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In complex systems like Large-Scale Distributed Systems (LSDSs) the optimization of resource con-
trol is an open issue. The large number of resources and multicriteria optimization requirements
make the optimization problem a complex one. The importance of resource control increases with
the need of use for industrial process and manufacturing, being a key solution for QoS assuring.
This paper presents different solutions for multiobjective decentralized control models for tasks
assignment in LSDS. The transaction in real-time complex system is modeled in simulation by
tasks which will be scheduled and executed in a distributed system, so a set of specifications
and requirements are known. The paper presents a critical analysis of existing solutions and
focuses on a genetic-based algorithm for optimization. The contribution of the algorithm is the
fitness function that includes multiobjective criteria for optimization in different way. Several
experimental scenarios, modeled using simulation, were considered to offer a support for analysis
of near-optimal solution for resource selection.

1. Introduction

The resources control in complex systems requires information about resources and tasks. A
near-optimal assignment could be made based on some criterion function, such as minimum
execution time or load balancing. There has been a steadily increasing interest, supported
by advanced technological and economic developments, into dealing with very complex
(dynamical) systems describing natural phenomena or manufacturing processes [1]. The
particular interest in the study of complex systems is tipping points where one observes a
sudden change in the dynamics, sometimes referred to as critical transitions, modeled as
tasks to be submitted for execution on physical resources. For instance, medical conditions
such as asthma attacks and epileptic seizures can change quickly from regular to irregular



2 Mathematical Problems in Engineering

behavior, the financial markets are known to suddenly break trends in a crisis, and climate
conditions and ecological environments can change rather abruptly. The understanding of
the dynamical behavior near tipping points would enable human interaction to attenuate or
control the consequences of critical transitions [2].

The scheduling process is considered to be the core of resources control in complex
systems. Due to the NP-complete nature of scheduling algorithms, current research directions
are focused on finding suboptimal (near-optimal) solutions, which can be further divided
into the following two general categories: approximate and heuristic algorithms. At global
level, two-phase scheduling solution comprised of a set of heuristic subalgorithms to achieve
optimized scheduling performance over the scope of overall resources is a new research
subject in the present [3, 4].

Today, engineers face an increasing challenge in advanced applications with different
requirements and constrains. Innovative developments for efficient mathematical approaches
focused on approximate algorithms, heuristics-based methods, and bio-inspired models. The
approximate algorithms use formal computational models, but instead of searching the entire
solution space for an optimal solution, they are satisfied when a solution that is sufficiently
good is found. In the case where a metric is available for evaluating a solution, this technique
can be used to decrease the time taken to find an acceptable schedule. The factors which
determine whether this approach is worthy of pursuit include [5, 6] availability of a function
to evaluate a solution, the time required to evaluate a solution, the ability to judge the
value of an optimal solution according to some metric, and availability of a mechanism for
intelligently pruning the solution space. The paper proposes a mathematical approach for
resources control based on a multicriteria optimization genetic algorithm. One of the well-
known problems of genetic algorithms is that, for large solution space, the convergence time
is high.

The rest of the paper is structured as follows. Section 2 describes the optimization
methods. Section 3 approaches the multidimensional optimization methods for real-time
system. The proposed genetic algorithm is described in Section 4. The tests conducted on the
proposed algorithm (Section 5) highlight the improvement provided by this new approach
not only in terms of convergence time, but also in terms of solution quality.

2. Optimization Methods for Decentralized Control

Optimization methods for resource control use heuristic (multiobjective) approaches. The
allocation problem considers a set of n tasks, T = {T1, T2, . . . , Tn}, for some finite integer n,
that models a set o transitions that will use a multiple processor system (e.g., cluster system)
in which each transition can be characterized bymultiple parameters: Ti = {ai, ti, Ci, ri, ωi . . .},
where ai is the arrival time (the time when the transition is produce), ti is the execution time
(it can be estimated or calculated), Ci is the completion time (with the following condition:
ai + ti ≤ Ci), ri is a rate 0 < ri ≤ 1 (can be a normalized priority with

∑n
i=1 ri = 1), 0 ≤ ωi ≤ 1 is

a weight (with the special normalization condition
∑n

i=1 ωi = 1), and we can have some other
parameters which characterize the task.

In this model, a complex system has a number of m resources R = {R1, R2, . . . , Rm}.
Each resource Rj has specific characteristics like capacity, latency, memory type and space,
CPU processing characteristics, and storage limitation. The most important characteristic
used in the proposed model is the utilization rate (uj) that measures the processing capacity.
The workj done by Rj in order to process a task Ti is defined as its running time multiplied
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by the resource utilization rate, workj(Ti) = tiuj ≤ (Ci − ai)uj . A valid schedule is defined
as Sched = {(Ti, Rj) | Ti ∈ T, Rj ∈ R}. Similarly, the work of set of scheduled tasks is
work(T, R) =

∑
(Ti,Rj )∈ Sched workj(Ti). Usually it is assumed that in the case of malleable tasks

the work of a task cannot be decreased by spending more processors on it (preservation of
work). Similarly the work of a task cannot be decreased by using virtualization.

To evaluate the efficiency o resource utilization a resource is considered to be Active
(working) or Idle (waiting for new tasks). Efficiency E(t) at time t is E(t) = Resource
Active(t)/(Resource Active(t) + Resource Idle(t)). In general we are looking for a feasible
solution to scheduling problem. This is a schedule which meets all the requirements and
constrains.

For optimization, there are bottleneck objectives and sum objectives. The scheduling
problem considers the following objective for optimization: maximum completion time (Cmax =
maxi{Ci}),weighted completion time (Cw =

∑n
i=1 wiCi), ormaximum lateness (Lmax = maxi{|(Ci−

ai) − ti|}).
Another important aspect of scheduling optimization considers real-time systems.

These type of systems are defined as those systems in which the correctness of the system
depends not only on the logical result of computation, but also on the time at which the results
are produced. If the timing constraints of the system are not met, system failure is said to have
occurred. Hence, it is essential that the timing constraints of the system are guaranteed to be
met.

2.1. Heuristics for Resources Control

Opportunistic Load Balancing (OLB)

The Opportunistic Load Balancing heuristic selects the task Ti arbitrarily from the group of
tasks and assigns it to the next resource that is expected to be available [7, 8]. It does not
consider the workj(Ti), which may lead to very high Cmax. If all tasks are scheduled with
respect to condition a1 < a2 < · · · < an the heuristic is called First Come First Served (FCFS) [9].

Minimum Execution Time (MET)

The heuristic assigns each task selected arbitrarily to the machine with the least expected
execution time for that task [10].

Minimum Completion Time (MCT)

The heuristic assigns each task selected in arbitrary order to the machine with the minimum
expected completion time for that task [10]. The MCT combines the benefits of OLB andMET
and tries to avoid the circumstances in which OLB and MET perform poorly.

Min-Min

The heuristic begins with the set T of all task to be unscheduled. Then, the set C of minimum
possible completion times of all tasks on any of the machines is computed: Cmin = mini{Ci}.
The task with the Cmin is then assigned on a processor with minimum expected work.
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Max-Min

The heuristic is very similar to min-min, but considers Cmax and then assigns the task on a
processor with minimum expected work [10, 11].

Duplex

The heuristic is a combination of the min-min andmax-min heuristics. The heuristic performs
both of the min-min and max-min heuristics and used the better solution [8, 10, 11].

Genetic Algorithms (GAs)

They are used for searching large solution spaces with multiple possible schedule of tasks.
Each possible schedule is modeled by a chromosome that has a fitness value, which is the
result of an objective function designed in accordance with the performance criteria of the
problem (Cmax or Lmax) [12].

Simulated Annealing (SA)

It is an iterative technique that considers only one possible solution (mapping) for each task at
a time [13]. This solution is modeled like in a GA. SA uses a procedure that probabilistically
allows poorer solutions to be accepted to attempt to obtain a better search of the solution
space.

A∗

Heuristic is a search technique that has been applied in various task allocation problems. The
A∗ heuristic begins at a root node that is a null solution. As the tree grows, nodes represent
partial schedule. A pruning process is performed to limit the maximum number of active
resources at any one time. A cost function f(Sched) is associated with a partial solution (e.g.,
f(Sched) = Cmax).

Guaranteeing timing behavior requires that the system could be predicted. Predictabil-
ity means that when a task is activated it should be possible to determine its execution time
with certainty. It is also desirable that the system attains a high degree of utilization while
satisfying the timing constraints of the system [14–16].

2.2. Resource Control in Real-Time Complex System

A complex system is said to be real-time if there exists at least one task Ti ∈ T , which falls into
one of the following categories.

(1) Task Ti is a hard real-time task. The execution of the task Ti should be completed by
a given deadline, ai + ti ≤ Ci.

(2) Task Ti is a soft real-time task. If a task Ti finishes the work after a given deadline Ci, the
penalty is pays. A penalty function P(Ti) is defined for the task. If ai + ti ≤ Ci, the
penalty function P(Ti) = 0. Otherwise P(Ti) = (ai + ti) − Ci > 0.
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(3) Task Ti is a firm real-time task. If a task Ti finishes the work before a given deadline
Ci, the more rewards it gains. A reward function R(Ti) is defined for the task. If
ai+ ti ≥ Ci, the reward function R(Ti) = 0 is zero. Otherwise R(Ti) = Ci− (ai+ ti) > 0.

The set of real-time tasks T can be a combination of hard, firm, and soft real-time
tasks. Let TS be the set of all soft real-time tasks in T . The penalty function of the system is
P(T) =

∑|TS|
i=1 P(TS,i). Let TF be the set of all soft real-time tasks in T . Similarly, the reward

function of the system is R(T) =
∑|TF |

i=1 R(TF,i).
The following goals should be considered in scheduling a real-time system: (i)meeting

the timing constraints of the system; (ii) preventing simultaneous access to shared resources
and devices; (iii) attaining a high degree of utilization while satisfying the timing constraints
of the system; (iv) reducing the cost of context switches caused by preemption; (v) reducing
the communication cost in real-time distributed systems. In addition, the following criteria
are considered in advanced real-time systems: (vi) considering a combination of hard, firm,
and soft real-time activities, which implies the possibility of applying dynamic scheduling
policies that respect the optimality criteria; (vii) task scheduling for a real-time systemwhose
behavior is dynamically adaptive, reconfigurable, reflexive, and intelligent; (viii) covering
reliability, security, and safety. Basically, the scheduling problem is to determine a schedule
for the execution of the task so that they are all completed before the overall deadline [14, 15].

3. Multidimensional Optimization Methods: Applications

Multidimensional optimization methods are useful when the search space is likely to have
many local optima, making it hard to locate the global optimum. In low-dimensional or
constrained problems it may be enough to apply a local optimizer starting at a set of possible
start points, generated either randomly or systematically (for instance, at systems locations),
and choose the best result. However this approach is less likely to locate the true optimum as
the ratio of volume of the search region to number of starting points increases. The application
of different multidimensional optimization method proves that finding the global optimum
is a hard problem.

Application of Simplex Method

Scheduling of vehicles in the container terminal is often studied as a static problem in the
literature, where all information, including the number of task, their arrival time, and so
forth, is known beforehand. The objective is generally minimizing the total traveling and/or
waiting times of the vehicles. When the situation changes, for example, new jobs arrive or a
section of the terminal is blocked, new solutions are generated from scratch.

Application of Simulated Annealing Method

A parallel approach of a modular simulated annealing (MSA) algorithm, a shortened
SA algorithm, applied to classical job-shop scheduling (JSS) problems is presented. The
JSS problems tackled are very well-known difficult benchmarks, which are considered to
measure the quality of such systems.
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Step 1. User requests

Step 3. Task preparation
for scheduling

Step 4. Monitoring the
system → receive the
available resources

Step 6. Migrate to the
best solution

Step 7. Get a local
optimum and end the GA

Step 8. Aggregate the
results for a near-global
optimum

Step 9. Keep the schedule
in a dedicated repository

Step 5. Run the
scheduling algorithm(GA)

Step 2. Create the “batch
of tasks“

Figure 1: Main actions of proposed algorithm.

Application of Genetic Algorithms

GAs are developed for solving the machine-component grouping problem required for
example a cellular manufacturing systems. GA provides a collection of satisfactory solutions
for a two-objective environment (minimizing cell load variation and minimizing volume of
inter cell movement), allowing the decision maker to then select the best alternative.

4. Genetic Algorithm for Resources Control in LDSD

In [17] Iordache et al. present a genetic algorithm for decentralized scheduling. The
description of the scheduling algorithm in a logical flow of activities is described in the
following steps. The important contribution of this algorithm is the fitness function that
considers multiobjective criteria for optimization (see Figure 1).

Step 1. A user requests that one or more tasks are scheduled.

Step 2. The input is processed as a “batch of tasks” (group of tasks). The batch of tasks is
broadcast to all the resources in the cluster.

Step 3. The resources receive the group of tasks to be scheduled. The tasks are inserted-sorted
in a queue according to a sorting criteria like arriving time (ai) or scheduling priority (ri).
If the number of tasks in the queue is less than a predefined length of the chromosome,
they wait for τ units of time before starting the genetic algorithm. If the chromosome is still
not complete at the end of the waiting period, a noninfluential padding is added. On the
contrary, if the length of an arriving group of tasks exceeds the predefined dimension of the
chromosome, some tasks are saved in the waiting queue and will be scheduled at the next
time.
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Step 4. On each resource, a tool keeps an up-to-date status of the computers in the LSDS on
which tasks are sent for execution, by constantly interrogating a monitoring system.

Step 5. The resources in the cluster run the GA. Each resource starts with a different, specific
initialization of the genetic algorithm. The subsequent steps of the GA are similar for all the
nodes in the cluster, and so is the fitness formula. The clients will compute different optimum
from which the best one will be chosen.

Step 6. The migration of the best current solutions is performed after each step of the GA,
thus ensuring that the population finds a better optimum. The resources exchange the fittest
individuals and insert them into the next generation.

Step 7. The reproduction process stops after a finite, predefined number of steps. Each
resource in the cluster computes its optimal individual.

Step 8. Each resource sends its optimum to all the other nodes in the cluster and the final
optimal individual is decided.

Step 9. The scheduling obtained is saved in a history file on each resource in the cluster of
resources.

The fitness function is an essential element of proposed GA. It gives an appreciation
of the quality of a potential solution according to the problem’s specification. For the
scheduling problem, the goal is to obtain task assignments that ensure minimum execution
time, maximum processor utilization, a well-balanced load across all machines, and last
but not least to ensure that the precedence of the task’s is not violated. According to the
chromosome encoding and genetic operators presented previously all individuals respect
the task dependencies, so the focus should be on the other goals of the problem. The fitness
function has the following representations: (1) F =

∑
i cifi or (2) F =

∏
ifi, where fi encode

a criterion in fitness function and ci is a weight for a criterion (
∑

i ci = 1). In both cases, if
0 ≤ fi ≤ 1, then 0 ≤ F ≤ 1. For the proposed genetic scheduling algorithm three criteria are
considered: load balancing over the resources, f1 = tmin/tmax = mini{ti}/maxi{ti}, average idle
time of the resources, f2 = (1/n)

∑n
i=1 ti/tmax, and the schedule penalty, f3 = |Sched|/|T |, where

|Sched| represents the length of a schedule (the number of tasks that respect deadlines and
resource restrictions) and |T | is the total number of tasks.

5. Experimental Methodology and Results

5.1. Simulation Environment

Due to the complexity of the LSDS, involving many resources and many jobs being
concurrently executed in heterogeneous environments, there are not many simulation tools
to address the general problem of LSDS computing. The simulation instruments tend to
narrow the range of simulation scenarios to specific subjects, such as scheduling or data
replication. The simulation model provided by MONARC is more generic than others, as
demonstrated in [18]. It is able to describe various actual distributed system technologies
and provides the mechanisms to describe concurrent network traffic, to evaluate different
strategies in data replication, and to analyze job scheduling procedures. In order to provide a
realistic simulation, all the components of the system and their interactions were abstracted.
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Figure 2: MONARC simulation tool: the Regional center model for LSDS control.

The chosen model is equivalent to the simulated system in all the important aspects. A first
set of components was created for describing the physical resources of the distributed system
under simulation. The largest one is the regional center (see Figure 2), which contains a site
of processing nodes (CPU units), database servers and mass storage units, as well as one or
more local and wide area networks.

The maturity of the simulation model was demonstrated in previous work. For
example, a number of data replications experiments were conducted in [17], presenting
important results for the future LHC experiments, which will produce more than 1PB of data
per experiment and year, data that needs to be then processed. In [19] the simulation model
was used to conduct a series of simulation experiments to compare a number of different
scheduling algorithms.

5.2. Evaluation Criteria for LSDS Control

It is quite difficult to make a comparison among different control systems for LSDS,
since each of them is suitable for different situations. For different control systems, the
class of targeted applications and LSDS resource configurations may differ significantly.
The adequate evaluation criteria for LSDS control systems are as follows. (i) Application
Performance Promotion involves reviewing how well the applications can benefit from the
deployment of the control system (ii) System Performance Promotion concerns how well the
whole system can benefit (iii) Control and Efficient Allocation it is desired so that the LSDS
control system can always produce good allocation. However, it is also required that the
scheduling system should introduce additional overhead as low as possible. (iv) Reliability—
a reliable LSDS control system should provide some level of fault tolerance. An LSDS
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Figure 3: Makespan comparison for the scheduling of 38 tasks on 8 processors.

is a large collection of loosely coupled resources, and therefore it is inevitable that some
of the resources may fail due to diverse reasons. The control system should handle such
frequent resource failures. For example, in case of resource failure, the control system should
guarantee an applications completion. (v) Scalability—since an LSDS environment is in nature
heterogeneous and dynamic, a scalable scheduling infrastructure should maintain good
performance with not only increasing number of applications, but also increasing number
of participating resources with diverse heterogeneity.

When designing the control infrastructure for LSDSs, these criteria are expected to
receive careful consideration. Emphasis may be laid on different concerns among these
evaluation criteria according to practical needs in real situations. The performance of
scheduling algorithms for LSDS control is usually estimated using a certain number of
standard parameters, like total time or schedule length. In the tests performed we used the
following evaluation parameters [20, 21]:

(i) total schedule length (SL)—Cmax;

(ii) convergences time—the number of generations needed to obtain performances
better then a certain threshold;

(iii) load balancing (where umed, denotes the average utilization for all processors in the
system):

L = 1 − 1
umed

√
√
√
√ 1

n

n∑

i=1

(ui − umed)2, 0 < L ≤ 1. (5.1)

The load balancing of system, for a given schedule, converges to 1 when all resources
have approximately the same utilization rate, equal to makespan. In these conditions the
square deviation Δ → 0.

5.3. Experimental Results

The test case considered task dependencies containing 38 tasks. The processors’ topology
contained 8 processors connected in a full mesh. The results presented in Figure 3 show that



10 Mathematical Problems in Engineering

M
ak

es
pa

n
(s
)

1000
900
800
700
600
500
400
300
200
100

0

200

805

211

816

219

896

203

810

GA Duplex SA Min-min

90 tasks + 8 resources
506 tasks 38 resources−

Figure 4:Makespan comparison for the following scenarios: 90 tasks + 8 resources, 506 tasks − 38 resources.

Min-min

SA

Duplex

GA

Proc4

Proc3

Proc2

Proc1

0 50 100 150 200 250 300 350 400 450

Execution time (s)

Figure 5: Processor utilization overview for 90 tasks.

the genetic algorithm has a very good convergence (after 50 generations there is no significant
improvement, so the algorithm could be stopped).

In order to analyze the schedule length of different dependent task scheduling
algorithms, it has been used a processor topology containing 8 processors connected in a
full mesh. Two tests have been run for DAGs containing 90 and 506 tasks (see Figure 4).

For the first test (90 tasks—left side of the figure), the best result, 263 time units, was
provided by the proposed GA. On the second place came the GA without the initialization
phase with the value of makespan equal to 266. From the classic scheduling algorithm,
Duplex provided the best solution equal to 281, while the result of SA was the worst equal
to 292. The test containing 506 tasks was an extreme test. The best result, 1073 time units,
was offered by GA, proving once more the importance of the proposed algorithm. The worst
solution was given by SA. The other compared algorithm is min-min [22] (see Figure 5).

Memory is another important factor since it is the characteristic that controls most
of the allocation algorithms and also since it cannot be oversubscribed. As can be seen, the
memory allocator gets to the maximum memory value slower and thus allows for better
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performance. Also this allocator is the first to leave the maximum value barrier when the
load is decreased (see Figure 6).

6. Conclusions

We present in this paper an algorithm for controling the resources allocation for special tasks
type (transitions) in LSDS (considered to be a complex one). The novelty of the proposed
algorithm is represented by the multicriteria optimization fitness function for special tasks
with specific requirements and constrains. The process was modulated using a genetic
scheduling algorithm. The paper analyzed the existing methods for control optimization
in LSDS. The multidimensional optimization criteria were considered with the real-time
behavior introducing two measures for evaluation: penalty and reward. In accordance
with this behavior, the convergence of proposed control method is very good in terms of
convergence, solution cost, and memory usage.

The most important contribution of this paper is the innovative method for the
optimization of dependent task scheduling control in LSDS. Inspired from the natural
models, this algorithm evolves an initial population of chromosomes in order to achieve
a good average fitness for the population. The experimental results have proven that the
proposed algorithm offers the best solutions in most cases. For comparison were used several
classical algorithms such as SA, Duplex, and min-min.
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