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The cubication and the equivalent nonlinearization methods are used to replace the original
Duffing-harmonic oscillator by an approximate Duffing equation in which the coefficients for the
linear and cubic terms depend on the initial oscillation amplitude. It is shown that this procedure
leads to angular frequency values with a maximum relative error of 0.055%. This value is 21%
lower than the relative errors attained by previously developed approximate solutions.

1. Introduction

Many techniques have been developed to obtain the approximate solution of second-order
nonlinear differential equations such as multiple scales [1], harmonic balance [2], averaging
[3], Lindstedt-Poincaré [4], to say a few. However, most of these methods could provide good
approximate solutions if the nonlinear terms have small magnitude values and the system is
subjected to small oscillation amplitudes. In an attempt to deal with strong nonlinearities
and larger oscillation amplitudes for the Duffing-harmonic oscillator system, other types
of solution techniques have been developed [5–14]. Among these techniques, there is the
cubication approach introduced by Yuste and Sánchez in [15]which consists in replacing the
system restoring force f(x) by an equivalent cubic polynomial expression a3x

3, where the
value of a3 is determined by using a weighted mean-square method or by using the principle
of harmonic balance [16, 17]. Beléndez and coworkers used this idea and replaced the
original second-order differential equation by the well-knownDuffing equation which has an
exact solution. During their solution process, they used Chebyshev polynomial expansions
to replace the original restoring force by an equivalent form which provides approximate
angular frequency expressions that are valid for the complete range of oscillations amplitudes
[11–13].
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Here in this paper, we combine the cubication and the nonlinearization methods to
obtain the approximate angular frequency value of the Duffing-harmonic oscillator of the
form:

ẍ + f(x) = 0; f(x) =
εx3

(B +Ax2)
(1.1)

and show that it has the smallest relative error value when compare to the numerical integra-
tion andwith others approximate solutions. In (1.1), x represents system displacement, and ε,
A, and B are constant parameters. This harmonic oscillator was first considered byMickens to
investigate the inclusion of higher harmonics in the method of harmonic balance [18]. Then,
Radhakrishnan et al. studied (1.1) with ε = 1, A = λ, and B = 1 and obtained the exact value
of the circular frequency by numerical integration of its energy relation [19]. By applying
the method of harmonic balance, Mickens in [2] derived an analytical approximation for
the dimensionless form of (1.1) for which ε = 1, A = λ, and B = 1 and found a good
estimate value for the angular frequency expression. Tiwari et al. derived an approximate
frequency-amplitude relation to (1.1) by assuming a single term solution and by following
the Ritz procedure [5]. The first-order harmonic balance method via first Fourier coefficient
was used by Hu in [6]. He found good agreement with the result obtained by the Ritz
procedure. A new method to solve (1.1) by combining Newton’s and the harmonic balance
methods was derived by Lim et al. in [7]with results that are valid for the complete range of
oscillation amplitudes. Öziş and Yildirim applied He’s energy balance method to construct
the frequency-amplitude response of an equivalent form of (1.1) with numerical results that
agree well with the exact ones [8]. By applying the modified rational harmonic balance
method, Beléndez and coworkers obtained the approximate solution of nonlinear oscillators
in which the restoring force has a rational expression [9]. They obtained approximate
solutions that agree well with the exact solutions for the whole range of values of oscillation
amplitudes with a relative error value that is less than 0.40% [9]. The Duffing-harmonic
oscillator has been also studied by Beléndez et al. using the second approximation of the
modified homotopy perturbation method with a relative error of the frequency-amplitude
value lower than 0.078% [10]. By using the iterative homotopy harmonic balancing approach,
Guo and coworkers obtained an approximate solution to (1.1)with a discrepancy between the
estimated angular frequency values and the exact ones as low as 0.094% [20]. Beléndez et al.
in [12] developed a cubication method in which the restoring force is expanded in Chebyshev
polynomials to obtain an equivalent cubic polynomial equation. They found that the maxi-
mum relative error between the approximate frequency-amplitude relation and the exact one
does not exceed of 0.071%. As wemay see, there are different methods that have been applied
to solve (1.1) with the main purpose of finding the angular frequency values that are closer
to the numerical ones. In the next section, we shall briefly review some of these solutions.

2. Review of Some Approximate Solutions

Here, we briefly review approximate solutions to (1.1) that have been derived by using
different solution techniques. For instance, Mickens in [2] studied the dynamical response
of the Duffing-harmonic oscillator:

d2y

dτ2
+

εy3

(
Ay2 + B

) = 0, y(0) = y10, ẏ(0) = 0, (2.1)
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for which the parameters ε,A, and B are nonnegative. He used the following transformations:

y =

√
B

A
x; τ =

(
εB

A

)
t, (2.2)

and wrote (2.1) in the dimensionless form:

ẍ +
x3

(x2 + 1)
= 0, x(0) = x10, ẋ(0) = 0, (2.3)

then, he obtained the first approximate solution to (2.3) based on the method of harmonic
balance and assumed that the exact angular frequency for the periodic solution of (2.3) can
be determined from

ω2
M(x10) =

φ2x2
10

1 + φ2x2
10

, (2.4)

where

φ ≡ π

2F
(
π/2, 1/

√
2
) . (2.5)

Here, F(π/2, 1/
√
2) is the complete elliptic integral of the first kind.

By following Ritz procedure, Tiwari et al. in [5] obtained the approximate angular
frequency of (2.3):

ω2
T (x10) = 1 +

(
2
x2
10

)
⎧
⎪⎨

⎪⎩

1
√
1 + x2

10

− 1

⎫
⎪⎬

⎪⎭
, (2.6)

which satisfies the limits:

x10 is small: ω(x10)2 =
3
4
x2
10 +O

(
x4
10

)
; x10 large: ω(x10)2 = 1 +O

(
1
x2
10

)

. (2.7)

Based on the homotopy method and by only considering the first approximation, He
obtained the angular frequency of (2.3)which is given as [8]:

ω2
H(x10) =

3
4
x2
0

(
1 +

3
4
x2
10

)−1
. (2.8)
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Öziş and Yildirim used He’s energy balance method to obtain the angular frequency of
the Duffing-harmonic oscillator by writing (2.3) in its variational representation to construct
its Hamiltonian form [8]. Then, they used a trail function and found that

ω2
OY (x10) = 1 − 2

x2
10

ln

(
1 + x2

10

1 + x2
10/2

)

, (2.9)

which provides an approximate angular frequency expression to (2.3).
Furthermore, Lim et al. [7] introduced a newmethod for solving the Duffing-harmonic

oscillator by combining Newton’s method with the harmonic balance method and obtained
a third-order approximation to the angular frequency value which is given by

ω3(x10) =
√
Ω3(x10), (2.10)

where

Ω3(x10) =
C(x10)
D(x10)

. (2.11)

The expressions for C(x10) and D(x10) are defined in [7].
On the other hand, Beléndez and coworkers in [12] used a cubication method and

Chebyshev polynomials to obtain an equivalent expression for (2.3) in the form:

ẍ + α(x10)x + β(x10)x3 ≈ 0, (2.12)

and solved (2.12) to obtain its displacement expression given by

x(t) = x10cn
(
ωBt, k

2
B

)
, (2.13)

where the modulus kB and the elliptic frequency of oscillation ωB are given by

kB = x10

√
β

2α + 2βx2
10

; ωB =
√
α + βx2

10, (2.14)

where

α(x10) = 1 +
4
x2
10

⎛

⎜
⎝

5
√
1 + x2

10

− 2

⎞

⎟
⎠ +

24
x4
10

⎛

⎜
⎝

1
√
1 + x2

10

− 1

⎞

⎟
⎠,

β(x10) =
8
x4
10

⎛

⎜
⎝1 − 3

√
1 + x2

10

⎞

⎟
⎠ +

32
x6
10

⎛

⎜
⎝1 − 1

√
1 + x2

10

⎞

⎟
⎠.

(2.15)
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Thus, the approximate circular frequencyΩB of the Duffing-harmonic oscillator (2.3) is given
by

ΩB =
πωB

2K
(
k2
B

) . (2.16)

Beléndez et al. showed that the maximum error attained by using (2.16) when compared to
the exact one is not bigger than 0.071% [12].

By using Jacobi elliptic functions, Elías-Zùñiga et al. obtained an approximate
expression to find the angular circular frequency of the nonhomogeneous representation of
(2.1) by using the rational second-order Jacobi elliptic form solution [21]. Here, we have
followed this approach to obtain the corresponding circular frequencyΩEB of (2.1)which has
the form:

ΩEB =
πωEB

2K
(
k2
EB

) , (2.17)

in which

kEB =

√
H1

H2
; ωEB =

√
H3

H4
, (2.18)

where H1,H2, H3, andH4 are given in the appendix.
In the next section, we shall enhance the cubication procedure used by Beléndez et al.

in [12] by combining this approach with the equivalent nonlinearization method introduced
by Cai and coworkers in [14], to derive an approximate angular frequency expression which
is closer to its numerical integration solution value.

3. Solution Procedure

Here, we focus on the derivation of an approximate solution of the nonlinear Duffing-
harmonic oscillator by combining the cubication and the nonlinearization methods. First, we
write the restoring force in equivalent representation form that takes into account at least
three terms of its Chebyshev polynomial expansion.

Let us consider that the nonlinear Duffing-harmonic oscillator has the form:

d2x

dt2
+

x3

(1 + x2)
= 0, (3.1)

with the initial conditions:

x(0) = 1 + x10, ẋ(0) = 0. (3.2)
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We next introduce the following change of variable into (3.1):

y =
x

q
, where q = 1 + x10, (3.3)

to get

d2y

dt2
+ f
(
y
)
= 0, f

(
y
)
=

(
q2y3

1 + q2y2

)

. (3.4)

Therefore, the initial conditions of (3.4) become

y(0) = 1,
dy

dt
(0) = 0. (3.5)

Now, we follow the cubication procedure [12] and write the restoring force f(y) in (3.4) as a
function of the Chebyshev polynomial expansion:

f
(
y
)
=

(
q2y3

1 + q2y2

)

≈
N∑

n=0

b2n+1(x10)T2n+1
(
y
)
, (3.6)

where the first three polynomials are

T1 = y; T3 = 4y3 − 3y; T5 = 16y5 − 20y3 + 5y. (3.7)

Notice that in [12], the restoring force was replaced by an equivalent form by using only
two terms of the Chebyshev polynomial expansion to ensure a polynomial cubic equation.
However, we consider three terms, that is, N = 2 in (3.6), to replace the rational restoring
force by a fifth-order polynomial equation:

f
(
y
)
=

q2y3

1 + q2y2
= b1
(
q
)
T1
(
y
)
+ b3
(
q
)
T3
(
y
)
+ b5
(
q
)
T5
(
y
)

=
[
b1
(
q
) − 3b3

(
q
)
+ 5b5

(
q
)]
y +
[
4b3
(
q
) − 20b5

(
q
)]
y3 + 16b5

(
q
)
y5,

(3.8)

where

b2n+1
(
q
)
=

2
π

∫1

−1

(
1 − y2

)−1/2
f
(
y
)
T2n+1

(
y
)
dy. (3.9)
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Then, from (3.9)we obtain

b1
(
q
)
= 1 − 2

q2
+

2

q2
√
1 + q2

,

b3
(
q
)
=

2
q2

+
8
q4

− 2

q4
√
1 + q2

− 6
q4

√
1 + q2,

b5
(
q
)
= − 2

q6

⎛

⎜
⎝16 + q4 − 1

√
1 + q2

− 15
√
1 + q2 + q2

(
12 − 5

√
1 + q2

)
⎞

⎟
⎠.

(3.10)

Therefore, we may write (3.4) as an equivalent cubic-quintic Duffing oscillator as follows:

d2y

dt2
+ α
(
q
)
y + β

(
q
)
y3 + γ

(
q
)
y5 ≈ 0, (3.11)

in which

α
(
q
)
= − 1

q6

⎛

⎜
⎝160 + 18q4 − q6 − 6

√
1 + q2

− 154
√
1 + q2 + q2

(
144 − 70

√
1 + q2

)
⎞

⎟
⎠,

β
(
q
)
=

16
q6

⎛

⎜
⎝40 + 3q4 − 2

√
1 + q2

− 38
√
1 + q2 + q2

(
32 − 14

√
1 + q2

)
⎞

⎟
⎠,

γ
(
q
)
= − 32

q6
√
1 + q2

(
q4
(√

1 + q2 − 5
)
+ 16

(√
1 + q2 − 1

)
+ 4q2

(
3
√
1 + q2 − 5

))
.

(3.12)

Since the cubication procedure requires a cubic polynomial representation form of the
restoring force, we shall next transform the cubic-quintic restoring force of (3.11) into a cubic
polynomial restoring force:

F
(
y
)
= α
(
q
)
y + β

(
q
)
y3 + γ

(
q
)
y5 ≡ δ

(
q
)
y + ε

(
q
)
y3 (3.13)

and use the equivalent nonlinearization method [14] to find δ(q) and ε(q). In this method,
we seek a polynomial of the form δ(q)y + ε(q)y3 satisfying

F(δ, ε) =
∫σ

0

(
α
(
q
)
y + β

(
q
)
y3 + γ

(
q
)
y5 − δ

(
q
)
y − ε

(
q
)
y3
)2
dy −→ min, (3.14)
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which requires ∂F/∂δ(q) = 0 and ∂F/∂ε(q) = 0. Notice that the value of σ is fitted to satisfy
(3.14). Then, the equations that provide the coefficients δ(q) and ε(q) are

δ
(
q
)
=

1
21
(
21α
(
q
) − 5γ

(
q
)
σ
)
,

ε
(
q
)
=

1
9

(
9β
(
q
)
+ 10γ

(
q
)
σ2
)
,

(3.15)

with σ = 1.0436. Thus, the approximate equivalent cubic representation of (3.11) is given by

d2y

dt2
+ δ
(
q
)
y + ε

(
q
)
y3 ≈ 0. (3.16)

It is well known that (3.16) has an exact angular frequency-amplitude relationship given by

ΩC =
πωC

2K
(
k2
C

) , (3.17)

where

ωC =
√
δ + ε,

kC =

√
ε

2(δ + ε)
.

(3.18)

In the next section, we shall compare our derived approximate circular frequency ΩC

given by (3.17)with respect to the numerical one andwith some other approximate solutions.

4. Numerical Simulations

In this section, we compare the numerical integration solution of the angular frequency value
of (3.1) [19] with the approximate solution given by (3.17) and with approximate solutions
obtained by other methods.

First, let us begin by plotting the relative errors attain by using the angular frequency
relations derived by Tiwari et al. [5], Mickens [2], Öziş and Yildirim [8], and He [8], since
these are of the same order of magnitude. Figure 1 provides a comparison of the relative
errors plotted against the oscillation amplitudes, x0. As we may see from Figure 1, the
maximum relative error values are 1.07%, 1.73%, 2.33%, and 2.81%, respectively.

We next plot in Figure 2 the estimated relative error values obtained from the solutions
derived by Lim et al. [7], Beléndez et al. [12], Elías-Zùñiga et al. [21], and the solution given
by (3.17). In this Figure 2, we may see that the maximum relative error attained by Lim
et al. approximate solution given by (2.11) is 0.1184%, which corresponds to an oscillation
amplitude value of x0 = 3.46. Besides, Figure 2 shows that for amplitude of oscillations x0 ≥ 9,
the relative errors attained by the combined Newton’s and harmonic balance solution tend
to approach to the relative error values of the elliptic balance solution. We may notice from
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Figure 1: Relative errors for approximate frequency values obtained fromMickens [2], Tiwari et al. [5], He
[8], and Öziş and Yildirim [8] derived solutions.
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Figure 2: Relative errors for approximate frequency values obtained from Lim et al. [7], Beléndez et al.
[12], Elı́as-Zúñiga et al. [21] solutions and by our derived cubication-equivalent nonlinearization solution
given by (3.17) with the parameter value of σ = 1.03915.

Figure 2, that the elliptic balance solution relative error approaches to its maximum value
of 0.082% at x0 = 5.98. However, the maximum relative error attained by combining the
cubication and nonlinearizationmethods is 0.055%, which is 21% lower than the relative error
of 0.071% computed from (2.16) [12].

Figure 3 shows the corresponding relative error curves of the cubication, the
nonlinearization, and the combined cubication and nonlinearization solutions plotted versus
the amplitude of oscillations. We may see from Figure 3 that the nonlinearization solution
gives the highest relative error value of 0.106% at x0 = 0.8 with σ = 1.0457. However,
it is clear from Figure 3 that our proposed combination procedure of the cubication and
the nonlinearization methods, as described in Section 3, provides the smallest relative
error value. Therefore, we may conclude that our approach enhances the precision of the
cubication method [12] in which the restoring force is expanded as a function of Chebyshev
polynomials.
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5. Conclusions

In this paper, we have used the frequency-amplitude relationshipΩC obtained by combining
the cubication procedure [12] with the equivalent nonlinearization method for strongly
nonlinear oscillators [14]. The combination of these methods, to solve strongly nonlinear
oscillators of the Duffing-type, that provide a cubic-type polynomial expression for the
restoring force is an expected result given the fact that nonlinear restoring forces can be
equivalently represented by polynomial expressions of degrees one, two, or three [12, 15–
17]. With our proposed approach, the original nonlinear equation of motion can also be
replaced with the homogenous Duffing equation that has a well-known exact solution that
depends on Jacobi elliptic functions. It is clear from the relative error values obtained by
the expression given by (3.17), that our solution provides the best estimate to the angular
frequency-amplitude value than those developed previously by other authors.

In a forthcoming paper, we will show the potential of combining the cubication and
the equivalent nonlinearization methods to solve other strongly nonlinear oscillators of the
Duffing-type.

Appendix

The expressions of H1 through H4 to compute kEB and ωEB values in (2.18) are given by

H1 = 16Aa2
3b3(−320 + 7b3(−80 + b3(−28 + 5b3)))

+ B(−2048 + b3(−17408 + b3(−34688 + b3(−27648 + 7b3(−1312 + 3b3(−40 + 7b3)))))),

H2 = 2
(
8Aa2

3(1 + b3)(−80 + 7b3(−32 + b3(−13 + 5b3)))

+B(−2048 + b3(−9344 + b3(−13952 + b3(−8280 + 7b3(−184 + 21b3(3 + b3))))))
)
,
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H3 =
(
a2
3

(
8Aa2

3(80 + b3(304 + 7b3(45 + (8 − 5b3)b3)))

+B(2048 + b3(9344 + b3(13952 + b3(8280 + 7b3(−184 + 21b3(3 + b3))))))
)
ε
)
,

H4 =
(
8A2a4

3(80 + b3(144 + b3(−61 + 7b3(−18 + 5b3))))

+ 4Aa2
3B(640 + b3(1984 + b3(1088 + b3(−1262 + 7b3(−141 + b3(15b3 − 8))))))

+ B2(2048 + b3(9728 + b3(14976 + b3(4480 + b3(−8416 + 7b3(−1020

+b3(−163 + 3b3(22 + 7b3))))))))
)
,

(A.1)

where

a3 = (1 + b3)y10, (A.2)

and the constant b3, that satisfies the condition |a3| > |b3| [2], is determined by solving the
tenth-order polynomial equation as follows:

− 21ABy2
10b

10
3 + b93

(
63B2 + 210ABy2

10

)
+ b83

(
1134B2 + 3906ABy2

10 + 2688A2y4
10

)

+ b73

(
8559B2 + 22596ABy2

10 + 16128A2y4
10

)
+ b63

(
35076B2 + 74779ABy2

10 + 40320A2y4
10

)

+ b53

(
82296B2 + 145274ABy2

10 + 53760A2y4
10

)
+ b43

(
111168B2 + 159592ABy2

10 + 40320A2y4
10

)

+ b33

(
82560B2 + 90528ABy2

10 + 16128A2y4
10

)
+ b23

(
29184B2 + 18560ABy2

10 + 2688A2y4
10

)

+ b3
(
3072B2 − 2816ABy2

10

)
− 1024ABy2

10 = 0.

(A.3)
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