and it is found that the new methods are more efficient and have
several advantages over some of the existing analytical methods.

1. Introduction

In this work we investigate the solution of nonlinear initial value problem that has applica-
tions in mathematical physics and astrophysics. We consider the Lane-Emden equation of the
form

y′′(x) +
2
x
y′(x) + ys = 0, (1.1)

with initial conditions

y(0) = 1, y′(0) = 0, (1.2)

where s is a constant. This equation is very useful in astrophysics in the study of polytropic
models and stellar structures [1, 2]. For the special case when s = 0, 1, 5 exact analytical
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solutions were obtained by Chandrasekhar [1]. For all other values of s approximate ana-
lytical methods and numerical methods are used to approximate the solution of the Lane-Em-
den or related equations. Analytical approaches that have recently been applied in solving the
Lane-Emden equations include the Adomian decomposition method [3, 4], differential tran-
sformation method [5], homotopy perturbation method [6], He’s Energy Balance Method
(HEBM) [7], homotopy analysis method [8, 9], power series expansions [10–14], and va-
riational iteration method [15, 16]. Generally, when all the above cited analytical approaches
are used to solve Lane-Emden equation, a truncated power series solution of the true solution
is obtained. This solution converges rapidly in a very small region (0 < x < 1). For x > 1 con-
vergence is very slow and the solutions are inaccurate even when using a large number of
terms. Convergence acceleration methods such as Pad’e approximations may be used to im-
prove the convergence of the resulting series or to enlarge their domains of convergence. The
homotopy analysis method [9, 17] has a unique advantage over the other analytic approx-
imation methods because it has a convergence controlling parameter that can be adjusted to
improve the region of convergence of the resulting series. An important physical parameter
associated with the Lane-Emden function is the location of its first positive real zero. The first
zero of y(x) is defined as the smallest positive value x0 for which y(x0) = 0. This value is im-
portant because it gives the radius of a polytropic star. The analytic approaches on their own
are not very useful in solving for x0 because their region of convergence is usually less than x0.
Recently, there has been a surge in the number of numerical methods that have been proposed
to find solutions of the Lane-Emden equations. Recent numerical methods that have been pro-
posed include the Legendre Tau method [18] and the sinc-collocation method [19], the Lag-
rangian approach [20], and the successive linearization method [21]. Accurate results for the
Lane-Emden function have previously been reported in [22] where the Runge-Kutta routine
with self-adapting step was used to generate seven digit tables of Lane-Emden functions.
These tables are now widely used as a benchmark for testing the accuracy of new methods of
solving the Lane-Emden equations.

In this study, we propose two new analytic methods for solving the Lane-Emden equa-
tion of the form (1.1). The first method is a modification of the successive linearisation me-
thod (SLM) that has been recently reported and successfully utilized in solving boundary va-
lue problems [23–30]. An attempt adapts the SLM in solving initial value problems such as
Lane-Emden equation has recently been made in [21]. The SLM approach is based on tran-
sforming an ordinary nonlinear differential equation into an iterative scheme made up of
linear equations which are then solved using numerical methods such as the Chebyshev spec-
tral method. This method works very well in problems defined on finite domains. For initial
value problems, the method may not be very useful. For instance, in applying the method in
[21] the domain of the Lane-Emden equations solved was defined to be [0, L], where L was
conveniently chosen to be close to x0, the first zero of the Lane-Emden equation. That is, a
rough estimate of x0 had to be known before the SLM was applied in [21]. In this paper we
propose a modification of the SLM approach and use it to solve the Lane-Emden equation
(1.1). Unlike the SLM [21], the modified SLM, hereinafter referred to as the MSLM, results in
reduced differential equations which are solved analytically to give series solutions which are
highly convergent and can be used to find the first zero x0 of the Lane-Emden equation. Excel-
lent agreement is observed between the MSLM results and the numerical results of [22]. The
secondmethod proposed in this work is an innovative technique that blends the SLMmethod
with the Adomian decompositionmethod (ADM) to result in a hybridmethod, hereinafter re-
ferred to as the ADM-SLM, that is superior to both the ADM and SLMmethods. The results of
the ADM-SLM are also compared with the numerical results [22] and excellent agreement is
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observed. The performance between the three methods in terms of their total number itera-
tions, run times of each algorithm, and rate of convergence is assessed. The main aim of the
analysis presented in this paper is to introduce the two new analytic approaches which are
presented as an alternative way of improving the convergence of the ADMwithout resorting
to convergence accelerating techniques such as the Padé approach.

2. Outline of Methods of Solution

In this section, we describe the methods of solution that are used to solve the governing equa-
tion (1.1). Threemethods, namely, the Adomian decompositionmethod (ADM), themodified
successive linearization method (SLM), and a hybrid method that blends the ADM and
the SLM, are used in this study. The modified successive linearization method, hereinafter
reference to as the MSLM, is an alternative implementation of the SLMmethod that has been
recently introduced in [23–30] for finding solutions of various boundary value problems. In
this work, the SLM is modified and adapted to be usable in initial value problems of the type
(1.1). The blend between the ADM and SLM uses ideas of both the ADM and the SLM to
yield a more powerful hybrid method which is referred to as the ADM-SLM in this paper.

2.1. Adomian Decomposition Method (ADM)

In this section we give a brief description of the implementation of the ADM in solving the
governing equation (1.1). We begin by writing (1.1) in operator form as

Ly = −ys, (2.1)

where L is a linear operator described as

L = x−2 d
dx

(
x2 d

dx

)
. (2.2)

This type of operator was suggested in [3, 4] and has been found to give results which con-
verge much faster than the original ADMmethod of [31, 32]. The inverse operator is the two-
fold integral operator given as

L−1(·) =
∫x
0
x−2
∫x
0
x2(·)dx dx. (2.3)

If we operate L−1 on (2.1) and apply the boundary conditions (1.2) we obtain

y(x) = y(0) + y′(0)x − L−1[ys]. (2.4)

The basic idea behind the ADM is the representation of the solution y(x) as an infinite series
of the form

y(x) =
∞∑
n=0

yn(x), (2.5)
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and the nonlinear function ys by the following infinite series of polynomials:

ys =
∞∑
n=0

An. (2.6)

The components yn(x) of the solution of y(x) are determined recurrently using the Adomian
polynomials An that can be calculated for various classes of nonlinearity according to
algorithms set out by Adomian and Rach [33–35] and more recently in [3, 4]. For a nonlinear
function F(u), the first few polynomials are given by

A0 = F(u0),

A1 = u1F ′(u0),

A2 = u2F ′(u0) +
u21
2!
F ′′(u0),

A3 = u3F ′(u0) + u1u2F ′′(u0) +
u31
3!
F ′′′(u0),

...

(2.7)

By substituting (2.5) and (2.6) in (2.4)we obtain

∞∑
n=0

yn = 1 − L−1
∞∑
n=0

An. (2.8)

To find the components yn, the ADM suggests the use of the following recursive relationships:

y0(x) = 1,

yk+1(x) = −L−1Ak, k ≥ 0.
(2.9)

For numerical purposes, the solution of the governing equation (1.1) can be approximated
by the n-term approximate series given as

φn(x) =
n−1∑
k=0

yk(x). (2.10)

If the series (2.10) converges, then

y(x) = lim
n→∞

n−1∑
k=0

yk(x). (2.11)
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2.2. Modified Successive Linearization Method (MSLM)

The original SLM approach (see [23–30] for details) assumes that the solution y(x) of the non-
linear equation (1.1) can be expanded as

y(x) ≈ yi(x) +
i−1∑
m=0

ym(x), i = 1, 2, 3, . . . , (2.12)

where yi are unknown functions whose solutions are obtained by recursively solving the lin-
earised equation that results from the substitution of (2.12) into the governing equation (1.1).
The SLM algorithm starts with an initial approximation y0(x) = 1 which is chosen to satisfy
the initial conditions (1.2) of the problem. Thus substituting equation (2.12) into the gover-
ning equation (1.1) and neglecting all nonlinear terms in yi gives

y′′
i +

2
x
y′
i + hi−1yi = ri−1, (2.13)

subject to the initial conditions

yi(0) = 0, y′
i(0) = 0, (2.14)

where hi−1 and ri−1 are known functions of x at the ith iteration and are defined as

hi−1(x) = s

(
i−1∑
m=0

ym

)s−1
,

ri−1(x) = −
[
i−1∑
m=0

y′′
m +

2
x

i−1∑
m=0

y′
m +

(
i−1∑
m=0

ym

)s]
.

(2.15)

We note that in its current form, SLM equation (2.13) cannot be solved to give a closed form
solution. In the original implementation of the SLM (see e.g., [23–30]), the linearised equa-
tions, such as (2.13), are solved using numerical methods. Some Lane-Emden type equations
are singular in nature and standard numerical methods may not be suitable for finding the
solution of such equations. For this reason, we seek to find analytical approaches to solve
(2.13). In this paper we introduce the modified successive linearisation method (MSLM)
which is based on the implementation of the assumption that yi becomes increasingly smaller
with an increase in the number of iterations. Thus, assuming that enough iterations are used
in the algorithm, in addition to neglecting nonlinear terms in yi we also neglect all terms that
are multiplied by yi (i.e., we set yi = 0) in (2.13). This reduces the equation into one whose
closed form analytic solution can easily be found by integrating the resulting equation. The
reduced equation is given as

y′′
i +

2
x
y′
i = ri−1. (2.16)
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Since the right-hand side of (2.16) is known at each iteration, the equation can be solved
exactly to obtain

yi(x) =
∫x
0
x−2
∫x
0
x2ri−1(x)dx dx. (2.17)

Starting from the initial approximation y0(x), the nth-order approximate solution for y(x) is
thus given by

ψn(x) =
n∑

m=0

ym(x). (2.18)

The initial approximation y0(x) is obtained by solving the following equation:

y′′
0 = 0 (2.19)

subject to the underlying initial conditions. If the series (2.18) converges, then

y(x) = lim
n→∞

n∑
m=0

ym(x). (2.20)

2.3. Hybrid Adomian Decomposition Method-Successive Linearisation
Method (ADM-SLM)

The ADM-SLM is derived from by solving the SLM governing iteration scheme (2.13) using
the ADM. We remark that the idea behind the application of the ADM is to ensure that the
equation is solvable analytically. Rewriting (2.13) in operator form gives

Lyi + hi−1yi = ri−1. (2.21)

The approximate solution of (2.21) is found using the ADM. Thus, operating with L−1 on
(2.21)we get

yi = L−1[ri−1(x)] − L−1[hi−1(x)yi]. (2.22)

Implementing the ideas of the ADM on (2.22) results in the following recurrence relations:

yi,0 = L−1[ri−1(x)], (2.23)

yi,k+1 = −L−1[hi−1(x)yi,k], k ≥ 0. (2.24)

The solution for yi(x), at the nth term, can be approximated by

yi(x) =
n−1∑
k=0

yi,k(x). (2.25)
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Thus, starting from the initial approximation y0,0 = y0, the [i, n] ADM-SLM approximate sol-
ution for y(x) is given by

χi,n =
i∑

m=0

n−1∑
k=0

ym,k. (2.26)

It can be observed that (2.23) is the same as (2.17). Thus, we remark that if n = 0, correspond-
ing to the ADM step not being taken, (2.26) reduces to the MSLM solution. The ADM-SLM
uses an initial approximation that is obtained using the MSLM as described in the previous
section and implements the ADM on a new modified governing equation that has been lin-
earised using the SLM approach. In essence, the ADM-SLM solution improves on the tradi-
tional ADM approach by implementing the ADM on the SLM-linearized governing equation.
The ADM-SLM is essentially a two-dimensional recursive method that implements the SLM
iteration in one direction and the ADM iteration in the other direction. In order to assess the
difference in performance between the three methods, their accuracy, total number iterations,
run time of each algorithm and rate of convergence must be considered. To compare the total
number of iterations between the MSLM and ADM-SLMwe note that, in approximating y(x)
by χi,n in the ADM-SLM, there are n iterations for each ith iteration. Thus the total number of
iterations of the ADM-SLM approach can be considered to be i×(n+1). If n = 0, meaning that
the ADM component of the method is not implemented, the ADM-SLM method becomes
equivalent to the MSLM.

3. Convergence Analysis

Solving the Lane-Emden type of equations discussed in this paper results in power series of
the form

y(x) ≈
∞∑
k=0

akx
2k. (3.1)

The series of the type (3.1) has also been obtained by several other researchers using various
analytical approximation methods (see e.g., [4, 10, 11, 13, 14]) in solving Lane-Emden type
equations. According to the standard ratio test, a series of the form (3.1) converges for x < R,
where

R = lim
k→∞

∣∣∣∣ akak+1

∣∣∣∣
1/2

. (3.2)

The quantity R is known as the radius of convergence. The convergence analysis of the ADM
has been discussed in [36] in terms of the fixed-point iteration. Recently, a simple method of
establishing the convergence of the ADM was presented in [31] for the following functional
equation:

y =N
(
y
)
+ f. (3.3)

Just like the ADM, the implementation of the MSLM and the ADM-SLM is equivalent to
determining the sequence

Sn = y1 + y2 + · · · + yn, (3.4)
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by using the iterative scheme

Sn+1 =N
(
y0 + Sn

)
, S0 = 0. (3.5)

The above iterative scheme results from the associated functional equation

S =N
(
y0 + S

)
. (3.6)

For the purposes of comparing the convergence rates of the three methods presented in this
paper the approach used in [31] has been used. In this paper, we only present the relevant
theory and corollary associated with proving the convergence and obtaining the rate of con-
vergence of sequences of the form (3.5). For details of the proof, interested readers may refer
to [31].

Theorem 3.1. Let N be an operator from a Hilbert space H into H and y be the exact solution of
(3.3). The sum,

∑∞
i=0 yi, which is obtained by (2.9) in the ADM, (2.17) in the MSLM, and (2.25) in

the ADM-SLM, converges to y when ∃ 0 ≤ α < 1, ‖yk+1‖ ≤ α‖yk‖, for all k ∈N ∪ 0.

Definition 3.2. For every i ∈N ∪ 0 we define

αi =

⎧⎪⎨
⎪⎩

∥∥yi+1∥∥∥∥yi∥∥ ,
∥∥yi∥∥/= 0,

0,
∥∥yi∥∥ = 0.

(3.7)

Corollary 3.3. In Theorem 3.1,
∑∞

i=0 yi converges to exact solution y, when 0 ≤ αi < 1, i = 1, 2, 3, . . ..

Corollary 3.4. If yi and ỹi are obtained by two different methods and their associated ratios αi’s and
α̃i’s are both less than one, then if αi < α̃i for all i, it follows that the rate of convergence of

∑∞
i=0 yi to

the exact solution is higher than
∑∞

i=0 ỹi.

We remark that the series solutions of type (3.1) obtained using the three methods pre-
sented in this study do not provide us with explicit expressions that would enable us to cal-
culate the radius of convergence and convergence rates analytically. The convergence rates
and radius of convergence discussed in this paper we computed numerically for different va-
lues of k and their trend for large values of k was noted.

4. Application on an Illustrative Example

In this section numerical experiments are performed on an illustrative example to show the
difference between themethods described in the last section. The performance of themethods
is measured in terms of rate of convergence, radius of convergence, accuracy, and efficiency.

Consider the nonlinear Lane-Emden equation of index 2 given as

y′′ +
2
x
y′ + y2 = 0, y(0) = 1, y′(0) = 0. (4.1)

This equation is very useful in astrophysics in the study of polytropic models.
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4.1. ADM Solution

Using (2.9), the ADM iterates are obtained from

y0(x) = 1,

yk+1(x) = −L−1(Ak), k ≥ 0,
(4.2)

where the first few Adomian polynomials are given as

A0 = y2
0 ,

A1 = 2y1y0,

A2 = 2y2y0 + y2
1 ,

A3 = 2y3y0 + 2y1y2

...

(4.3)

Thus, the first three solutions are given by

y1 = −1
6
x2,

y2 =
1
60
x4,

y3 = − 11
7560

x6,

y4 =
1

8505
x8.

(4.4)

Thus, the approximate solution for y(x) obtained using the k = 1, 2, . . . , 7 (i.e., φ8) is given by

φ8(x) = 1 − x2

6
+
x4

60
− 11x6

7560
+

x8

8505
− 97x10

10692000
+

457x12

673596000
− 98239x14

1980372240000
. (4.5)

We note that this ADM solution is exactly the same as the power series solution whose
relation, according to [14], is

y(x) =
∞∑
k=0

akx
2k, with ak = − 1

(2k)(2k + 1)

k−1∑
j=0

ajak−j−1, a0 = 1, k ≥ 1. (4.6)

The radius of convergence for the Lane-Emden equation (4.1)with series approximation (4.6)
[10, 11, 13] is about R =

√
15.7179 = 3.9646. The first zero of y(x) is defined as the smallest

positive value x0 for which y(x0) = 0. This value is important because it gives the radius of a
polytropic star. The first zero for the Lane-Emden equation (4.1) has been calculated [12, 22,
37] to be 4.3528745959. Since the radius of convergence of the ADM is less than the first zero
x0 it follows that the ADM on its own can not be used to determine x0.
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Table 1: Approximation of y(x) for the present method at selected values of x using the ADM and the
corresponding run times in seconds.

x 10th order 20th order 40th order 60th order Numerical [22]

0.5 0.9593527 0.9593527 0.9593527 0.9593527 0.9593527
1.0 0.8486541 0.8486541 0.8486541 0.8486541 0.8486541
1.5 0.6953672 0.6953671 0.6953671 0.6953671 0.6953671
2.0 0.5298405 0.5298364 0.5298364 0.5298364 0.5298364
2.5 0.3752294 0.3747394 0.3747393 0.3747393 0.3747393
3.0 0.2657006 0.2419943 0.2418241 0.2418241 0.2418241
3.5 0.7567158 0.2311776 0.1352586 0.1339821 0.1339690
4.0 10.3508034 23.34921747 64.6821008 137.0780406 0.0488402

Run time 0.016 0.016 0.110 0.375

Table 2: Errors of the ADMmethod at selected values of x.

x 10th order 20th order 40th order 60th order

0.5 0.0000000 0.0000000 0.0000000 0.0000000
1.0 0.0000000 0.0000000 0.0000000 0.0000000
1.5 0.0000001 0.0000000 0.0000000 0.0000000
2.0 0.0000041 0.0000000 0.0000000 0.0000000
2.5 0.0004901 0.0000001 0.0000000 0.0000000
3.0 0.0238765 0.0001702 0.0000000 0.0000000
3.5 0.6227468 0.0972086 0.0012896 0.0000131
4.0 10.3019632 23.3003773 64.6332606 137.0292005

Table 1 gives a comparison between the ADM results, which have been computed up
to 60th order, and the numerical results of [22] for selected values of x. The run times for
the algorithm are also given in the table. We see from Table 1 that the run times the ADM
algorithm are a fraction of a second even when using many iterations. Table 2 gives the
absolute errors between the ADM and the seven-digit accurate numerical results of [22]. It
can be seen from the tables that the ADM results are accurate for small values of x. Accuracy
of the ADM results generally increases when the number of iterations is increased. But this
is true for x less than the convergence region of the method. Since the ADM solution of 36
is equivalent to the series solution reported in [14], the convergence radius R is about 3.9646
[10, 11, 13]. Tables 1 and 2 also indicate that the convergence of the method becomes very
slow when x approaches R and that above R the method diverges.

In Figure 1 we plot the ADM solution of Example of (4.1) for orders up to n = 64.
We see that, as we increase the order of the ADM, the interval of convergence increases
rapidly when x is small then increases slowlywhen x is closer toR, the radius of convergence,
even when a large number of iterations are used. The ADM solution diverges and does not
converge to the numerical results in the region near x0.
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Figure 1: Solutions of the Lane-Emden equation at different orders of the ADM approximate solution.

4.2. MSLM Solution

Using (2.17), the MSLM iterates are given by

yi(x) = −
∫x
0
x−2
∫x
0
x2

⎡
⎣ i−1∑
m=0

y′′
m +

2
x

i−1∑
m=0

y′
m +

(
i−1∑
m=0

ym

)2
⎤
⎦dx dx. (4.7)

Equation (4.7) gives the iteration scheme for obtaining the solutions for yi starting from the
initial approximation y0(x) which is in this example is chosen to be y0(x) = 1. The first four
solutions for yi are given as

y1 = −1
6
x2,

y2 =
1
60
x4 − 1

1512
x6,

y3 = − 1
1260

x6 +
13

136080
x8 − 113

24948000
x10 +

1
7076160

x12 − 1
480090240

x14.

(4.8)

Thus, the approximate solution for y(x) obtained using the first 3 terms is

ψ3(x) = 1 − x2

6
+
x4

60
− 11x6

7560
+

13x8

136080
− 113x10

24948000
+

x12

7076160
− x14

480090240
. (4.9)

By obtaining the first few terms of yi(x) it is found that in general yi(x) can be expressed as

yi(x) =
2i−i∑
j=1

ai,jx
2i+2j−2. (4.10)
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The coefficients ai,j can be determined by substituting (4.10) in (4.7) and equating powers of
x. The following recursive formula is obtained:

ai,j = −
m2∑

m=m1

χam,j+i−m − 1(
2i + 2j − 1

)(
2i + 2j − 2

) t2∑
t=t1

n2∑
n=n1

m4∑
m=m3

am,j+i−t−man,t−n, (4.11)

where

t1 = max
(
1, j + i − 2i−1

)
, t2 = min

(
i + j − 1, 2i−1

)
,

m1 = max

(
0,

[
ln
(
j + i
)

ln(2)

]
c

)
, m2 = min

(
i − 1, j + i − 1

)
,

n1 = max
(
0,
[
ln(t)
ln(2)

]
c

)
, n2 = min(i − 1, t − 1),

m3 = max
(
0,
[
ln(j + i − t)

ln(2)

]
c

)
, m4 = min

(
i − 1, j + i − t − 1

)
,

χ =

⎧⎨
⎩
1, j ≤ 2i−1 − i,
0, j > 2i−1 − i,

(4.12)

where the subscript c represents the function ceil where ceil(K) rounds the elements of K to
the nearest integers greater than or equal to K. The MSLM approximate solution for y(x) is
therefore given by

y(x) =
∞∑
k=0

yk(x). (4.13)

We remark that when (4.13) is expanded we get the series form

y(x) =
∞∑
k=0

bkx
2k, with a0 = 1, k ≥ 1. (4.14)

which has the same form as (4.6) but with ak /= bk. Comparing (4.5) and (4.9) we note that
only the first three terms of the ADM coincide with the MSLM solution. The MSLM iteration
results in more terms than the ADM and the number of terms increases exponentially with
an increase in the number of iterations. In Table 3 we present values of the first zero y(x) at
different orders of the MSLM which are compared with the numerical results of Horedt [22]
which are widely used as a benchmark for testing the accuracy of newmethods of solution. It
can be seen from Table 3 that the MSLM method approximates the first zero x0 of y(x) with
great accuracy after only a few iterations. Seven-digit accuracy is achieved after ten iterations.
Compared with the ADM and and power series approach we see that the MSLM is more
useful as it can be used to estimate x0 and the ADM diverges before x reaches x0. We remark
that the original SLM solution of the Lane-Emden equation (4.36) reported in [21], which was
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Table 3: Comparison of the first zero of y(x) between the present MSLMmethod, numerical values of [22],
and results of [12, 37].

4th order 6th order 8th order 10th order Numerical [22] References
[12, 37]

4.48977895 4.35410947 4.35287815 4.35287460 4.35287460 4.3528745959

Table 4: Approximation of y(x) at selected values of x using the MSLM and the corresponding run times
in seconds.

x 4th order 6th order 8th order 10th order Numerical [22]

0.5 0.9593527 0.9593527 0.9593527 0.9593527 0.9593527
1.0 0.8486544 0.8486541 0.8486541 0.8486541 0.8486541
1.5 0.6953802 0.6953672 0.6953671 0.6953671 0.6953671
2.0 0.5299902 0.5298366 0.5298364 0.5298364 0.5298364
2.5 0.3756041 0.3747415 0.3747393 0.3747393 0.3747393
3.0 0.2448057 0.2418367 0.2418241 0.2418241 0.2418241
3.5 0.1411111 0.1340130 0.1339691 0.1339690 0.1339690
4.0 0.0614816 0.0489446 0.0488404 0.0488402 0.0488402

Run Time(s) 0.031 0.047 0.328 18.610

a numerical approach, gave results which converged to 4.35287458 even after increasing the
number of iterations. The small error of the SLM is presumably due to the inherent errors of
the numerical methods such as those that result from discretization of the domain or stability
issues. Being an analytical approach, the MSLM does not suffer from the shortfalls associated
with its numerical relative (SLM).

Tables 4 and 5 give the MSLM results for the values of y(x) at selected values of x and
their corresponding errors when compared with the numerical results of [22]. It can be seen
from these tables that the MSLM results rapidly converge to the numerical results. Unlike the
ADM results, the MSLM results will converge to the numerical results even when x is close to
the first zero x0.

In Figure 2 we show the MSLM solution at different orders plotted against the num-
erical solution of [22]. It be seen from the figure that theMSLM rapidly converges to the num-
erical solution. After only eight iterations the MSLM matches with the numerical results.

4.3. ADM-SLM Solution

Using (2.23) and (2.24) the ADM-SLM iterates for solving Example of (4.1) are given by

yi,0(x) = −
∫x
0
x−2
∫x
0
x2

⎡
⎣ i−1∑
m=0

y′′
m +

2
x

i−1∑
m=0

y′
m +

(
i−1∑
m=0

ym

)2
⎤
⎦dx dx, (4.15)

yi,k+1(x) = −
∫x
0
x−2
∫x
0
x2

[
2
i−1∑
m=0

ym

]
yi,kdx dx. (4.16)

We observe that (4.15) is exactly the same as (4.7) for the MSLM iterations. This indicates that
the ADM-SLM approach uses the MSLM solution as an initial guess and improves on it by
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Table 5: Errors of the MSLM at selected values of x.

x 4th order 6th order 8th order 10th order

0.5 0.0000000 0.0000000 0.0000000 0.0000000
1.0 0.0000003 0.0000000 0.0000000 0.0000000
1.5 0.0000131 0.0000001 0.0000000 0.0000000
2.0 0.0001538 0.0000002 0.0000000 0.0000000
2.5 0.0008648 0.0000022 0.0000000 0.0000000
3.0 0.0029816 0.0000126 0.0000000 0.0000000
3.5 0.0071421 0.0000440 0.0000001 0.0000000
4.0 0.0126415 0.0001044 0.0000003 0.0000000

0 1 2 3 4

x

1
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0.6

0.4

0.2

0

y
(x
)

n = 1
n = 3

n = 8
Numerical

Figure 2: Solutions of the Lane-Emden equation at different orders of the MSLM approximate solution.

implementing the ADM approach to the resulting linearised equation. Thus, starting from the
initial approximation y0(x), (4.15) is used to find the initial approximation to be used in the
ADM-SLM iterative scheme (4.16). The approximate solution for y(x) is then obtained using
(2.26). The first few solutions for yi,n are obtained as

y1,0 = −1
6
x2,

y1,1 =
1
60
x4,

y2,0 = − 11
7560

x6 +
1

12960
x8 − 1

396000
x10,

y2,1 =
11x8

272160
− 29x10

4989600
+

5933x12

11675664000
− 73x14

4490640000
+

x16

3231360000
.

(4.17)
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Figure 3: Solutions of the Lane-Emden equation at different orders of the SLM-ADM approximate solution.

Table 6: Comparison of the first zero of y(x) between the present ADM-SLMmethod, numerical values of
[22] and [12, 37].

y4,1 y5,1 y6,1 Numerical [38] Reference [12, 37]

4.356001615 4.352874609 4.352874596 4.35287460 4.3528745959

Thus, the approximate solution for y(x) obtained using 2 iterations in the SLM direction and
1 iteration in the ADM direction, that is, χ2,1, is

y(x) ≈ χ2,1(x) = y0 + y1 + y2 = y0 + y1,0 + y1,1 + y2,0 + y2,1, (4.18)

= 1 − x2

6
+
x4

60
− 11x6

7560
+

x8

8505
− 13x10

1559250
+

5933x12

11675664000

− 73x14

4490640000
+

x16

3231360000
.

(4.19)

Comparing the ADM solution (4.5) and theMSLM solution (4.9)with the ADM-SLM solution
(4.19) for the first few terms, it can be seen that the three solutions are different.

In Figure 3 we plot the approximate solution y(x) of Example of (4.1) for the first four
iterations of the ADM-SLM. The approximate results are compared against the numerical
results of [22]. It can be seen from Figure 3 that with each additional iteration, the radius
of convergence of the ADM-SLM rapidly increases. Unlike in the case of the ADM, as can be
seen in Figure 1, the ADM-SLM solution converges to the numerical solutions after only [4, 1]
iterations, that is a total of eight iterations like in the MSLM case.

In Table 6 we present values of the first zero y(x) at different orders of the ADM-SLM.
The results are compared with the seven-digit accurate numerical results of Horedt [22] and
ten-digit numerical results reported in [12, 37]. It can be seen from Table 6 that the MSLM
method approximates the first zero x0 of y(x)with great accuracy after only a few iterations.
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Table 7:Approximation of y(x) at selected values of x using the ADM-SLM approach and the correspond-
ing run times in seconds.

x [3, 1] [4, 1] [5, 1] [6, 1] Numerical [22]

0.5 0.9593527 0.9593527 0.9593527 0.9593527 0.9593527
1.0 0.8486541 0.8486541 0.8486541 0.8486541 0.8486541
1.5 0.6953672 0.6953671 0.6953671 0.6953671 0.6953671
2.0 0.5298369 0.5298364 0.5298364 0.5298364 0.5298364
2.5 0.3747452 0.3747393 0.3747393 0.3747393 0.3747393
3.0 0.2418815 0.2418241 0.2418241 0.2418241 0.2418241
3.5 0.1349246 0.1339693 0.1339690 0.1339690 0.1339690
4.0 0.0745177 0.0488451 0.0488402 0.0488402 0.0488402

Run Time(s) 0.032 0.087 0.891 45.203

Table 8: Errors of the ADM-SLM at selected values of x.

x [3, 1] [4, 1] [5, 1] [6, 1]

0.5 0.0000000 0.0000000 0.0000000 0.0000000
1.0 0.0000000 0.0000000 0.0000000 0.0000000
1.5 0.0000001 0.0000000 0.0000000 0.0000000
2.0 0.0000005 0.0000000 0.0000000 0.0000000
2.5 0.0000059 0.0000000 0.0000000 0.0000000
3.0 0.0000574 0.0000000 0.0000000 0.0000000
3.5 0.0009556 0.0000003 0.0000000 0.0000000
4.0 0.0256775 0.0000049 0.0000000 0.0000000

It can be seen from Table 6 that the ADM-SLM results are accurate to seven digits after [5, 1]
iterations (total of 10 iterations) and accurate to nine digits after [6, 1] iterations. This il-
lustrates that this approach converges much more rapidly to the numerical solutions than the
MSLM in which seven-digit accuracy was achieved after 10 iterations.

Tables 7 and 8 give the ADM-SLM results for the values of y(x) at selected values of x
and their corresponding errors when compared with the numerical results of [22]. These ta-
bles indicate that the ADM-SLM results converge rapidly to the numerical results.

Comparing the run times between the MSLM and ADM-SLM, for the number of
iterations that give seven-digit accuracy, from Tables 4 and 7, respectively, it can be seen that
seven-digit accuracy in the range 0 < x < 4 is achieved after only 0.891 seconds and [5, 1] iter-
ations (total of 10 iterations) in the ADM-SLM compared to 18.61 seconds and 10 iterations in
the case of MSLM. This result shows that the ADM-SLM is much more computationally ef-
ficient than the MSLM.

In Table 9 we give a comparison between the rates of convergence of the three
methods. It can be seen from the table that the ADMwith the largest αi converges the slowest
among the three methods and the ADM-SLM converges the fastest.

5. Conclusion

In this work, we presented two new reliable algorithms for solving Lane-Emden type equa-
tions that model polytropic stars. The methods considered are the modified successive
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Table 9: Comparison between the convergence rates of ADM, MSLM and ADM-SLM for [i, 1].

αi ADM MSLM ADM-SLM

α0 0.16666667 0.16666667 0.16666667
α1 0.10000000 0.10000000 0.00873016
α2 0.08730159 0.04761905 0.00050505
α3 0.08080808 0.02777778 0.00012210

linearisation method (MSLM) and a hybrid method (ADM-SLM) that blends the Adomian
decomposition method (ADM) and the successive linearization method (SLM). The applica-
bility of these methods was illustrated by solving the Lane-Emden equation of index two. The
Lane-Emden equation of index two was used as an example to illustrate the applicability of
themethods of solution and assess their performance in terms of accuracy, convergence, effec-
tiveness, and validity. When considering the convergence rates it was found that the ADM-
SLM converged faster than the MSLM which in turn converged faster than then ADM. Both
the ADM-SLM and the MSLM were found to be effective in finding the first zero x0 of equa-
tion governing the polytropic model. On the other hand, the region of convergence of the
ADM was found to be less than x0 which means the ADM on its own cannot be used to esti-
mate x0. TheMSLM and ADM-SLMwere compared with previously published numerical re-
sults and they were found to quickly converge to the numerical results. Unlike the ADM, the
ADM-SLM and MSLM were found to converge to the true solution for all x not just small
x < x0. This verifies the validity and reliability of the methods in giving accurate results. In
terms of computational efficiency, the ADM-MSLMwas found to be better than theMSLMbe-
cause the implementation of its algorithm took much less time than the MSLM algorithm. We
conclude that both the MSLM and ADM-SLM are promising tools for solving both linear and
nonlinear initial value problems of the Lane-Emden type.
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[6] A. Yildirim and T. Öziş, “Solutions of singular IVPs of Lane-Emden type by homotopy perturbation
method,” Physics Letters, Section A, vol. 369, no. 1-2, pp. 70–76, 2007.

[7] H. Askari, Z. Saadatnia, D. Younesian, A. Yildirim, and M. Kalami-Yazdi, “Approximate periodic sol-
utions for the Helmholtz Duffing equation,” Computers & Mathematics with Applications, vol. 62, pp.
3894–3901, 2011.

[8] A. S. Bataineh, M. S. M Noorani, and I. Hashim, “Homotopy analysis method for singular IVPs of
Emden-Fowler type,” Communications in Nonlinear Science andNumerical Simulation, vol. 14, pp. 1121–
1131, 2009.

[9] S. Liao, “A new analytic algorithm of Lane-Emden type equations,” Applied Mathematics and Com-
putation, vol. 142, no. 1, pp. 1–16, 2003.



18 Mathematical Problems in Engineering

[10] A. Aslanov, “Determination of convergence intervals of the series solutions of Emden-Fowler equa-
tions using polytropes and isothermal spheres,” Physics Letters. A, vol. 372, no. 20, pp. 3555–3561,
2008.

[11] C. Hunter, “Series solutions for polytropes and isothermal sphere,” Monthly Notices of the Royal
Astronomical Society, vol. 303, pp. 466–470, 1999.

[12] C.Mohan andA. R. Al-Bayaty, “Power series solutions of the Lane-Emden equation,”Astrophysics and
Space Science, vol. 100, pp. 447–449, 1984.

[13] I. W. Roxburgh and L. M. Stockman, “Power series solutions of the polytrope equation,” Monthly
Notices of the Royal Astronomical Society, vol. 328, pp. 839–847, 2001.

[14] Z. F. Seidov, “The power series as solution of the Lane-Emden equation with index two,” Doklady
Akademii Nauk AzSSSR, vol. 35, pp. 21–24, 1979.

[15] J. H. He, “Variational approach to the Lane-Emden equation,” Applied Mathematics and Computation,
vol. 143, no. 2-3, pp. 539–541, 2003.
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