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An increasing number of high performance computing parallel applications leverages the power
of the cloud for parallel processing. How to schedule the parallel applications to improve the
quality of service is the key to the successful host of parallel applications in the cloud. The large
scale of the cloud makes the parallel job scheduling more complicated as even simple parallel
job scheduling problem is NP-complete. In this paper, we propose a parallel job scheduling
algorithm named MEASY. MEASY adopts migration and consolidation to enhance the most
popular EASY scheduling algorithm. Our extensive experiments on well-known workloads show
that our algorithm takes very good care of the quality of service. For two common parallel
job scheduling objectives, our algorithm produces an up to 41.1% and an average of 23.1%
improvement on the average response time; an up to 82.9% and an average of 69.3% improvement
on the average slowdown. Our algorithm is robust even in terms that it allows inaccurate CPU
usage estimation and high migration cost. Our approach involves trivial modification on EASY
and requires no additional technique; it is practical and effective in the cloud environment.

1. Introduction

Cloud computing provides an easy-to-use and cost-effective solution for running high
performance computing (HPC) parallel applications nowadays. There are efforts [1-4] to
run HPC parallel applications in commercial cloud computing platforms. Some public IaaS
providers such as Amazon EC2 have launched their HPC cluster instance [5] to cater for
HPC parallel applications. Low utilization is a major issue in datacenters mainly due to the
fact that datacenter operators prepare computing resources based on the peak load [6]; thus,
a lower than 50% utilization is very common in many datacenters [7]. For a datacenter that
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hosts HPC parallel applications in addition to normal workload, the utilization can be lower
because of the following two factors.

(1) Processor fragmentation: if currently free processors cannot meet the requirement
of the candidate job, these free processors may remain idle.

(2) Idle CPU cycles: even there is a process running in a processor, the utilization of the
processor is hardly 100% due to the communication and synchronization among
the processes.

Low utilization increases the cost of running HPC parallel applications in the cloud
and reduces the benefit of the datacenter. How to make use of the underused computing
resource to improve the quality of service is the basic question for a cloud provider.

A parallel job schedule S determines the starting time #; and the processor set M; for
each parallel job. t; must be bigger than the submission time, and M; must be disjoint [8]. The
common objectives of the scheduling are average response time (response time = completion
time — submission time) and average slowdown (slowdown = response time/execution
time). Response time measures how long a job takes to finish, and slowdown measures how
much slower than a dedicated machine the system appears to the users [9]. Even simple
parallel job scheduling problems based on these objectives are NP-complete [10, 11], and
many parallel job scheduling methods have been proposed for cluster [12].

Variable partitioning is the most popular parallel job scheduling scheme in practice.
FCFS (First-Come-First-Serve) [13] algorithm is the basic variable partitioning scheme. It is
simple and straightforward, but this manner suffers from severe processor fragmentation.
When the number of free processors is less than the requirement of the next job, these free
processors remain idle until additional ones become available [14]. FCFS with backfilling [14,
15], which was developed as the Extensible Argonne Scheduling sYstem (EASY) for IBM SP1,
allows short and/or small jobs to use idle processors while the job that arrives earlier than
them does not have enough number of processors to run. EASY makes reservation to the head
job in the queue, and it is now the most popular scheduling method in the cluster installation
[12]. In addition, SJF (Shortest-Job-First) is often employed to assist parallel job scheduling in
the literature [16]. Other parallel job scheduling schemes such as dynamic partition [17] and
gang scheduling [18] have not been widely accepted because of their limitations in practice
[14].

These parallel scheduling schemes try to improve utilization caused by processor
fragmentation but none of them takes the idle CPU cycles into account.

In datacenters, parallel application migration based on checkpoint is as always well
supported by datacenters [19-22] or parallel applications themselves [23]. Parallel workload
consolidation for better utilization is well supported by virtualization technology in the
cloud as well [24, 25]. Thus, a natural idea is to employ these approaches to enhance
existing parallel job scheduling algorithms. In this paper, we propose a migration and
consolidation based parallel job scheduling algorithm named MEASY. Our algorithm uses
parallel application migration to alleviate the pain of processor fragmentation on the one
hand and introduces workload consolidation to further improve the utilization of the
processors on the other hand.

When a parallel job is submitted by a user, the following information should be
provided along with it:

(1) the estimated execution time of the job;

(2) the processor requirement of the job;
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(3) the estimated CPU usage of the process(es) of the job, which can be obtained by
historical data or test runs [26].

Our evaluation results show that our algorithm significantly outperforms the
commonly used EASY algorithm on well-known parallel workloads.

The remainder of this paper is organized as follows: Section 2 proposes the parallel
workload consolidation method and our migration and consolidation based algorithm.
Section 3 describes the evaluation on our algorithm, and Section 4 concludes the paper.

2. Scheduling Algorithms

In this section, we describe our migration and consolidation based parallel job scheduling
algorithms. We first introduce the parallel workload consolidation method, then a basic
algorithm followed by two refined algorithms that are discussed; the refined ones try to
improve the basic algorithm.

2.1. Parallel Workload Consolidation Method (See [27])

The hardware virtualization technology used in cloud computing gives an easy-to-use way to
consolidate parallel workload in a datacenter. In order to improve the CPU utilization of the
physical processor, we first partition each processor into two-tier virtual machines (VMs) by
pinning two virtual CPUs (VCPUs) on the processor and then allocating these two VCPUs to
the two VMs. But the execution time of jobs running in the VMs is stretched if there exists no
CPU priority control on the VMs. Thus, we secondly assign the VMs on one tier with highest
CPU priority and assign the VMs on the other tier with lowest CPU priority. We call the tier
with high CPU priority foreground (fg) tier and the one with low CPU priority background
(bg) tier. In this setting, the background VM only uses CPU cycles when its corresponding
foreground VM is idle. Under this prioritized two-tier architecture, experiments in our small
cluster conclude the following.

(1) The average performance loss of jobs running in the foreground tier is between 0.5%
and 4% compared to those running in the processors exclusively (one-tier VM); we
simply model the loss as a uniform distribution.

(2) Jobs running in the background tier can make good use of the idle CPU cycles left by
the foreground tier. For a single-process background job, the utilization of the idle
CPU cycles is between 80% and 92%, which roughly obeys uniform distribution;
for a multiprocesses background job, the value is between 19.8% and 76.6%, which
is likely to obey normal distribution with p = 0.428 and o = 0.144.

(3) When a foreground VM runs a job with higher CPU utilization than 96%,
collocating a VM to run in the background tier does not benefit the job running
in it due to that the VM does not have much chance to run and the context switch
overhead incurred.

Based on the two-tier architecture, we discuss our scheduling algorithms in the
following sections.
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input: Ji;: jobs running in fg VMs;
Jog: jobs running in bg VMs;
J4:  jobs waiting in the queue.
(1) begin
(2) /*Step1: Schedule runnable jobs according to FCES */
(38)  sort J; U Jug according to job arrival time;
(4) for each job jin J;U Joy do
(5) Nj « process number of j; Njqe < idle fg VM number;
(6) if Nj > Nigle then
(7) break;
(8) else
9) If Deploy (j, 'K’) then
(10) remove j from Jg or Jug, insert it into Jg;
(11) if J;U Jug is empty then
(12) return;
(13)  /*Step 2: Make reservation for the first job in J; U Ji,g, then backfill*/
(14)  letTs =0 (shadow time), N = 0 (extra fg VM number);
(15)  HdJob « firstjob in J; U Jug; N < process number of HdJob;
(16)  Ntuture < current idle fg VM number;
(17)  Sort Jig in ascending order of their termination time;
(18)  foreach job j in the sorted Jz; do
(19) Nj « processe number in j; Nfyture = Niuture + Nj;
(20) if Nigture > N then
(21) Ts = the termination time of j; Ng = Ngyture — Ng; break;
(22)  /* Backfill runnable jobs*/
(23)  foreachjobjin J;U Jog do
(24) N « processe number of j; Nigie < idle fg VM number;
(25) if Nj > Nigle then
(26) continue;
(27) t, « the runtime of j; t. < current time;
(28) if (t, +t. <Ts) or N; < Ng then
(29) if Deploy (j, 'K’) then
(30) remove j from J; or Jpg, insert it into J;
(31) if t, +t.>Ts then
(32) NE:NE—Nj;
(33) /*Step 3: Try to deploy jobs to the background tier*/
(34)  sort J, in ascending order of their runtime;
(35)  for each job j in the sorted ], do
(36) Nj « processe number of j; N fiﬂe «—idle bg VM number;
(37) if N; <NP,. then
(38) Dispatch('BG,j);

Algorithm 1: FCFS with KEASY backfilling and consolidation.

2.2, The Basic Algorithm
2.2.1. Algorithm Description

The basic algorithm was proposed by us in [27], which is named FCFS with KEASY (job Kill
based EASY) in this paper, as shown in Algorithm 1. In the KEASY algorithm, shadow time is
the latest time that the reservation (of foreground VMs here and hereafter) for a job starts at.
The scheduling progress of FCFS with KEASY (shortened as KEASY in the rest of this paper)
is as follows.
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Step 1. Use FCFS to schedule all possible jobs to foreground VMs.

Step 2. Use EASY to make reservation to the currently head job of the unforeground-running
job list (a merged list contains both jobs waiting in the queue and jobs running in the
background tier, see J; U Jpg in Algorithm 1), and then backfill all possible jobs to foreground
VMs.

Step 3. Use SJF to deploy all possible jobs into background VMs.
The following four points need to be emphasized.

(1) KEASY is called to schedule jobs to run in foreground VMs when job arrives or job
departs the foreground tier; SJF is called to schedule jobs to run in background VMs
when job departs the background tier.

(2) When selecting jobs to run in foreground VMs, jobs both waiting in the queue and
running in the background VMs are candidates.

(3) Only the background VM whose corresponding foreground VM’s CPU utilization
is less than a threshold (96%) can accommodate process.

(4) Jobs” execution time estimates are used whenever this information is needed for the
scheduling decision making.

2.2.2. Examples

Figure 1(a) gives an example of the KEASY algorithm. Let there be 5 processors (P1-P5) and
12 jobs (J1-J12) at the initial time. Each job is denoted by (#,t), in which 7 is the processor
requirement and ¢ is the execution time. Each processor has two tier VMs denoted as fg and
bg in Figure 1. For the convenience of illustration here, we assume that the process in a single-
process job incurs a CPU usage of 100% and the processes within a multiprocesses job involve
a CPU usage less than the utilization threshold.

At time 0, J1 is placed onto P4-5 according to FCFS; ]J3 and J4 are deployed onto the
foreground VMs of P1-3 according to EASY backfilling; J5, J6, J7, and J8 are scheduled onto
the background VMs of P2-5 by SJE. We use a simple process to collocate a background
VM with a foreground VM, as shown in the Dispatch function in Algorithm 2. The
process matches the background VM that is likely to incur high processor utilization to the
foreground VM that is likely to incur low processor utilization.

At time 5 (we assume J5-8 all advance 2 time units during time 0-5 here), J3 and
J5 depart the system. J6 is backfilled onto the foreground VM of P3 by killing its run in
P4 and then restarting its run from the very beginning in the foreground VM of P3; J7 is
backfilled onto the foreground VM of its original processor by swapping the CPU priorities
of the foreground VM and background VM of P2. Then, J9 and ]J10 are arranged onto
the background VMs of P5 and P4, respectively. Note that although J8 still stays at the
background VM of P3, it hardly advances because there is no idle CPU cycle left by J6.

At time 8, J6 and ]7 depart the system. Although J8 cannot be backfilled as its original
execution time is 4, it still finishes at time 10 by running in the background VM (it is actual
the foreground VM because its foreground VM is idle). J1 finishes along with ]8 at time 10 as
well. At time 11 (we here assume J9 advances 2 time units during time 5-11), J4 finishes. J9 is
restarted from the very beginning on the foreground VM of P1 because it is the head job now.

If J10 finishes earlier than time 16, the reservation for J10 should be deleted and the
reservation for J11 should be made. In this situation, J11 can run on the foreground VMs
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Initial queue: J1(2,10), J2(4,6), J3(2,5), J4(1,11), J5(1,2)J6(1,3), J7(1,5), J8(1,4),
J9(1,5),J10(1,8), J11(5,10), J12(4,8)
bg :fg :

(a) Example of KEASY

bg ifg

(b) Example of REASY
Figure 1: Examples of our algorithms, in which red font means a background VM is not idle; green font

indicates a job can run on its original nodes straightforward; in KEASY, blue font tells that a job should be
killed first and then restart from the very beginning on other nodes.

Initial queue: J1(1,10), J2(3,5), J3(5,5), J4(1,20)

bg: fg bg: fg
: b 1|
P2
P3
P4
P5
—>
Time
t=15
(a) KEASY

Figure 2: Benefit for head job.

of P1-5 immediately at time 16. If J10 cannot finish before going to the foreground tier, the
reservation for J11 is made at time 16 and, in this case, J12 leapfrogs J11.

In the example described above, the idle CPU cycles unused by the multiprocesses
jobs give KEASY the opportunity to improve the scheduling performance. We further observe
that even when all processes of all jobs consume the whole computing capacity (100% CPU
usage) of the processors, KEASY may still produce better performance than EASY. Figures 2
and 3 show two scenarios that KEASY outperforms EASY if jobs’ runtime is accurate. Figure 4
shows a case in which KEASY outperforms EASY due to the overestimation of jobs’ runtime.
From the three examples, we can see that KEASY is capable of dispatching a job to run in
background VMs while it is not qualified for backfilling according to EASY. There is a chance
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Initial queue: J1(1,10), J2(3,5), J3(5,5), J4(4,25), J5(5,5), J6(1,20), J7(1,15)

bg fg bg: fg by fy
f P I g6 ETTY P17
: L P2
[ J5 1 P3 5
CO S N R
il
......
Time A Time
t=15 t=35  t=45
(a) KEASY
PI[ 6 R Pt
P2 ] P2
P3 Ja J5 | P3
P4 ] P4
P5 ] P5
...... :
Time Time
t=15 t=45
(b) EASY

Figure 3: Benefit for backfilled job.

Initial queue: J1(1,10,10), J2(3,5,5), J3(5,5,5), J4(1, 20, 10)
bg: fg bg: fg

(a) KEASY

Figure 4: Benefit for overestimated execution time: a job is described by tuple (n,t,,t,), in which #n is the
number of processes, f, is the estimated execution time, and t, is the actual execution time.

that the corresponding foreground VMs of these background VMs are idle during the job’s
lifetime, which leads to performance improvement.

2.3. Two Improved Algorithms

The basic algorithm described above adopts job kill during the scheduling; this somewhat
leads to a waste of computing resource. In this section, we try to remove job kill and present
two refined algorithms.

2.3.1. REASY—Using Reservation instead of Job Kill

The REASY algorithm is shown in Algorithm 3. In REASY, job kill is not allowed in the
scheduling; once a job is deployed onto background VMs of a set of processors, its run
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input: j: thejob to be deployed;
BackfillType: the algorithm who calls this function.
output:  IsSucc: indicate whether j be deployed successfully or not;
(1) begin
(2) IsSucc = false;
(3) if j is from the background tier then

4) if j can still run in its original processors then

(5) swap the CPU priorities of its bg VMs and fg VMs;
(6) IsSucc = true;

(7) else

(8) /* Job kill is not allowed in REASY but allowed by KEASY */
) IsSucc = false;

(10) if BackfillType =='K’ then

(11) kill j and Dispatch(FG, j).

(12) IsSucc = true;

(13) else

(14) Dispatch(FG, j).

(15) IsSucc = true;

(16)  return IsSucc;

(17) function Dispatch (flag, j)

(18) sort processes of j in descending order of their processor utilization;
(19) if flag == FG then

(20) p < sorted idle processors in ascending order of their utilization;
(21)  for each process j; in the sorted list do

(22) place j; to p; and run j; in the foreground VM;

(23) else

(24) p < sorted idle processors in ascending order of their utilization;
(25)  for each process j; do

(26) place j; to p; and run j; in the background VM;

Algorithm 2: Deploy/(j, BackfillType)—job deploy function.

is pinned onto this set of processors. Only all the foreground VMs of this set of processors
are available can this job run in the foreground tier. Thus, REASY differs than KEASY
in making reservation for the head job and invoking Deploy function. For the reservation
making, if a reservation is being made for a job running in the background tier, the
shadow time is the last termination time of the jobs running in its foreground VMs; the
extra foreground VMs are the ones now idle and no process of the job is running in their
background VMs. Figure 5 illustrates an instance of this situation; when making reservation
for J3, the shadow time is 10 as J1 finishes at time 10 and the extra foreground VM is the
foreground VM on P1. For the Deploy function invoking, REASY passes “R” rather than
“K” to the Deploy function (Algorithm 2) so that it only schedules a job now running
background tier to foreground tier when all the foreground VMs of its host processors are
idle.

An example of REASY is given in Figure 1(b). In the example, we assume that J6
advances 3 time units during time 0-8 and J9 advances 5 time units during time 5-16. One
can find that, in time 5, J6 still stays at its original background VM other than restarts on
the foreground VM of P1. At time 11, J9 also still runs on the background VM of P5 but a
reservation for ]9 is made because it is now the head job.
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Input: Jg;: jobs running in fg VMs;

Jog: jobs running in bg VMs;

J4: jobs waiting in the queue.
) begin
) /* Make reservation for the first job in Jq U Jog, then backfill* /
) letTs =0 (shadow time), N = 0 (extra fg VM number);
) HdJob « firstjobin J; U Jug; Nk < process number of HdJob;
) Nrture < current idle fg VM number;
) if HdJjob € ], then
) Sort Jig in ascending order of their termination time;
) for each job j in the sorted Ji; do
) Nj « processe number in j; Nyure = Niuture + Nj;
0 if Ngure > Ng then
1 Ts = the termination time of j; Ng = Nyrure — NR;
2 break;
3) else

,{g «— the jobs running in the foreground VMs of Hd Job;
SumSize «— the size sum of jobs in ]}flg;

)

)

)

)

)

)

) Ts = last termination time of jobs in | ;lg;

) NE = Niyture +SumSize — Ng;

) /* Backfill runnable jobs*/

) for each job jin J;U Jp, do

) Nj « processe number j; Njqje < idle fg VM number;
) if N]' > Nigle then

) continue;

) t, « the runtime of j; t. < current time;

) if (t, +t. <Ts)or Nj < Ng then

) if Deploy (j, 'R’) then

) remove j from J; or Jpg, insert it into J;
) if t, +t. > Ts then

) Ng=Ng-Nj;

Algorithm 3: REASY backfilling.

J1(2,10),J2(2,5),J3(4,5)

bg fg
Pl :
p2| J3 |
|
P3| J3
73
pa| J3
71
P5| J3
Time
t=0

s
Figure 5: Example of shadow time and extra foreground VMs.
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Table 1: Size distribution of workload models used in the experiment.

Model =1 =2 (2,4] 4,8]  (8,16] (16,32]  (32,64]  (64,128]  >128
FWioad 17.8%  181%  149%  19.0%  10.6% 6.2% 5.2% 4.2% 4.0%
JWiload ~ 40.8%  74%  122%  109%  13.6% 7.9% 5.2% 1.4% 0.7%

2.3.2. MEASY—Using Migration instead of Job Kill

The only difference between KEASY and MEASY exists in the Deploy (Algorithm 2). MEASY
does not kill a selected job but uses migration instead.

3. Evaluation (See [27])

The evaluation is performed by trace-driven simulation. During the simulation, once a job
arrives, the simulator is informed of the processor need, the execution time estimate, and the
execution time (but the execution time is not the input of the scheduling algorithms). Upon
jobs departure, the simulator is also notified. The number of processors is 320 in the simulated
system; a default cost of 20 seconds is configured in MEASY.

3.1. Workloads

We use the following commonly used workload models in our simulation.

(1) Feitelson workload, denoted by FWload: a general model based on data from six
different traces [14, 28]. It contains 200,000 jobs in our simulation, the average
parallelism of it is 23.4, and the average runtime is 2606.6 seconds.

(2) Jann workload, denoted by JWload: a workload model for MPP and it fits the actual
workload of Cornell Theory Center Supercomputer [29]. It contains 100,000 jobs
in our simulation, the average parallelism of it is 10.5, and the average runtime is
11267.0 seconds.

The job size distributions of the two workloads are shown in Table 1. The execution time
estimates of jobs are generated by the model proposed by Tsafrir et al. in [30, 31], denoted by
TModel.

As the generated workload does not contain CPU usage information for each process,
we assign the CPU usage to a process according to the following rules.

(1) If a job has only one process, the process is assigned a CPU usage of 100%.

(2) If a job has more than one processes, the average CPU usage of each process is a
random number between 40% to 100%.

All the models mentioned in this section are available in [32].
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3.2. The Progress of a Process in the Two-Tier Architecture

Running a foreground VM and a background VM simultaneously on a physical processor
incurs overhead due to context switch. We model the progress of a process running in the
foreground VM as follows:

T if its bg VMs are all idle
t= (3.1)

T -loss otherwise,

in which T is the length of a time slice, denoting the progress of a process running on a
dedicated processor in a time slice. loss is the performance degradation of jobs running in
the foreground tier. According to our experimental results described in Section 2.1, loss is
randomly generated by a uniform distribution between 0.5% and 4%.

In a time slice, the progress of a background process is calculated as follows:

T if its fg VMs are all idle
= T - eff else if CPUige > CPUreq (3.2)
CPUiqe .
T-eff ——— h
e CPUreq otherwise,

in which eff is a variable between 0 and 1. It represents how much time in a time slice
effectively contributes to the progress of the process. A background process is frequently
preempted, and eff characterizes the overhead associated. According to Section 2.1, for a
single-process job, eff is a random number between 0.80 and 0.92, which is also modeled
by a uniform distribution; for a multiprocesses job, eff is randomly generated by a normal
distribution with y = 0.428 and o = 0.144. CPU, is the CPU utilization of the background
process on a dedicated processor. CPUiqie is the portion of unused CPU cycles in the
processor, that is, the portion that is not fully utilized by the foreground VM.

Furthermore, the progress of a job depends on the progress of the slowest process in
the job.

3.3. Performance Metrics

The performance metrics used are the average response time and the average bounded
slowdown. The response time of a job is defined as rt = t; - t;, and the bounded slowdown
of a job is defined as b_sld = (tf - t;)/ max(I, t.), where t; is the finish time of the job; ¢,
is the arrival time of the job; t, is the execution time of the job. Compared with slowdown,
the bounded slowdown metric is less affected by very short jobs as it contains a minimal
execution time element I' [14, 33]. According to [14], we set I to 10 seconds. The batch means
method [34] is used in our simulation analysis.

The system load of the simulated system is modified by multiplying the interarrival
times by a factor. For instance, if the model produces a default load of 0.45, a higher load of
0.9 can be created by multiplying all interarrival times by a factor of 0.5 (= 0.45/0.9) [14].
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Figure 6: Performance for FWload. The bars represent the standard deviation.
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Figure 7: Performance for [Wload. The bars represent the standard deviation.

3.4. Results

Figures 6 and 7 show the scheduling results of our algorithms for FWload and JWload; the
average number of migration is shown in Figure 8. We have the following observations from
the figures.

(1) REASY produces the worst performance among our algorithms. For [Wioad, it is
even worse than EASY. This is due to that JWload contains about 40.8% of single-
process jobs and the percentage in FWload is less than 18.0% as shown in Table 1, so
REASY delays more jobs which can run earlier by EASY backfilling in [Wload than
in FWload.

(2) The best performance is achieved by MEASY. More specifically, it brings an up to
41.1% and an average of 23.1% improvement on the average response time and an
up to 82.9% and an average of 69.3% improvement on the average slowdown in
contrast to EASY.
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Figure 8: Average number of migration in FWload and JWload.

(3) The number of job migration in JWload is greater than in FWload when the system
load is high, but JWload needs less migration than FWload when the system load
is low. This is also due to the characteristic of [Wload. In JWload, more jobs can
be deployed onto foreground tier straightforward when the system load is low;
in the case of high system load, jobs running in background tier are easy to meet
the backfilling criteria thus improve the number of migration.

In the results described above, MEASY shows better performance than other
algorithms in all aspects. We will use MEASY for comparison in the following discussions.

3.5. Discussions
3.5.1. CPU Usage Estimation Error Tolerance in MEASY

Our scheduling algorithms rely on the CPU usage information of parallel processes of jobs to
make scheduling decisions. The information can be obtained from profiling a job in test runs
or based on users’ estimation. Either way, information inaccuracy can be a problem. In this
section, we assume that the CPU usage estimation is not available at all.

As shown in Figures 9 and 10, both MEASY and KEASY outperform EASY even
without any CPU usage information of parallel processes, and MEASY is always better than
KEASY.

3.5.2. Average CPU Usage of Processes Tolerance in MEASY

Our algorithms make use of remaining computing capacity of each processor. In this
section, we further investigate the impact of average CPU usage of parallel processes on the
performance of our algorithms. We change the average CPU usage of multiprocesses jobs and
examine the performance change of our algorithms.

Figures 11 and 12 show the results for FWload and JWIoad under the situation of 100%
CPU usage. The results reflect that even the average CPU usage is 100%; our algorithms
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Figure 9: Performance for FWIoad without the CPU usage information.
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Figure 10: Performance for JWload without the CPU usage information.

perform better than EASY even with context switching overhead. MEASY is always better
than KEASY as well. This is due to the situations shown in Figures 2, 3, and 4.

3.5.3. Migration Cost Tolerance in MEASY

In this section, we examine the impact of migration cost on the performance of MEASY.
Figures 13 and 14 show the results for FWload and JWload under different job migration
costs. From the figures, better performance than KEASY can be obtained by MEASY in
the two workloads even with high job migration cost. For FWload, if the migration cost is
less than 900 seconds, better performance than KEASY can always be obtained by MEASY;
if the migration cost is bigger than 1500 seconds, MEASY can only produce comparable
(a little worse than KEASY) performance to KEASY. For [Wload, these values are 480 and
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Figure 11: Performance for FWload with the average CPU usage of 100%.
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Figure 12: Performance for JWload with the average CPU usage of 100%.
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900, respectively. This is due to the number of migration in [Wioad is greater than in FWIload
as mentioned above. Note that if the migration cost is greater than an upper bound, KEASY
which needs no migration may be the best choice in practice.

4. Conclusions

Parallel job scheduling is increasingly important for a datacenter in the cloud computing era.
It is in charge of the quality of service of the datacenter. In this paper, we employed a two-
tier processor partition architecture and put forward three parallel job scheduling algorithms
(KEASY, REASY, and MEASY), culminating with MEASY. KEASY is the basic algorithm,
and REASY and MEASY extend KEASY. Both KEASY and MEASY produce significant better
performance than EASY, but REASY fails in some cases. Moreover, MEASY is always better
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Figure 14: Performance for [Wload with varying migration costs.

than KEASY and it is robust in terms of allowing inaccurate CPU usage estimation of parallel
processes and high job migration cost.

For the future work, we will further study REASY and try to improve its performance,
such as only allowing jobs with some constraints to run in background VMs; we will evaluate
the performance using other policies other than SJF when scheduling jobs to background
VMs as well; we will also exploit mechanisms that can effectively partition the computing
capacity of a processor into k-tiers, which may further improve the processor utilization and
job responsiveness for parallel workload in the cloud, particularly for CPU with multicores.
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