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This paper presents a method for synchronizing the unified chaotic systems via a sliding mode
controller (SMC). The unified chaotic system and problem formulation are described. Two
identical unified chaotic systems can be synchronized using the SMC technique. The switching
surface and its controller design are developed in detail. Simulation results show the feasibility of
a chaotic secure communication system based on the synchronization of the Lorenz circuits via the
proposed SMC.

1. Introduction

Chaos theory is an extensively studied branch of the theory of nonlinear systems. Lorenz pre-
sented the first well-known chaotic system, whichwas a third-order autonomous systemwith
only two multiplication-type quadratic terms but displayed very complex dynamical behav-
iors [1]. A chaotic system is a very complex, dynamical nonlinear system whose response
has intrinsic characteristics such as broadband noise-like waveforms, difficult predictability,
and sensitivity to initial condition variations [2, 3]. These properties are advantageous in
secure communication systems. Therefore, the synchronization of chaotic circuits for secure
communication has received a lot of research attention [4–7]. Studies have shown that it is
possible to set up a chaotic communication system to obtain secure communication [8].

The synchronization between master (transmitter) and slave (receiver) chaotic sys-
tems has potential applications for secure communication [9–13]. Several control schemes
have been developed for the synchronization of chaotic systems. Sliding mode control is a
popular nonlinear control strategy [14–19]. For sliding mode controller (SMC) design, the
Lyaponov stability method is applied to keep the nonlinear system under control. The sliding
mode approach transforms a higher-order system into a lower-order system, allowing a
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Figure 1: Block diagram of SMC-based synchronized chaotic systems.

simple control algorithm to be applied, making the system very straightforward and robust.
Sliding mode control has been applied to the synchronization of chaotic systems [5, 6, 11].

The present study designs an SMC-based chaotic secure communication system. To
achieve this goal, a proportional-integral (PI) switching surface is first designed for the
considered error dynamics system in sliding motion, and then, based on it, a sliding mode
controller is derived. This controller is effective and guarantees both the occurrence of sliding
motion and synchronization of the master-slave unified chaotic systems. Finally, an example
is given to illustrate the usefulness of the proposed SMC.

2. Problem Formulation and Main Results

A sliding mode control system consisting of master and slave chaotic systems and informa-
tion p(t) is shown in Figure 1.

Consider the following unified chaotic system:

ẋ1 = (25α + 10)(x2 − x1)
ẋ2 = (28 − 35α)x1 + (29α − 1)x2 − x1x3

ẋ3 = x1x2 − (8 + α)
3

x3,

(2.1)

where x1, x2, and x3 are states of system (2.1) and α ∈ [0, 1]. Obviously, the system (2.1)
becomes the original Lorenz system for α = 0, while the system (2.1) becomes the original
Chen system for α = 1. When α = 4/5, the system (2.1) becomes the critical system. In
particular, the system bridges the gap between Lorenz system and Chen system. Moreover,
the system is always chaotic in the whole interval α ∈ [0, 1]. Before the secure communication
system can be constructed, the synchronization problem of the system based on the sliding
mode control must first be solved. For the unified chaotic system, the master and slave
systems are defined as

ẋm1(t) = (25α + 10)(xm2(t) − xm1(t))

ẋm2(t) = (28 − 35α)xm1(t) + (29α − 1)xm2(t) − xm1(t)xm3(t) + p(t)

ẋm3(t) = xm1(t)xm2(t) − (8 + α)
3

xm3(t),

ẋs1(t) = (25α + 10)(xs2(t) − xs1(t))
ẋs2(t) = (28 − 35α)xs1(t) + (29α − 1)xs2(t) − xm1(t)xs3(t) + u(t)

ẋs3(t) = xm1(t)xs2(t) − (8 + α)
3

xs3(t),

(2.2)
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where u(t) is the controller output used to synchronize the master and slave systems (2.2),
and p(t) is the embedded message bounded by

∣
∣p(t)

∣
∣ ≤ ψ, ψ > 0. (2.3)

The control goal is for the two unified chaotic systems (2.2) to be synchronized such that the
resulting error vector satisfies

lim
t→∞

‖e(t)‖ = lim
t→∞

‖xmi(t) − xsi(t)‖ = 0, i = 1, 2, 3. (2.4)

The error vectors and error dynamics are defined as

e1(t) = xm1(t) − xs1(t)
e2(t) = xm2(t) − xs2(t)
e3(t) = xm3(t) − xs3(t),
ė1(t) = ẋm1(t) − ẋs1(t)
ė2(t) = ẋm2(t) − ẋs2(t)
ė3(t) = ẋm3(t) − ẋs3(t).

(2.5)

Then, the following error dynamics are obtained:

ė1(t) = (25α + 10)(e2(t) − e1(t))
ė2(t) = (28 − 35α)e1(t) + (29α − 1)e2(t) − xm1e3(t) + p(t) − u(t)

ė3(t) = xm1e2(t) − (8 + α)
3

e3(t).

(2.6)

Therefore, an SMC must be designed such that the resulting error vector satisfies

lim
t→∞

‖E(t)‖ = lim
t→∞

‖[e1(t)e2(t)e3(t)]‖ −→ 0. (2.7)

To stabilize the error dynamics (2.6) and achieve synchronization, two basic steps
are used: first, an appropriate switching surface is selected such that the sliding motion
on the sliding manifold is stable and ensures lim(t→∞)‖E(t)‖ = 0 ; second, an SMC law
which guarantees the existence of the sliding mode s(t) = 0 is established. To guarantee the
asymptotic stability of the sliding mode, the PI switching surface s(t) is defined as

s(t) = e2(t) +
∫ t

0

(

(25α + 10)e1(τ) + xm1e3(τ) + βe2(τ)
)

dτ, (2.8)



4 Mathematical Problems in Engineering

where β > 0 is given. It is well known that when the system operates in the sliding mode, the
following equation must be satisfied [20, 21]:

s(t) = e2(t) +
∫ t

0

(

(25α + 10)e1(τ) + xm1e3(τ) + βe2(τ)
)

dτ

= 0.

(2.9)

Since s(t) = 0, we consequently have

ṡ(t) = ė2(t) +
(

(25α + 10)e1(t) + xm1e3(τ) + βe2(t)
)

= 0.
(2.10)

From (2.10), the following is obtained:

ė2(t) = −((25α + 10)e1(t) + xm1e3(t) + βe2(t)
)

. (2.11)

Then, the equivalent sliding mode dynamics is obtained as

ė1(t) = (25α + 10)(e2(t) − e1(t))
ė2(t) = −(25α + 10)e1(t) + xm1e3(t) + βe2(t)

ė3(t) = xm1e2(t) − (8 + α)
3

e3(t).

(2.12)

The stability of the sliding mode dynamics (2.11) is analyzed below based on the Lyapunov
stability theory.

The Lyapunov function is selected as V = 0.5(e21(t) + e
2
2(t) + e

2
3(t)), which leads to

V̇ (t) = e1(t)ė1(t) + e2(t)ė2(t) + e3(t)ė3(t)

= (25α + 10)(e2(t) − e1(t))e1(t)
− (

(25α + 10)e1(t) + xm1e3(t) + βe2(t)
)

e2(t)

+
(

xm1e2(t) − (8 + α)
3

e3(t)
)

e3(t)

= − (25α + 10)e21(t) − βe22(t) −
(8 + α)

3
e23(t)

≤ 0.

(2.13)

According to Lyapunov stability theory, the sliding motion on the sliding manifold is
stable and ensures limt→∞‖E(t)‖ = limt→∞‖[e1(t)e2(t)e3(t)]‖ = 0.
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Having established the appropriate switching surface (2.8), as described above, the
next step is to design an SMC scheme to drive the system trajectories onto the sliding mode
s(t) = 0. This study proposes the following SMC:

u(t) = u1(t) + ηψ
[

sign(s(t))
]

, η > 1, (2.14)

where u1(t) = (38 + 10α)e1(t) + (29α − 1 + β)e2(t).
Before the scheme of the controller is given, the reaching condition of the sliding mode

is derived below.

Main Theorem

Consider the error dynamics (2.6). If this system is controlled by u(t) in (2.14), then the
system trajectory converges to the sliding surface s(t) = 0 and satisfies limt→∞‖E(t)‖ =
limt→∞‖[e1(t)e2(t)e3(t)]‖ = 0.

Proof. Consider the following Lyapunov function candidate:

V (t) = 0.5s2(t). (2.15)

Taking the derivative of (2.15)with respect to time and using (2.11), (2.14), and (2.15) yields

V̇ (t) = s(t)ṡ(t)

= s(t)
(

ė2(t) + (25α + 10)e1(t) + xm1e3(t) + βe2(t)
)

≤ |s(t)|ψ − s(t)u(t).

(2.16)

Since ψ > 0 and η > 1, V̇ (t) = s(t)ṡ(t) < 0 can be derived when s/= 0. Thus, according to Lya-
punov stability theory, s(t) always converges to the switching surface s = 0. Furthermore,
since the error dynamics in the sliding manifold is asymptotically stable according to the
discussion above, the error dynamic response of limt→∞‖E(t)‖ = limt→∞‖[e1(t)e2(t)e3(t)]‖ =
0 is satisfied. Hence, the proof is achieved completely.

After the SMC is designed to ensure limt→∞‖E(t)‖ = limt→∞‖[e1(t)e2(t)e3(t)]‖ = 0,
then

ė1(t) = (25α + 10)(e2(t) − e1(t)) = 0
ė2(t) = (28 − 35α)e1(t) + (29α − 1)e2(t)

−xm1e3(t) + p(t) − u(t) = 0

ė3(t) = xm1e2(t) − (8 + α)
3

e3(t) = 0

=⇒
ė1(t) = 0

ė2(t) = 0 + p(t) − u(t) = 0
ė3(t) = 0.

(2.17)

It can be inferred that

lim
t→∞

(

p(t) − u(t)) = 0 (2.18)
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which means that the message p(t) can be approximated by the control u(t). From previous
studies [22, 23], the control input u(t) can be approximated by the following continuous
equivalent control ueq(t):

ueq(t) = u1(t) + ηψ
[

s(t)
|s(t)| + σ

]

, (2.19)

where σ is an arbitrarily small positive constant. When σ is sufficiently small, then (2.19)will
arbitrarily approach (2.14) and input message p(t) can be recovered using (2.19).

3. Numerical Simulation and Analysis

In this section, the continuous equivalent control ueq(t) (2.19) is utilized for the synchroniza-
tion of unified chaotic circuits (2.1). When α = 0, the system becomes the original Lorenz
system as

ẋ1 = 10(x2 − x1)
ẋ2 = 28x1 − x2 − x1x3

ẋ3 = x1x2 − 8
3
x3.

(3.1)

As mentioned in [24], when directly implementing nonlinear Lorenz systems with
electronic circuits, the major difficulty is that the state variables of the system (3.1) occupy a
wide dynamic range with values that exceed reasonable power supply limits. However, this
difficulty can be eliminated by a simple transformation of variables. Let the Lorenz equations
be transformed into

ẋm1 = 10(xm2 − xm1)

ẋm2 = 28xm1 − xm2 − k1xm1xm3

ẋm3 = k1xm1xm2 − 8
3
xm3.

(3.2)

The system (3.2)with k1 = 10, which is referred to as the transmitter, can bemore easily
implemented because the state variables never exceed the range of typical power supply
limits.

Now consider the following Lorenz circuits:
Master Lorenz circuit as

ẋm1(t) = 10(xm2(t) − xm1(t))

ẋm2(t) = 28xm1(t) − xm2(t) − 10xm1(t)xm3(t) + p(t)

ẋm3(t) = 10xm1(t)xm2(t) − 8
3
xm3(t),

(3.3)
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Figure 2: States of master and slave systems.
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Figure 3: Simulation results of switch surface s(t).

Slave Lorenz circuit as

ẋs1(t) = 10(xs2(t) − xs1(t))
ẋs2(t) = 28xs1(t) − xs2(t) − 10xm1(t)xs3(t) + u(t)

ẋs3(t) = 10xm1(t)xs1(t)xs2(t) − 8
3
xs3(t),

(3.4)

where ẋm and ẋs denote the derivatives of xm and xs with respect to time t, respectively. The
input message p(t) is a sine wave (0.5V, 5Hz) embedded into the chaotic transmitter and
the equivalent SMC synchronization scheme (2.9) is given in the receiver. The initial value
conditions [xm1(0),xm2(0),xm3(0)] = [0.4 0.1 0.2] and [xs1(0),xs2(0),xs3(0)] = [0.1 0.1 0.1]
are used in this example. The control toolbox of MATLAB was used to simulate the proposed
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Figure 4: Simulation results of errors between state xm and state xs.
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Figure 5: Simulation results of continuous equivalent control ueq(t) and input message p(t).

secure commutation system. Figure 2 shows the states of the master and slave systems.
Figure 3 shows the simulation results of the switch surface s(t). Figure 4 shows the simulation
results of errors between state xm and state xs. These figures show that the switching surface
s(t) converges to almost zero within 8 s and that the synchronization errors converge to
almost zero after 0.5 s. The master and slave are then synchronous. Figure 5 shows the
simulation results of the continuous equivalent control ueq(t) and input message p(t). The
input message p(t) can be recovered.

4. Conclusion

This study presented amethod for synchronizing the unified chaotic systems via an SMC. The
simulation results show the feasibility of the chaotic secure communication system based on
the synchronization of the Lorenz circuits via an SMC.
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