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This paper employs fuzzy set theory to solve the unintuitive problem of the Markowitz mean-
variance (MV) portfolio model and extend it to a fuzzy investment portfolio selection model. Our
model establishes intervals for expected returns and risk preference, which can take into account
investors’ different investment appetite and thus can find the optimal resolution for each interval.
In the empirical part, we test this model in Chinese stocks investment and find that this model can
fulfill different kinds of investors’ objectives. Finally, investment risk can be decreased when we
add investment limit to each stock in the portfolio, which indicates our model is useful in practice.

1. Introduction

The Markowitz mean-variance (MV) portfolio optimization theory [1] proposed by
Markowitz has been widely used, which leads the investment theory to a new era. In this
model, the best portfolio is a maximized profit, subjected to reaching a specified level of risk,
or a minimized variance, subjected to obtaining a predetermined level of expected return
[2]. However, there have been persistent doubts about the estimates’ performance. Many
studies indicate themodel has some shortage. For example, Michaud [3] have found thatMV-
optimized portfolios are unintuitive, and, therefore, their estimates should be promoted [4].

In portfolio selection problem, the variables such as expected return, risk, liquidity,
and so forth cannot be predicted precisely and investors generally make portfolio decision
according to experience and economic wisdom; therefore, deterministic portfolio selection is
not a good choice for investors. Fuzzy set theory is thought to be a good method to solve this
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problem. For example, Bhattacharyya et al. [5] use fuzzy set theory to extend the investment
portfolio model into a mean-variance-skewness (MVS)model, which is tested to be useful to
explain the stock investment decision.

Our paper employs fuzzy set theory to extend Markowitz portfolio optimization
theory by establishing return intervals and risk intervals. Because investors have difficulty
to make a decision which is the best expected return or the lowest investment risk, they
may set a portfolio which is in different hierarchical return and risk levels. Therefore, our
paper can help investors to make investment decisions according to their return expectations
level and risk preference level. Our method further minimizes the intuitive disadvantage of
Markowitz mean-variance (MV) portfolio optimization method and thus can be more widely
used in practice.

Our paper is structured as follows. Section 2 describes investment portfolio selection
model and explain how to establish return intervals and risk intervals. Section 3 uses Chinese
stock market and tests our models empirically. Section 4 makes some conclusions.

2. Fuzzy Investment Portfolio Selection Models

2.1. Markowitz MV Portfolio Optimization Model

Markowitz MV portfolio optimization theory assumes that investors are risk averse, meaning
that given two portfolios that offer the same expected return, investors will prefer the less
risky one. Thus, an investor will take on increased risk only if compensated by higher
expected returns. Conversely, an investor who wants higher expected returns must accept
more risk. The exact trade-off will be the same for all investors, but different investors
will evaluate the trade-off differently based on individual risk aversion characteristics. The
implication is that a rational investor will not invest in a portfolio if a second portfolio exists
with amore favorable risk-expected return profile, that is, if for that level of risk an alternative
portfolio exists which has better expected returns.

Markowitz MV portfolio optimization models are as follows:

max f(x) =
n∑

i=1

E(ri)xi,

s.t.
n∑

i=1

n∑

j=1

σijxixj ≤ ω,

n∑

i=1

xi = 1,

0 ≤ xi ≤ μi, i = 1, 2, ..., n, j = 1, 2..., n,

(2.1)

min f(x) =
n∑

i=1

n∑

j=1

σijxixj ,

s.t.
n∑

i=1

E(ri)xi ≥ r0,

n∑

i=1

xi = 1,

0 ≤ xi ≤ μi, i = 1, 2, ..., n, j = 1, 2..., n.

(2.2)
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Model (2.1) explains a maximized expected return based on a certain risk level and model
(2.2) delineates a minimized risk level conditional on a certain return level. In these two
models, xi is the investment portion of stock i in an investor’s portfolio and ri is the return
of stock i. R = (E(r1), E(r2), . . . , E(rn))

T is the portfolio of expected returns, where E(ri) is
the expected return of stock i.

∑n
i=1

∑n
j=1 σijxixj is the portfolio variance, which represents

investment risk, where σij is the covariance of stocks i and j. ω is the maximum risk an
investor can tolerate, μi is the maximum limit of stock i in investment portfolio, and r0 is the
minimum return an investor expects.

2.2. Risk Preference

Investment decisions are accompanied by much uncertainty, and risk preference varies
according to an individual’s personality and other reasons, such as age. Studies show that an
individual’s risk preference is not only affected by expected returns and risk, but also affected
by gender, age, educations, wealth, health, marital factors, and so forth. In fact, investors’ risk
preferences are not stable; that is, different environment and social psychology can affect
them as well. In general, an investor’s risk appetite changes in a different environment.
Therefore this section is to analyze the risk appetite.

Many investment decision models use the forms of utility function, but in some
occasions, the utility function is difficult to be determined. In order to simplify the calculation
and facilitate the interpretation of results, Mercurio proposes a utility function U(WM) =
E(WM) − AVar(WM). Based on this model, model (2.3) is constructed using risk preference
coefficients, where V = ((σ2

ij)n×n) is the covariance matrix of ri, and e = (1, 1, . . . , 1)T .
This model solves the single-objective optimization problem of Markowitz’s mean-variance
portfolio model. One has

minS(X) =
(
1 − β

)
XTVX − βXTR,

s.t XTe = 1.
(2.3)

In this model, β is defined as the coefficient of risk preference and it is nonnegative. In this
model, if β is bigger, investment return ismore important for investors. In particular, investors
focus only on the income and do not care about risk when β = 1, while, it is exactly the
opposite when β approaches zero. When investors become risk averse, that is, when β = 0,
model (2.3)will be simplified to the minimum variance model of portfolio:

minσ2
p = XTVX,

s.t XTe = 1.
(2.4)

The optimal solution for model (2.4) is Xg = (V −1
e)/(eTV −1

e). Further the optimal return and
optimal variance of model (2.4) are as follows:

Rg = RTXg =
RTV −1e
eTV −1e

,

σ2
g = XT

gVXg =
1

eTV −1e
.

(2.5)
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Then we define a = eTV −1e, b = RTV −1e; the solution of model (2.4) can be further simplified
as follows:

Xg =
V −1e
a

, Rg =
b

a
, σ2

g =
1
a
. (2.6)

Properties. If the covariance matrix is positive definite, model (2.3) has a unique optimal
solution:

X∗ =
V −1e

eTV −1e
+

β

2
(
1 − β

)
[
V −1R +

eTV −1R
eTV −1e

V −1e

]
. (2.7)

In (2.7), X∗ indicates the optimal portfolio of model (2.3).

Proof. If V is positive definite, then model (2.3) is convex quadratic. The necessary and
sufficient conditions for the solution of convex quadratic are to meet the Kuhn-tucker condi-
tions. Kuhn-tucker conditions for model (2.3) are

2
(
1 − β

)
VX∗ − βR − λe = 0,

X∗Te = 1.
(2.8)

According to (2.8), we can deduce the portfolio

X∗ =
V −1e

eTV −1e
+

β

2
(
1 − β

)
[
V −1R +

eTV −1R
eTV −1e

V −1e

]
. (2.9)

According to (2.7), we can solve the optimal return of (2.3):

Rp = RTX∗ =

(
ac − b2

)
β

2a
(
1 − β

) +
b

a
, (2.10)

where c = RTV −1R.
Discussion about ac − b2.
By definition we know that a > 0, c > 0, and the covariance matrix is positive semi-

definite.
According to the Cauchy-Schwarz inequality, ac − b2 ≥ 0, then:

(1) when securities in the portfolio have the same expected returns, according to
Cauchy-Schwarz inequality, ac − b2 = 0;

(2) in the portfolio, if there are at least two securities whose expected returns are
different, the expected returns of all securities in the portfolio are not identical.

According to the Cauchy-Schwarz inequality, ac − b2 > 0.
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Based on the above two properties, combinedwith the actual situation, we assume that
the expected returns of all securities in the portfolio are not exactly the same, so ac − b2 > 0.
Thus, the risk preference decision parameter β can be computed as follows:

β =
2
(
aRp − b

)

ac − b2 + 2
(
aRp − b

) . (2.11)

2.3. Fuzzy Investment Portfolio Model

Generally, an interval linear model is expressed as the following form:

max f(x) = f(x1, x2, . . . , xn) =
n∑

i=1

Kixi,

s.t.
n∑

i=1

Zijxi ≤ Mj, j = 1, 2, . . . , m,

xi ≥ 0, i = 1, 2, . . . , n.

(2.12)

In the above formula, Ki and Zij are interval numbers, and they are, respectively, expressed
as Ki = [ki, ki], Zij = [zij , zij], where we will denote the feasible region of X by Ω, that is
X ∈ Ω.

After this, some scholars transformed the interval linear programming model into a
two-goal programming problem and build a new planning model as follows:

max f1(x) = f1(x1, x2, . . . , xn) =
n∑

i=1

kixi,

s.t. X ∈ Ω,

(2.13)

max f2(x) = f2(x1, x2, . . . , xn) =
n∑

i=1

kixi,

s.t. X ∈ Ω.

(2.14)

Da and Liu [6] adopt a parameter α and use interval model to extend the above model into
(2.15), which takes into account both investors’ judgment and environment situation.

max f3(x) = f3(x1, x2, . . . , xn) =
n∑

i=1

[
(1 − α)kixi + αkixi

]
,

s.t. X ∈ Ω, α ∈ [0, 1].

(2.15)

In (2.15), there are two kinds of specific situation, that is, α = 1 and α = 0. Further, based
on investors’ risk preference, there are two kinds of models: (2.16) represents a risk lover’s
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investment and (2.17) represents a risk adverse investor’s choice, where, vi = [vi, vi] means
the risk range of stock i. One has

maxU(xi) =
n∑

i=1

rixi,

s.t. XTe = 1, X ≥ 0,

(2.16)

minV (xi) =
n∑

i=1

vixi,

s.t. XTe = 1, X ≥ 0.

(2.17)

As for investors, we can naturally think of that investors want to maximize the return on
investment and minimize the investment risk in the portfolio, that is, meeting the above
two models at the same time, but according to practical experience, we know that this is
impossible, because the higher the expected return of the portfolio, their attendant risks will
also be the greater; high yield is the compensation of high risk, which requires investors to
choose a balance of investment returns and risks according to their own psychology.

Since returns are uncertain, the allocation of capital in different risky assets to
minimize the risk and maximize the return is the main concern of portfolio selection [5].
Therefore, it is useful to take into account returns and risks together by using the risk
preference coefficient β. Thus the above multitarget interval linear function can be converted
into a parametric function. By applying the risk preference coefficient β, investment flexibility
can be increased because investors can decide to set different proportion of earnings targets
and risks targets. It also takes into account different investors’ decision-making behaviors.

However, the expected returns and risks in portfolios should be intrinsically linked
and discussed together. Chen et al. [7] simplify the variance constraints using fuzzy con-
straints:

maxU(xi) =
n∑

i=1

E(ri)xi,

s.t.
n∑

i=1

σixi ≤ M + d(1 − α),

XTe = 1,

μ ≥ X ≥ 0,

μ =
{
μ1, μ2, . . . , μn

}
.

(2.18)

In (2.18), α is fuzzy membership which an investor belongs to, α ∈ [0, 1]; the membership
function is expressed as:

μ(xi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤
n∑
i=1
σixi ≤ M − d,

M −∑n
i=1 σixi

d
, M − d ≤

n∑
i=1
σixi ≤ M,

0, others,

(2.19)
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where d is the tolerance of investors and σi is the standard deviation of the stock i’s return.
Chen et al. [7] adopt parameters in the fuzzy interval and thus the model is transformed into
a linear function:

maxU(xi) =
n∑

i=1

[
ri, ri

]
xi ,

s.t.
n∑

i=1

[
σi, σixi

]
≤
[
M + d(1 − α),M + d(1 − α)

]
,

XTe = 1,

μ ≥ X ≥ 0,

μ =
{
μ1, μ2, . . . , μn

}
.

(2.20)

This model can solve the calculation problems, but this model involves multiple parameters.
Although parameters have the advantages in increasing flexibility, too many parameters
result in decision-making errors and thereby increase uncertainty.

Risk preference is determined by the expected return and risk, which are expressed
by interval numbers. We define risk preference coefficient as β = [β, β] and use Markowitz
method to calculate the stocks investment risk. Model (2.21) can estimate investors’ risk pre-
ferences from investment decision-making behaviors, and then it compares the returns and
risk together in the same model

max f(xi) = β
n∑

i=1

rixi −
(
1 − β

) n∑

i=1

XVXT

=
[
β, β

] n∑

i=1

[
ri, ri

]
xi −

[
1 − β, 1 − β

] n∑

i=1

XVXT

=
n∑

i=1

[
βri, βri

]
xi −

[
1 − β, 1 − β

] n∑

i=1

XVXTs.

(2.21)

Covariance matrix is V =

[ σ11 σ12 ··· σ1n

...
...

σn1 σn2 ··· σnn

]
. All elements of the matrix are interval numbers, that

is, σij = [σij , σij]. So the formula
∑n

i=1 XVXT can be simplified as follows:

n∑

i=1

XVXT = {x1x2 · · ·xn}

⎡
⎢⎣

σ11 σ12 · · · σ1n
...

...
σn1 σn2 · · · σnn

⎤
⎥⎦{x1x2 · · ·xn}T

=

{
n∑

i=1

[
σi1, σi1

]
xi,

n∑

i=1

[
σi2, σi2

]
xi, . . . ,

n∑

i=1

[
σin, σin

]
xi

}
{x1x2 · · ·xn}T
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= x1

n∑

i=1

[
σi1, σi1

]
xi + x2

n∑

i=1

[
σi2, σi2

]
xi + · · · + xn

n∑

i=1

[
σin, σin

]
xi

=
n∑

j=1

xj

n∑

i=1

[
σij , σij

]
xi.

(2.22)

Therefore, the portfolio model can be simplified as follows:

max f(xi) = β
n∑

i=1

rixi −
(
1 − β

) n∑

i=1

XVXT

=
[
β, β

] n∑

i=1

[
ri, ri

]
xi −

[
1 − β, 1 − β

] n∑

j=1

xj

n∑

i=1

[
σij , σij

]
xi

=
n∑

i=1

[
βri, βri

]
xi −

n∑

j=1

xj

n∑

i=1

[(
1 − β

)
σij ,

(
1 − β

)
σij

]
xi.

(2.23)

The optimal estimators of (2.23) are defined as b = [0, 1], where b is the membership of the
interval. A bigger b means higher expected return; that is, b reflects investor’s confidence
level on market expectations. Specifically when b is closer to 1, it indicates that investors are
more optimistic about the market future. However, the expectation for the future market is
extremely pessimistic when b is closer to 0. So the final form of the fuzzy investment portfolio
model is expressed as follows:

max f(xi) =
n∑

i=1

(
bβri + (1 − b)βri

)
xi −

n∑

j=1

xj

n∑

i=1

[
b
(
1 − β

)
σij + (1 − b)

(
1 − β

)
σij

]
xi,

s.t. XTe = 1,

X ≥ 0.

(2.24)

By using (2.12), we can set an investment limit for each stock, and thus themodel is expressed
as follows:

max f(xi) =
n∑

i=1

(
bβri + (1 − b)βri

)
xi −

n∑

j=1

xj

n∑

i=1

[
b
(
1 − β

)
σij + (1 − b)

(
1 − β

)
σij

]
xi,

s.t. XTe = 1,

μi ≥ xi ≥ 0,

(2.25)

where μi indicates the maximum amount of the stock i in sthe portfolio.
Based on the investment behavior analysis and clear understanding of their risk

reference as well as future expectations of the market, investors can utilize this model to
solve effective programs of the portfolio. Fuzzy theory is widely used to solve time varying
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problems [8–18]; therefore, the following section will adopt the model we generated to solve
the practice problems.

3. Empirical Study on the Stock Investment Portfolio

3.1. Data

The principle of decentralization can reduce the nonsystematic risk of the portfolio. In
accordance with the principle of decentralization, we use twenty stocks which are selected
from different industries. In order to provide investors with multiple choices, these stocks
have different enterprise growth rates.

We use Chinese stocks to test our fuzzy investment portfolio model. The primary data
come from CSMAR database produced by GTA company. We select 20 stocks and the data
include each stock’s weekly opening prices and weekly closing prices for the 100 weeks from
June 11, 2010, to May 18, 2012.

3.2. Variables

In order to compute the expected returns, we use the historical average return to estimate the
expected return. On this basis, we can make interval estimation of the returns by utilizing the
fuzzy statistical method and thus construct a number of reasonable income sets.

Since many stocks distribute a little dividend to investors, the weekly dividend can
be ignored because the dividend will be very small after being divided into every week. So
in this paper, we discard the dividend and only take into account the stock trading prices
change. We use the price change during each week. The weekly return is calculated as

rit =
pit − pit0

pit0
, (3.1)

where rit is stock i’s return during week t (i = 1, 2, . . . , 20; t = 1, 2, . . . , 52). Meanwhile, pit0 is
the opening price of stock i on week t and pit is the closing price of stock i on week t.

3.3. Interval Determined by Fuzzy Statistical Method

3.3.1. Determination of Return Intervals

As for the return interval, we compute it as follows.

(1) Based on the stocks’ weekly returns for 100 weeks, we divide them into 10
subintervals. Then we count the number of actual return rate contained within each
subinterval.

(2) The number of returns is the degree of membership of each interval.

(3) The final return interval is the interval which the sum of each median multiplied
membership degree locates in.

The stock returns are listed in Table 1.
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Table 1: The stock return intervals.

Stock name Interval lower limit Interval upper limit
Vanke 0.005224 0.031831
Konka −0.00596 0.021606
Victor onward Textile 0.002509 0.031017
Universe −0.00717 0.026362
Tellus −0.03185 0.012672
Shenxin −0.03593 0.02052
Nonfemet −0.03978 0.010745
Xinmao S&T −0.00754 0.022664
INT’L Group −0.0213 0.01444
Jinlu −0.0273 0.00901
ZY Environment −0.01111 0.020413
DaTong Gas −0.00474 0.021312
Advanced Technology −0.00708 0.024332
Fujian Electric −0.00968 0.018596
Sinosteel −0.01617 0.044893
Huayi Brothers −0.0378 0.022356
China Merchants Bank −0.00997 0.013047
Xi’An Aero Engine −0.0003 0.031385
Ping An −0.0124 0.01055
Petro China −0.0207 −0.0007

3.3.2. Determination of Risks Intervals

Based on Markowitz mean-variance model, we use the variance of the stock returns to
measure the level of investment risk. Stock return variance is calculated as follows.

(1) Based on the stock’ weekly returns for 100 weeks, we divide the returns into 10
subintervals and count the number of returns in each subinterval.

(2) The number of returns is the degree of membership of each interval.

(3) We define that ai and bi are the upper and lower bounds for each interval, resp-
ectively. Thus μ̂u and μ̂l are, respectively, the upper and lower bounds of the inter-
val which the product of the mean of return range and the degree of membership
are in.

Denote U as a fuzzy set, where {xi = [ai, bi], i = 1, 2, . . . ,N} comprises the set U. Thus the
means can be expressed as Fμ = [μl, μu]. We define that {xi = [ai, bi], i = 1, 2, . . . , n} is a
random fuzzy sample from set U, where the mean of the sample is FX = [μ̂l, μ̂u], which is
the return set. Further, we denote ci = (ai +bi)/2, li = |bi −ai|, c = (μl +μu)/2, and l = |μu −μl|,
ĉ = (μ̂l + μ̂u)/2, l̂ = |μ̂u − μ̂l|, then variance of the fuzzy set can be expressed as

Fσ2 =

〈∑N
i=1 (ci − c)2

N
,

∑N
i=1 (li − l)2

N

〉
, (3.2)

FS2 =

〈∑n
i=1 (ci − ĉ)2

n − 1
,

∑N
i=1

(
li − l̂

)2

n − 1

〉
. (3.3)
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Table 2: Variance based on fuzzy method.

Stock name Variance
Vanke 0.001959
Konka 0.002526
Victor onward Textile 0.002652
Universe 0.002953
Tellus 0.003845
Shenxin 0.0056
Nonfemet 0.004228
Xinmao S&T 0.003022
INT’L Group 0.003809
Jinlu 0.00416
ZY Environment 0.002569
DaTong Gas 0.002516
Advanced Technology 0.00328
Fujian Electric 0.003027
Sinosteel 0.007421
Huayi Brothers 0.004313
China Merchants Bank 0.001113
Xi’An Aero Engine 0.003863
Ping An 0.001489
Petro China 0.000719

(4) Then we substitute the respective values into (3.3) to calculate the variance of
stocks.

The results are in Table 2.
In this model, the risk of the stock is expressed by the covariance matrix than risk

losing rate. In order to determine the interval for the variance the traditional approach is
to directly select the range of variance fluctuation. Then it is expressed as α2 ± a, where a
is a given constant. But there are no studies about the determination of covariance interval.
Therefore this paper defines the covariance by determining the variance of interval numbers.
By using a = 0.0001, the covariance interval is determined.

3.4. Empirical Results

3.4.1. Estimation without Investment Limit

Next, in order to figure out the role of the investment limit on the portfolio, we also calculate
the portfolio without setting maximum investment ratio and list the results in Table 3.

3.4.2. Estimation with Investment Limit

In order to show the role of risk controlling, we set a maximum investment ratio for each
stock which depends on the investor’s risk preference. The investor’ risk preference can be
calculated in accordance with investor’s risk preference decision model. Given the different
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Table 3: The investment portfolio of different market expectations without limits.

Stock name b = 0 b = 0.3 b = 0.5 b = 0.8 b = 1
Vanke 1.0000 0.6763 0.6950 0.2345 0
Konka 0 0 0 0 0
Victor onward Textile 0 0.3237 0.3050 0 0
Universe 0 0 0 0 0
Tellus 0 0 0 0 0
Shenxin 0 0 0 0 0
Nonfemet 0 0 0 0 0
Xinmao S&T 0 0 0 0 0
INT’L Group 0 0 0 0 0
Jinlu 0 0 0 0 0
ZY Environment 0 0 0 0 0
DaTong Gas 0 0 0 0 0
Advanced Technology 0 0 0 0 0
Fujian Electric 0 0 0 0 0
Sinosteel 0 0 0 0.7655 1.0000
Huayi Brothers 0 0 0 0 0
China Merchants Bank 0 0 0 0 0
Xi’An Aero Engine 0 0 0 0 0
Ping An 0 0 0 0 0
Petro China 0 0 0 0 0
Fval −0.0023 −0.0074 −0.0110 −0.0185 −0.0264

expectations of the investors on the market in the future, the optimal portfolio of investors
can be calculated.

Firstly, we assume that the investor’s target return is [10%, 12%]. Then we calculated
the interval of investors risk preference [0.6031, 0.6454] using the risk preference decision
parameter β. We can find that the investor is the slight risk preferences type. This paper sets
the maximum investment ratio on each stock on the level of 0.2, that is, μi = 0.2. Then the
portfolio can be comprised of at least 5 stocks, which can relatively reduce investment risk.
We assume the investor’s market expectations are, respectively, b = 0, b = 0.3, b = 0.5, b =
0.8, and b = 1. The results are listed in Table 4.

Table 4 shows that the investment portfolio only includes a few stocks. Some stocks
such as Tellus and ZY Environment have not been selected regardless of the market
expectations. The reason is that the expected returns of selected stocks are stable and they
have higher expected return range. In Table 4, we find that the investment ratios of Vanke and
Victor onward Textile are 0.2, respectively, because their expected return range is positive.
Meanwhile, these two stocks are less risky. Meanwhile, the investment ratio of Advanced
Technology is 0.2 as well, since the investment return of the Advanced Technology is more
stable than that of other stocks regardless of economic situation. Investment proportion of
DaTong Gas is high in bad economic environment. However, when the economy becomes
better, the investment proportion gradually declines due to its instable return. Therefore this
stock is a good choice for risk-averse investor.

In the contrary, the impact of the economic situation on Sinosteel is more significant,
which is reflected by the big expected return interval. So the investment ratio gradually
increases when the economic situation becomes better. The value shows a decreasing trend.
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Table 4: The investment portfolio of different market expectations under the conditions of limited invest-
ment ratio.

Stock name b = 0 b = 0.3 b = 0.5 b = 0.8 b = 1
Vanke 0.2000 0.2000 0.2000 0.2000 0.2000
Konka 0.1672 0.0632 0 0 0
Victor onward Textile 0.2000 0.2000 0.2000 0.2000 0.2000
Universe 0 0.0919 0.1047 0.1328 0.2000
Tellus 0 0 0 0 0
Shenxin 0 0 0 0 0
Nonfemet 0 0 0 0 0
Xinmao S&T 0 0 0 0 0
INT’L Group 0 0 0 0 0
Jinlu 0 0 0 0 0
ZY Environment 0 0 0 0 0
DaTong Gas 0.2000 0.1292 0.0477 0 0

Advanced Technology 0.0328 0.0658 0.0476 0.0672 0
0 0.0499 0.2000 0.2000 0.2000

Fujian Electric 0 0 0 0 0
Sinosteel 0 0 0 0 0
Huayi Brothers 0.2000 0.2000 0.2000 0.2000 0.2000
China Merchants Bank 0 0 0 0 0
Xi’An Aero Engine 0 0 0 0 0
Ping An 0 0 0 0 0
Petro China 0 0 0 0 0
Fval 0.0011 −0.0044 −0.0089 −0.0160 −0.0208

Therefore the maximum value of the model will show an increasing trend as the economic
situation improves.

By comparing Tables 3 and 4, we find that without the investment limit, the investment
portfolio consists more of Vanke and Victor onward Textile, especially in the case of a poor
economic situation. But when the economy becomes better, the investment portfolio becomes
to include Sinosteel. It shows that Sinosteel is more significantly influenced by the economic
situation. In conclusion, we find that the expected returns and risk are both increasing
without investment restrictions. Therefore, the risk can be reduced if the investment limit
is set in the portfolio.

In comparison to the current research on the investment portfolio, our model’s results
show the optimal selection portfolio for investors with different risk preference; that is, each
investor can set an expected return and risk level and thus makes his/her decision according
to this level. Meanwhile, our model can set the maximum risk limit. Through this restriction,
investment risk can be under control in a certain level, because it’s hard for investors to
always find a minimum risk.

4. Conclusions

In this paper, we use fuzzy set theory to extend Markowitz mean-variance portfolio model
and test this model in Chinese stock market. The results indicates that fuzzy set theory is
useful to avoid the problems of Markowitz mean-variance portfolio model and takes into
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account different expected return levels and risk preference levels. The paper also uses 20
Chinese stocks to test the model’s efficiency. We find that the risk can be minimized by our
fuzzy investment portfolio model through adding the maximum investment portion. The
model is finally proved to be useful in investment practice.

Fuzzy investment portfolio selection model can be used in many fields such as stock
markets, futures market and stock index futures markets, and so forth. Further, the portfolio
model can set more intervals according to investors’ needs, which will be more detailed when
intervals become smaller.
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