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A two-dimensional nonlinear plate equation is revisited, which arises from the model of the
viscoelastic thin rectangular plate with four edges supported. We establish that the system is
exponentially decayed if the memory kernel satisfies the condition of the exponential decay.
Furthermore, we show the existence of the global attractor by verifying the condition (C).

1. Introduction

In this paper, we investigate the nonlinear plate equation with memory type:

ρutt + r1r2ut + φ(0)�2u −
(
N1 + β|ux|2

)
uxx −

(
N2 + β

∣∣uy
∣∣2)uyy

+
∫∞

0
φ′(s)�2u(t − s)ds = r1f

(
x, y

)
, in Ω × R+,

(1.1)

verifying the initial conditions:

u
(
x, y, 0

)
= u0

(
x, y, t

)
(1.2)

and the boundary conditions:

u
(
0, y, t

)
= u

(
1, y, t

)
= u(x, 0, t) = u(x, 1, t) = 0,

uxx
(
0, y, t

)
= uxx

(
1, y, t

)
= uyy(x, 0, t) = uyy(x, 1, t),

(1.3)
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where x, y ∈ [0, 1], t ∈ R, η, r1, r2,N1,N2, β are nonnegative constants, Ω = [0, 1] × [0, 1] is a
bounded domain with boundary ∂Ω, φ(0), φ(∞) > 0 and φ′(s) < 0 for every s ∈ R+.

The asymptotical behavior of solutions for the nonlinear plate equations had been
studied by many authors [1–10]; of those, Santos and Junior [5] studied a kind of plate
equation with memory type. Yang and Zhong [11] studies the plate equation:

utt + α(x)g(ut) + Δ2u + λu + f(u) = h(x), x ∈ Ω, (1.4)

whereΩ ⊂ Rn is a bounded domain and proves the existence of a global attractor in the space
H1

0(Ω) × L2(Ω). After Yang and Zhong [11], Yue and Zhong [12] obtained the existence of
a global attractor about some equations similar to (1.4). Xiao [13] discusses the long-time
behavior of the plate equation:

εutt + Δ2u + λut + β(x)u = f(x, u), x ∈ Ω = Rn, t ≥ 0 (1.5)

on the unbounded domain Rn and show that there exists a compact global attractor for the
above equation satisfying certain initial-boundary data. Wang and Zhang [14] prove that the
two-dimensional nonlinear equation

ρutt +DΔ2u + εμut −
(
N1 +

T

2

∫

Ω
u2xdx dy

)
uxx −

(
N2 +

T

2

∫

Ω
u2ydx dy

)
uyy = 0 (1.6)

has a global attractor in space (H1
0(Ω)

⋂
L2(Ω)).

2. Preliminaries

We denote by H = L2(Ω), V = H2
0(Ω) endowed with the scalar product and the norm on

H and V (·, ·), | · |, ((·, ·)), ‖ · ‖, respectively, where (u, v) =
∫
Ω u(x, y)v(x, y)dx dy, ((u, v)) =∫

Ω Δu(x, y)Δv(x, y)dx dy. Define D(A) = {v ∈ V,Av ∈ H}, where A = Δ2. For the operator
A, we assume thatA : D(A) → H are isomorphism, and there exists α > 0 such that (Au, u) ≥
α‖u‖2, for all u ∈ V . We also define the power As of A for s ∈ Rwhich operates on the spaces
D(As), and we write V2s = D(As), s ∈ R. This is a Hilbert space with the inner product and
norm defined

(u, v)2s = (Asu,Asv), ‖u‖2s = ((u, v)2s)
1/2, ∀u, v ∈ D(As), (2.1)

and Ar is an isomorphism from D(As) onto D(As−r), for all s, r ∈ R. In particular, D(A0) =
H, D(A1/2) = V, D(A−1/2) = V ∗, D(A) ⊂ V ⊂ H = H∗ ⊂ V ∗, where H∗, V ∗ are the
dual space, respectively, and each space is dense in the following one and the injections are
continuous. Using the Poincáre inequality we have

‖v‖ ≥ λ1|v|, ∀v ∈ V, (2.2)

where λ1 denotes the first eigenvalue of A1/2.
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Let μ(s) = −φ′(s), φ(∞) = 1 and assume that the memory kernel μ is required to
satisfy the following assumptions:

(h1) μ ∈ C1(R+)
⋂
L1(R+), μ′(s) ≤ 0, for all s ∈ R+;

(h2)
∫∞
0 μ(s)ds =M > 0;

(h3) μ′(s) + αμ(s) ≤ 0, for all s ∈ R+, α > 0.

In view of h1, let L2
μ(R

+,H2
0) be the Hilbert space of H2

0 -valued functions on R+,
endowed with the following inner product and the norm:

(
φ, ψ

)
μ,V =

∫∞

0
μ(s)

(
Δφ(s),Δψ(s)

)
ds (2.3)

and |φ|2μ,V = (φ, φ)μ,V =
∫∞
0 μ(s)‖φ‖2ds. Finally, we introduce the following Hilbert spaces:

H0 = V ×H × L2
μ(R

+, V ), H1 = D(A) × V × L2
μ(R

+, D(A)). (2.4)

We define

ηt
(
x, y, s

)
= u

(
x, y, t

) − u(x, y, t − s) =̂η(x, y, s), (2.5)

and (1.1) is transformed into the system

ρutt + r1r2ut +�2u −
(
N1 + β|ux|2

)
uxx −

(
N2 + β

∣∣uy
∣∣2)uyy

+
∫∞

0
μ(s)�2ηds = r1f

(
x, y

)
,

ηtt + η
t
s = ut,

(2.6)

where the second equation is obtained by differentiating (2.5). The corresponding initial-
boundary value conditions are then given by

u
(
0, y, t

)
= u

(
1, y, t

)
= u(x, 0, t) = u(x, 1, t) = 0,

uxx
(
0, y, t

)
= uxx

(
1, y, t

)
= uyy(x, 0, t) = uyy(x, 1, t),

ηt
(
0, y, s

)
= ηt

(
1, y, s

)
= ηt(x, 0, s) = ηt(x, 1, s) = 0,

ηtxx
(
0, y, s

)
= ηtxx

(
1, y, s

)
= ηtyy(x, 0, s) = η

t
yy(x, 1, s) = 0,

u
(
x, y, 0

)
= u1

(
x, y

)
, ut

(
x, y, 0

)
= u2

(
x, y

)
,

η0
(
x, y, s

)
= u0

(
x, y, 0

) − u0
(
x, y,−s),

(2.7)

where u1(x, y) = u0(x, y, t), u2(x, y) = ∂tu0(x, y, t)|t=0, x, y ∈ [0, 1], t ≥ 0, s ∈ R+.
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According to the classical Faedo-Galerkin method it is easy to obtain the existence and
uniqueness of solutions and the continuous dependence to the initial value, so we omit it and
only give the following theorem.

Theorem 2.1 (see [15, 16]). Let (h1) hold and f(x, y) ∈ L2(Ω). Then given any time interval I =
[0, 1], problems (2.6)-(2.7) have a unique solution (u, ut, η) in I with initial data (u1, u2, η0) ∈ H0,
and the mapping (u1, u2, η0) → (u(t), ut(t), ηts) is continuous inH0.

Thus, it admits to define a C0 semigroup

S(t) :
{
u1, u2, η0

} −→ {
u(t), ut(t), ηts

}
, t ∈ R+, (2.8)

and they mapH0 into themselves.
In addition, the following abstract results will be used in our consideration.

Theorem 2.2 (see [17]). A C0 semigroup {S(t)}t≥0 in a Banach space X is said to satisfy condition
(C) which arised by [17] if for any ε > 0 and for any bounded set B of X, there exists t(B) > 0 and a
finite dimensional subspace X1 of X, such that {‖PS(t)x‖X, x ∈ B, t ≥ t(B)} is bounded and

‖(I − P)S(t)x‖X <X ε, (2.9)

where P : X → X1 is a bounded projector.

Lemma 2.3 (see [17]). Let {S(t)}t≥0 be a C0 semigroup in a Hilbert spaceM. Then {S(t)}t≥0 has a
global attractor if and only if

(1) {S(t)}t≥0 satisfies the condition C;
(2) there exists a bounded absorbing subset B ofM.

3. Global Attractor Λ in H0

Theorem 3.1. Assume (h1)–(h3) hold. Then the ball of H0, B0 = BH0(0, R1), centered at 0 with
R1 =

√
c/c0ρ0, is a bounded absorbing set inH0 for the semigroup {S(t)}t≥0.

Proof. We fixed δ and take δ ∈ (0, δ0), where δ0 = min(r1r2/4ρ, λ21/2r1r2).
First, taking the inner product of the first equation of (2.6) with v = ut + δu, after

computation we conclude

1
2
d

dt

{
ρ|v|2 + |Δu|2 +N1|ux|2 +N2

∣∣uy
∣∣2 + β

2
|ux|4 +

β

2
∣∣uy

∣∣4
}

+ I1 +N1δ|ux|2 +N2δ
∣∣uy

∣∣2 + βδ|ux|4 + βδ
∣∣uy

∣∣4 + (
η, v

)
μ,V = r1

(
f, v

)
,

(3.1)

where I1 = −δρ|v|2 + r1r2|v|2 + δ|Δu|2 − (r1r2δ − ρδ2)(u, v), and we can easily obtain

I1 ≥ δ

2
|Δu|2 + 1

2
r1r2|v|2. (3.2)
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Combining with the second equation of (2.6) we have

(
η, v

)
μ,V =

1
2
d

dt
|η|2μ,V +

(
η, ηs

)
μ,V + δ

(
η, v

)
μ,V . (3.3)

According to (h2)–(h3), we conclude

(
η, ηs

)
μ,V =

1
2

∫∞

0
μ(s)

d

ds

∣∣Δηt(s)∣∣2ds

= −1
2

∫∞

0
μ′(s)

d

ds

∣∣Δηt(s)∣∣2ds ≥ α

2
∣∣η∣∣2μ,V ,

δ
(
η, v

)
μ,V = δ

∫∞

0
μ(s)

(
Δηt(s),Δu

)
ds

≥ −δ
(∫∞

0
μ(s)

∣∣Δηt(s)∣∣2ds
)1/2

·
(∫∞

0
μ(s)|Δu|2ds

)1/2

≥ −α
4

∫∞

0
μ(s)ds − δ2

α

∫∞

0
μ(s)|Δu|2ds

≥ −α
4
∣∣η∣∣2μ,v −

Mδ2

α
|Δu|2.

(3.4)

Integrating with (3.4), from (3.3), entails

(
η, v

)
μ,V ≥ 1

2
d

dt

∣∣η∣∣2μ,v +
α

4
∣∣η∣∣2μ,v −

Mδ2

α
|Δu|2. (3.5)

Write E(t) = {ρ|v|2 + |Δu|2 +N1|ux|2 +N2|uy|2 + (β/2)|ux|4 + (β/2)|uy|4 + |η|2μ,V }, from (2.7),
(3.2), and (3.5), we obtain

d

dt
E(t) + δ

(
1 − 2Mδ

α

)
|Δu|2 + r1r2

2
|v|2 + α

2
∣∣η∣∣2

μ,V

+ 2δN1|ux|2 + 2δN2
∣∣uy

∣∣2 + δβ|ux|4 + δβ
∣∣uy

∣∣4 ≤ 2r1
r2

∣∣f∣∣2.
(3.6)

Take δ small enough, such that 1 − (2Mδ/α) > 1/2. Write c = (2r1/r2)|f |2, c0 =
min{δ/2, r1r2/2ρ, α/2}, thus in line with (3.6), we have

d

dt
E(t) + c0E(t) ≤ C. (3.7)

By the Gronwall Lemma, we conclude

E(t) ≤ E(0) exp(−c0t) + c

c0

(
1 − exp(c0)

)
, ∀t ≥ 0. (3.8)
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Due to (3.8), write ρ0 = min(ρ, 1), we have

|Δu|2 | +|v|2 | +∣∣η∣∣2μ,V ≤ 1
ρ0
E(0) exp(−c0t) + c

c0ρ0

(
1 − exp(c0)

)
, ∀t ≥ 0. (3.9)

Write R1 =
√
c/c0ρ0, we end up with

lim sup
{
‖u‖2 | +|v|2 | +∣∣η∣∣2μ,V

}
≤ R2

1, ∀t ≥ 0. (3.10)

Theorem 3.2. Suppose f ∈ L2(Ω) and conditions (h1)–(h3) are hold. Then the solution semigroup
{S(t)}t≥0 associated with system (2.6) and (2.7) has a global attractor Λ in H0, and it attracts all
bounded subsets ofH0, in the norm ofH0.

Proof. Applying Lemma 2.3, we only to prove that the condition (C) holds inH0.
Let w̃i be an orthonormal basis of D(A) which consists of eigenvectors of A. It is also

an orthonormal basis ofH,V , respectively. The corresponding eigenvalues are denoted by

0 < λ̃1 < λ̃2 < λ̃3 < · · · , λ̃i −→ ∞, as i −→ ∞ (3.11)

with Aw̃i = λ̃iw̃i, for all i ∈ N. We writeHm = span{w̃1, w̃2, . . . , w̃m}. For any (u, ut, η) ∈ H0,
we decompose that (u, ut, η) = (u1, u1t, η1)+(u2, u2t, η2), where (u1, u1t, η1) = (Pmu, Pmut, Pmη),
and Pm : H → Hm is the orthogonal projector. Since f ∈ H, for any ε > 0, there exists some
m, such that

∣∣(I − Pm)f
∣∣ < ε

4
. (3.12)

Taking the scalar product of the first equation of (2.6) in H with v2 = u2t + Au2, combining
with the second equation and using the same way with Theorem 3.1, we find

d

dt
Ẽ(t) + C0Ẽ(t) ≤ 2r1

r2

∣∣f∣∣2 ≤ r1ε
2

8r2
, (3.13)

where Ẽ(t) = {ρ|v2|2+ |Δu2|2+N1|u2x|2+N2|u2y|2+(β/2)|u2x|4+(β/2)|u2y|4+ |η2|2μ,V . According
to Theorem 3.1, some M0 and t0 exist, for any t ≥ t0, such that E(t0) ≤ M0. By the Gronwall
Lemma, we conclude

Ẽ(t) ≤ E(t0) exp(−c0(t − t0)) + r1ε
2

8c0r2

≤ M0 exp(−c0(t − t0)) + r1ε
2

8c0r2
, ∀t ≥ t0.

(3.14)
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Take t1 large enough, such that t1 − t0 ≥ (1/c0) lnM0/ε
2, so we conclude

|v2|2 + |Δu2|2 +
∣∣η2

∣∣2
μ,V ≤ 1

ρ0

(
1 +

r1
8c0r2

)
ε2, for t ≥ t0. (3.15)

Thus S{t}t≥0 satisfies the condition (C).
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