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A robust observer design is proposed for Takagi-Sugeno fuzzy neutral models with unknown
inputs. The model consists of a mixed neutral and discrete delay, and the disturbances are imposed
on both state and output signals. Delay-dependent sufficient conditions for the design of an
unknown input T-S observer with time delays are given in terms of linear matrix inequalities.
Some relaxations are introduced by using intermediate variables. A numerical example is given to
illustrate the effectiveness of the given results.

1. Introduction

In recent years, there have been rapidly growing interests in stability analysis and synthesis
of fuzzy control systems; several works concerning stability and state estimation for a class
of systems described by Takagi-Sugeno (T-S) fuzzy models [1–7] have been carried out.
Furthermore, some recent applications of fuzzy theory in engineering are reported in [8–10].
Based on the Lyapunov method, design conditions for controllers and observers are given
in linear matrix inequalities (LMIs) formulation (see among others [11–19]). In the literature
of the study, all of the existing results concern T-S fuzzy models with known inputs (see,
e.g., [15, 17]). However, it is well known that state estimation for dynamic systems with time
delays and unknown inputs or disturbances is an interesting research topic in the fields of
robust control, system supervision, and fault-tolerant control [20–23]. Recently, the problem
ofH∞ model reduction for Takagi-Sugeno (TS) fuzzy stochastic systems in [24], the problem
ofH∞ model approximation for discrete-time Takagi-Sugeno (T-S) fuzzy time-delay systems
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in [25], and the problem of filtering for a class of discrete-time T-S fuzzy time-varying delay
systems in [26] have been fully investigated.

On the other hand, stability of neutral systems proves to be a more complex issue
because the system involves the derivative of the delayed state. Especially, in the past few
decades, increased attention has been devoted to the problem of robust delay-dependent
stability and stabilization via different approaches for linear neutral systems with delayed
state and/or input and parameter uncertainties [27–30]. Recently, the problem of network-
based feedback control for systems with mixed delays based on quantization and dropout
compensation has been studied in [31].

However, to the best of our knowledge, the class of unknown input T-S neutral models
has not yet been fully investigated in the past and remains to be important and challenging.
This motivates the present study. Thus, the contributions of this paper are two-fold: (i) design
of observers for T-S fuzzy models with mixed neutral and discrete time delays and unknown
inputs which influence states and outputs simultaneously and (ii) for the addressed problem,
the observer gains are computed by solving a convex optimization technique.

This paper is organized as follows. First, the considered observer structure for T-S
fuzzy model with mixed time delays and unknown inputs is given. In Section 3, the main
results are given for T-S models. Section 4 gives a numerical example to show the validity of
the given results. At last, we conclude the paper in Section 5.

Notation. Throughout this paper, the notation X > Y , where X and Y are symmetric matrices,
means that X − Y is positive definite, and Rn and Rn×m denote, the n-dimensional Euclidean
space and the set of all n × m real matrices respectively. Superscript “T” denotes matrix
transposition, I is the identity matrix with compatible dimensions, the symbol (∗) denotes
the transpose elements in the symmetric positions, IM = {1, 2, . . . ,M}, and Σ+ denotes any
generalized inverse of matrix Σ with ΣΣ+Σ = Σ. The operator diag{· · · } represents a block
diagonal matrix, and the operator sym(A) represents A +AT .

2. Problem Formulation

Now, consider the following T-S fuzzy models with unknown inputs and different neutral
and discrete time delays:

ẋ(t) =
M∑

i=1

μi(ξ(t))(Aix(t) +Aτi ẋ(t − τ) +Ahix(t − h) + Biu(t) + Rid(t) +Hiw(t))

x(t) = φ(t), t ∈ [−κ, 0],
y(t) = Cx(t) + Fd(t) + Jw(t),

(2.1)

with

μi(ξ(t)) ≥ 0,
M∑

i=1

μi(ξ(t)) = 1, (2.2)

where M is the number of submodels, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
vector, d(t) ∈ Rqd is the unknown input, w(t) ∈ Rqw is the external disturbance vector, and
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y ∈ Rp is the measured output. Ai ∈ Rn×n, Aτi ∈ Rn×n, Bi ∈ Rn×m, and C ∈ Rp×n define
the ith local model. Matrices Ri ∈ Rn×qd and F ∈ Rp×qd represent the influence matrices of
the unknown inputs, and Hi ∈ Rn×qw and J ∈ Rp×qw represent the influence matrices of
the disturbances. The activation functions μi(·) depend on the decision vector ξ(t) assumed
to depend on measurable variables. It can depend on the measurable state variables and be
a function of the measurable outputs of the system and possibly of the known inputs [1, 32].
The time-varying function φ(t) is continuous vector-valued initial function, and τ and h are
constant time delays with κ := max{τ, h}.

In this paper, we are concerned with the reconstruction of state variable x(t) of
unknown inputs T-S model (2.1) using measurable signals, that is, known input u(t) and
measured output y(t). In order to estimate the state of the unknown input T-S fuzzy model
(2.1), the considered unknown input observer structure has the following form:

ż(t) =
M∑

i=1

μi(ξ(t))
(
Niz(t) +Nτi ż(t − τ) +Nhiz(t − h) +Giu(t) + Liy(t)

)

z(t) = ϕ(t), t ∈ [−κ, 0],
x̂(t) = z(t) − Ey(t),

(2.3)

where the observer considers the same activation functions μi(·) as used for the T-S model
(2.1). The variablesNi ∈ Rn×n,Nτi ∈ Rn×n,Gi ∈ Rn×m, Li ∈ Rn×p, and E ∈ Rn×p are the observer
gains to be determined in order to estimate the state of the unknown input T-S model (2.1).
The time-varying function ϕ(t) is continuous vector-valued initial function. Now let us define
the state estimation error

e(t) = x(t) − x̂(t). (2.4)

From estimation error (2.4)with the expression of x̂(t) given by the observer (2.3) and
T-S model (2.1), we get

e(t) = (I + EC)x(t) − z(t) + EFd(t) + EJw(t). (2.5)

The dynamic of state estimation error is then given by

ė(t) =
M∑

i=1

μi(ξ)(Nie(t) + (TAi −KiC −Ni)x(t) + TAτi ẋ(t − τ) −Nτi ż(t − τ)

+ TAhix(t − h) −Nhiz(t − h) + (TBi −Gi)u(t)

+(TRi −KiF)d(t) + (THi −KiJ)w(t)) + EFḋ(t) + EJẇ(t),

(2.6)

with

T = I + EC, Ki = NiE + Li. (2.7)
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Then, we get

ė(t) =
M∑

i=1

μi(ξ(t))(Nie(t) +Nτi ė(t − τ) +Nhie(t − h)), (2.8)

if the following constraints hold

Ni = TAi −KiC, (2.9)

TAτi −NτiT = 0, (2.10)

TAhi −NhiT = 0, (2.11)

TBi −Gi = 0, (2.12)

TRi −KiF = 0, (2.13)

E[F J] = 0, (2.14)

THi −KiJ = 0. (2.15)

For description brevity, (2.8) can be written as

ė(t) = Nμe(t) +Nμτ ė(t − τ) +Nμhe(t − h), (2.16)

where Nμ =
∑M

i=1 μi(ξ(t))Ni,Nμh =
∑M

i=1 μi(ξ(t))Nhi , and Nμτ =
∑M

i=1 μi(ξ(t))Nτi .

Remark 2.1. It is noting that if E is determined, we get T from (2.7) and deduce directly Gi,
Nhi , and Nτi from (2.9)–(2.15). Then, it suffices to guarantee the stability of the dynamic
system (2.8) under the constraint (2.9)–(2.15). Furthermore, (2.5) is simplified to e(t) = (I +
EC)x(t) − z(t).

In the following, LMIs design conditions satisfying e(t) → 0 when t → ∞ are given
for continuous-time systems.

3. Synthesis Conditions

This section deals with the continuous-time T-S models. Sufficient LMIs conditions
guaranteeing the global asymptotic convergence of state estimation error (2.4) are given by
using slack variable to introduce relaxation.

Theorem 3.1. The observer (2.3) converges asymptotically to the state of the continuous-time
T-S model (2.1), if there exist matrices Qj > 0, j = 1, . . . , 4, S1, Ul > 0, l = 1, . . . , 3,
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and P 2, P 3,Ni,Nhi ,Ndi such that the conditions (2.9)–(2.15) and the following hold for all
i ∈ IM:

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ̂11i Σ̂12i Σ̂13i −Q3 +Q
T

4 Nτi

(∗) Σ̂22 Nhi 0 Nτi

(∗) (∗) Σ̂33 0 0
(∗) (∗) (∗) Σ̂44 0
(∗) (∗) (∗) (∗) −U2

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (3.1)

where Σ̂11i = sym{Ni + Q1 + Q3} + U1 + S1, Σ̂12i = −PT

2 + N
T

i , Σ̂13i = Nhi − Q1 + Q
T

2 , Σ̂22 =
sym{−P 3} +U2 + dU3 + hS1, Σ̂33 = −S1 − sym{Q2}, and Σ̂44 = −U1 − sym{Q4}.

Proof. To investigate the delay-dependent asymptotically stable analysis of the error system
(2.8), we define a class of Lyapunov-Krasovskii functions as follows:

V (t) =
3∑

i=1

Vi(t), (3.2)

where

V1(t) = eT(t)P1e(t),

V2(t) =
∫ t

t−h
eT (θ)S1e(θ)dθ +

∫0

−h

∫ t

t+τ
ėT (θ)S2ė(τ)dθ dτ,

V3(t) =
∫ t

t−τ
eT (θ)U1e(θ)dθ +

∫ t

t−τ
ėT (s)U2ė(s)ds +

∫0

−τ

∫ t

t+τ
ėT (θ)U3ė(τ)dθ dτ.

(3.3)

Time derivative of V1(t) along the system trajectory (2.16) becomes

V̇1(t) = 2eT (t)P1
(
Nμe(t) +Nμτ ė(t − τ) +Nμhe(t − h)

)
, (3.4)

Then by taking the time derivative of V2(t) and V3(t), one can read

V̇2(t) = &eT (t)S1e(t) − eT (t − h)S1e(t − h) + hėT (t)S1ė(t) −
∫ t

t−h
ėT (θ)S1ė(θ)dθ, (3.5)

V̇3(t) = eT (t)U1e(t) − eT (t − τ)U1e(t − τ) + ėT (t)U2ė(t) − ėT (t − τ)U2ė(t − τ)

+ τėT(t)U3ė(t) −
∫ t

t−τ
ėT(τ)U3ė(τ)dτ.

(3.6)

Moreover, from (2.16), the following equation holds for any matrices P2 and P3 with
appropriate dimensions:

2
(
eT (t)PT

2 + ėT (t)PT
3

)
× (−ė(t) +Nμe(t) +Nμτ ė(t − τ) +Nμhe(t − h)

)
= 0. (3.7)
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Furthermore, from the Leibniz-Newton formula, the following equations hold for any
matrices Qj, j = 1, . . . , 4, with appropriate dimensions:

2
(
eT (t)Q1 + eT(t − h)Q2

)(
e(t) − e(t − h) −

∫ t

t−h
ė(s)ds

)
= 0,

2
(
eT (t)Q3 + eT (t − τ)Q4

)(
e(t) − e(t − τ) −

∫ t

t−τ
ė(s)ds

)
= 0.

(3.8)

From the obtained derivative terms in (3.4)–(3.6) and adding the left-hand side of (3.7)–(24)
into V̇ (t), we obtain the following result for V̇ (t):

V̇ (t) = χT (t)Πχ(t)

−
∫ t

t−h

(
χT (t)ν1 + ė(s)S1

)
S1

(
χT (t)ν1 + ė(s)S1

)T
ds

−
∫ t

t−τ

(
χT (t)ν2 + ė(s)U3

)
U3

(
χT (t)ν2 + ė(s)U3

)T
ds,

(3.9)

or equivalently,

V̇ (t) = χT (t)Πχ(t), (3.10)

with Π := Ξ + hν1S1ν
T
1 + τν2U3ν

T
2 , S1 := S−1

1 , U3 := U−1
3 , χ(t) = col{e(t), ė(t), e(t − h), e(t −

τ), ė(t − τ)}, ν1 = col{Q1, 0, Q2, 0, 0}, ν2 = col{Q3, 0, 0, Q4, 0}, and

Ξ =

⎡
⎢⎢⎢⎢⎢⎣

Σ11 Σ12 Σ13 −Q3 +QT
4 Σ15

(∗) Σ22 PT
3 Nμh 0 PT

3 Nμτ

(∗) (∗) Σ33 0 0
(∗) (∗) (∗) Σ44 0
(∗) (∗) (∗) (∗) −U2

⎤
⎥⎥⎥⎥⎥⎦
, (3.11)

where Σ11 = sym{(P1 + PT
2 )Nμ+ Q1+ Q3}+ U1+ S1, Σ12 = −PT

2 + NT
μP3, Σ13 = (P1 + PT

2 )Nμh −
Q1 + QT

2 , Σ15 = (P1 + PT
2 )Nμτ , Σ22 = sym{−P3} + U2 + τU3 + hS1, Σ33 = −S1 − sym{Q2}, and

Σ44 = −U1 − sym{Q4}.
If a constant scalar κ > 0 satisfies the following condition:

Π = Π + Π̃ < 0, (3.12)
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where

Π̃ :=

⎡
⎢⎢⎢⎣

κI 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎦
, (3.13)

then

V̇ (t) ≤ χT (t)Πχ(t) = χT (t)
(
Π − Π̃

)
χ(t)

< −χT (t)Π̃χ(t).
(3.14)

From the previous inequality, we can easily obtain, for all ê(t)/= 0,

V̇ (t) < −κ‖ê(t)‖2 < 0. (3.15)

Based on Lyapunov stability theory, the error system (2.16) is asymptotically stable.
However, the condition (3.12) is not strict LMI due to the nonconvex constraints in the

matrix indices, and, thus, one always has difficulties to get solutions satisfying the constraint.
In order to find the solutions of (3.12), the obtained sufficient condition is now changed by
some manipulations. The inequality Π < 0 yields (by Schur complements)

M∑

i=1

μi(ξ(t))

⎡
⎢⎣
Ξi + Π̃ hν1 τν2
(∗) −hS1 0
(∗) (∗) −τU3

⎤
⎥⎦ < 0, (3.16)

with

Ξi =

⎡
⎢⎢⎢⎢⎢⎣

Σ11i Σ12i Σ13i −Q3 +QT
4 Σ15i

(∗) Σ22 PT
3 Nhi 0 PT

3 Nτi

(∗) (∗) Σ33 0 0
(∗) (∗) (∗) Σ44 0
(∗) (∗) (∗) (∗) −U2

⎤
⎥⎥⎥⎥⎥⎦
, (3.17)

where Σ11i = sym{(P1 + PT
2 )Ni +Q1 +Q3} +U1 + S1, Σ12i = −PT

2 +NT
i P3, Σ13i = (P1 + PT

2 )Nhi −
Q1 +QT

2 , and Σ15i = (P1 + PT
2 )Nτi . It is clear that Ξi < 0 result in LMI stabilization conditions.

It can be easily seen that the matrices (P1 + P2)
T and P3 are nonsingular. Let ς :=

diag{((P1 + P2)
T )

−1
, P−1

3 , ((P1 + P2)
T )

−1
, ((P1 + P2)

T )
−1
, P−1

3 }. By premultiplying ς, postmulti-
plying ςT toΞi < 0, and using the definitionsNi := Ni(P1 + P2)

−1,Nhi := Nhi(P1 + P2)
−1,Nτi :=

NτiP
−1
3 , Qi := (P1 + PT

2 )
−1
Qi(P1 + P2)

−1, U1 := (P1 + PT
2 )

−1
U1(P1 + P2)

−1, U2 := P−1
3 U1(PT

3 )
−1,

P 2 := P−1
3 P2(P1 + P2)

−1, and P 3 := P−1
3 , one can obtain the LMI (3.1). This completes the

proof.
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Remark 3.2. The equality constraints (2.13)–(2.15) can be rewritten in the following equivalent
form:

[
E K

][CR CH [F J]
−F −J 0

]
=
[−R −H 0

]
, (3.18)

with

H =
[
H1 H2 · · · HM

]
, K =

[
K1 K2 · · · KM

]
,

R =
[
R1 R2 · · · RM

]
,

F =

⎡
⎢⎢⎢⎢⎢⎣

F 0 · · · 0

0 F · · · ...
...

...
. . .

...
0 · · · · · · F

⎤
⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, J =

⎡
⎢⎢⎢⎢⎢⎣

J 0 · · · 0

0 J · · · ...
...

...
. . .

...
0 · · · · · · J

⎤
⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

M times,

(3.19)

where F ∈ RM·p×M·qd , H ∈ Rn×M·qw , R ∈ Rn×M·qd , and K ∈ Rn×M·p. A necessary and sufficient
condition for the existence of a solution [E,K] to (3.18) is [33]

rank

⎡

⎣
CR CH [F J]
−F −J 0
−R −H 0

⎤

⎦ = rank
[
CR CH [F J]
−F −J 0

]
. (3.20)

Note that under this condition, a solution is obtained by

[
E K

]
=
[−R −H 0

][CR CH [F J]
−F −J 0

]+

− Z

(
I −
[
CR CH [F J]
−F −J 0

][
CR CH [F J]
−F −J 0

]+)
,

(3.21)

where Z is an arbitrary matrix [33].

Remark 3.3. According to Theorem 3.1, the observer parameters can be calculated in the
following:

(1) calculate Nτi = NτiP3,

(2) compute T by solving (2.10) and calculate E from T = I + EC,

(3) compute Nhi by solving (2.11),

(4) compute Gi by solving (2.12),

(5) compute Ni = NiN
−1
hi
Nhi ,

(6) compute Ki by solving (2.9),

(7) compute Li from Li = Ki −NiE.
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Remark 3.4. It is worth noting that the number of the variables to be determined in the LMI
(3.1) is 3n2(M + 2) + 4n.

Remark 3.5. The reduced conservatism of Theorem 3.1 benefits from the construction of the
Lyapunov-Krasovskii functional in (3.2), introducing some freeweightingmatrices to express
the relationship among the system matrices, and neither the model transformation approach
nor any bounding technique is needed to estimate the inner product of the involved crossing
terms. It can be easily seen that results of this paper are quite different from existing results in
the literature in the following perspective. The structures at most of references, for instance
[20], consider a delay-free T-S fuzzy system and in comparison to our case do not center on
time delays, that is, the results in the previous reference cannot be directly applied to the T-S
fuzzy models with unknown inputs and different neutral and discrete-time delays.

4. Numerical Example

To show the validness of the proposed results, a numerical example is proposed for the
discrete-time T-S model (2.1)with the following data:

A1 =

⎡

⎣
−0.4 0.2 0.3
0.3 −0.6 0.3
0.4 0.2 0.6

⎤

⎦,

A2 =

⎡

⎣
−0.45 0.375 0.375
0.15 −0.45 0
0.75 0.75 −0.45

⎤

⎦,

Ah1 =

⎡

⎣
−0.01 0.03 0.02
0.01 −0.005 0
0.005 0.07 −0.03

⎤

⎦,

Ah2 =

⎡

⎣
−0.005 0.01 0.04
0.01 −0.025 0.02
0.05 0.03 −0.01

⎤

⎦,

Aτ1 =

⎡

⎣
0.0045 −0.0037 −0.0037
−0.0015 0.0045 0
−0.0075 −0.0075 0.0045

⎤

⎦,

Aτ2 =

⎡

⎣
0.0170 −0.0115 −0.0135
−0.0090 0.0210 −0.0060
−0.0230 −0.0190 −0.0030

⎤

⎦,

B1 =

⎡

⎣
1.0
−0.5
−0.5

⎤

⎦, B2 =

⎡

⎣
−0.5
1.0
−0.5

⎤

⎦, F =
[
1
1.2

]
,

R1 =

⎡

⎣
0.4
−0.4
0.4

⎤

⎦, R2 =

⎡

⎣
0.4
0.4
−0.8

⎤

⎦, C =
[
0 1 1
1 0 1

]
,

J = 0, H = 0, τ = 0.05, h = 0.1, Aτ1 = 0.1I3, Aτ2 = 0.7I3.

(4.1)
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Figure 1: Time behaviour of states and corresponding error signals.

In the light of Theorem 3.1 and Remark 3.2, we solved LMIs and obtained the following
observer gains by using Matlab LMI Control Toolbox [34]

E =

⎡

⎣
0.1945 −0.1508
−0.7474 0.6300
−0.5524 0.4682

⎤

⎦,

G1 =

⎡

⎣
0.7363
0.5659
0.2927

⎤

⎦, G2 =

⎡

⎣
−0.2518
−0.0032
−1.2461

⎤

⎦,
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N1 =

⎡

⎣
−0.2699 −0.2149 0.0543
−0.2053 −0.1778 0.0849
−0.0775 −0.0530 −0.2330

⎤

⎦,

N2 =

⎡

⎣
−0.2734 −0.1996 −0.0930
−0.4198 −0.3263 −0.1422
1.1909 0.9204 0.3656

⎤

⎦,

L1 =

⎡

⎣
0.1565 0.0973
0.2284 −0.1071
0.6159 0.1294

⎤

⎦, L2 =

⎡

⎣
0.3221 0.0557
0.0335 0.3480
0.8122 −1.3116

⎤

⎦.

(4.2)

For simulation purpose, we simply choosew(t) = t/(1+t2) as the disturbance, u(t) = e−t sin(t)
as the input signal, and μ1(ξ) = (1 − sin(x2(t)))/2 and μ2(ξ) = (1 + sin(x2(t)))/2 as activation
functions. The error signals for an input are depicted in Figure 1. It is seen that the state
estimation for the systems is performed as well.

5. Conclusion

In this paper, a robust observer design was proposed for Takagi-Sugeno (T-S) fuzzy neutral
models with unknown inputs. The model consists of a mixed neutral and discrete delay, and
the disturbances are imposed on both state and output signals. Delay-dependent sufficient
conditions for the design of an unknown input T-S observer with time delays were given
in terms of linear matrix inequalities (LMIs). Some relaxations were introduced by using
intermediate variables. A numerical example was given to illustrate the effectiveness of
the given results. Extension to the case of unmeasured decision variables is considered as
a challenging problem. A numerical example has shown the effectiveness of the proposed
results. Future work will investigate fault detection and Markovian jump systems for fuzzy
systems with unknown inputs and time delays (see for instance [25–27, 35–37]).
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