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Iterative learning control (ILC) is applied to remote control systems in which communication
channels from the plant to the controller are subject to random data dropout and communication
delay. Through analysis, it is shown that ILC can achieve asymptotical convergence along the
iteration axis, as far as the probabilities of the data dropout and communication delay are known
a priori. Owing to the essence of feedforward-based control ILC can perform trajectory-tracking
tasks while both the data-dropout and the one-step delay phenomena are taken into consideration.
Theoretical analysis and simulations validate the effectiveness of the ILC algorithm for network-
based control tasks.

1. Introduction

Iterative leaning control (ILC) is a control method that achieves perfect trajectory tracking
when the system operates repeatedly. ILC has made significant progresses over the past
two decades [1–3] and covered a wide scope of research issues such as continuous-time
nonlinear system control [4], discrete-time nonlinear system [5], the initial reset problem
[6, 7], stochastic process control [8], state delays [9], and data dropout [10].

On the other hand, the research on networked control systems has attracted much
attention [11, 12] over the past few years. In network control, two frequently encountered
issues are data dropout and communication delays, which are causes of poor performance
of remote control systems. A central research area in remote control systems is to evaluate
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and compensate data dropout and time-delay factors [13–16]. Since data dropout and delay
are random and time varying by nature, the existing control methods for deterministic data
dropout and communication delays cannot be directly applied. Significant research efforts
have been made on the control problems for networked systems with random data dropout
and communication delays that are modeled in various ways in terms of the probability and
characteristics of sources and destinations, for instance [10, 17].

It is in general still an open research area in ILCwhen remote control systems problems
are concerned, except for certain pioneer works that address linear systems associated
with either random data dropout [10, 18] or random communication delays [17, 19–21].
This paper investigates the implementation of ILC in a remote control systems setting,
specifically focusing on compensation when both random data dropout and delays occur
at the communication channels between the plant output and the controller.

Since ILC is in principle a feedforward technique, it is possible to send the controller
signal before the task is executed. This would not be possible for feedback-based control
systems. Hence, the data dropout can be circumvented to certain extent by using network
protocols that assure the delivery of data packets. Likewise, the large delay due to large data
package can also be avoided when the package is used for repeated task executions, namely,
in future executions. ILC task is carried out in a finite-time interval, hence the time-domain
stability is not a concern. Thus, unlike most network control works that focus on the stability
issue, ILC can be applied to address trajectory-tracking tasks and the learning convergence is
achieved in the iteration domain.

On the other hand, the use of data in the feedforward fashion would require the
temporal analysis and management of data packages as well as resending the missing data
package, which may not be available in certain remote control systems tasks. In this work,
we adopt an ILC scheme that uses pastcontrol signals, as well as the error signals that are
perturbed by the data dropout and communication delay. The ILC law adopts classical D-
type algorithm and a revised learning gain that takes into consideration the probabilities of
both data-dropout and communication-delay factors. As a result, the output tracking errors
can be made to converge along the iteration axis. The ILC scheme can be applied to linear
discrete-time plants with trajectory-tracking tasks.

The paper is organized as below. Section 2 formulates the remote control systems prob-
lem. Sections 3 and 4 prove the convergence property of ILC for linear discrete-time plants.
Section 5 presents a numerical examples.

Throughout the paper, the following notations are used. Let E[·] be the expected value
of a random variable, P[·] the probability of an event, ‖ · ‖2 the Euclidean norm of a vector,
and ‖ · ‖ the maximal singular value of a matrix. Let z(t) is a discrete time signal with t ∈
{0, 1, . . . , T}. For any a > 1 and any λ > 1, define

‖z‖(λ,a) � sup
t∈[0,T]

a−λt‖z(t)‖2, (1.1)

where [0, T] = {0, 1, . . . , T}.

2. Problem Formulation

Consider a deterministic discrete-time linear time-invariant dynamics system:

xi(t + 1) = Axi(t) + Bui(t),

yi(t) = Cxi(t),
(2.1)
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Figure 1: The schematic diagram of the remote control system.

where “i” and “t” denote the iteration index and discrete time, respectively. xi(t) ∈ R
n, ui(t) ∈

R
p, and yi(t) ∈ R

r for all t ∈ [0, T] are system states, inputs, and outputs, respectively, at the
ith iteration. A, B, and C are constant matrices with appropriate dimensions.

The schematic diagram of the remote control systems under consideration is shown in
Figure 1.

It should be noted that the open-loop system from the ILC input to the plant output
is deterministic. The randomness occurs during the data transmission from the plant output
to the ILC input. There are two approaches in analyzing the closed-loop system. The first
approach is to treat the entire closed-loop system as a random or stochastic process. In such
circumstances, the topology of the overall system keeps changing and the control process
is either a Markovian jump process or a switching process. Another approach, which is
adopted in this work, is to retain the essentially deterministic structure of the original open-
loop system, meanwhile model the random data dropout and communication delay into two
random factors with known probability distributions. As a consequence, the signals used in
ILC, ỹi(t) are the modulated plant output with the two random factors.

When the control process is deterministic, an effective ILC law for the linear system
(2.1) is

ui+1(t) = ui(t) + Lei(t + 1),
(2.2)

where ui+1(t) and ui(t) are control inputs at the (i+1)th and ith iterations, namely, the present
trial and the previous trial, respectively. ei(t + 1) = yd(t + 1) − yi(t + 1) is the output tracking
error at the time (t + 1)th time instance of the ith iteration. L is a learning gain matrix.

Remark 2.1. Note that in the ILC law (2.2), the control signal of the present iteration, ui+1(t),
consists of both the pastcontrol input, ui(t) and the past error with one-step temporal
advance, ei(t + 1). The current-cycle feedback errors, such as ei+1(t), are not used. Since ILC
does not require the current-cycle feedback nor the temporal stability, it is an effective control
method for remote control systems problems with random data dropout and communication
delay.

To facilitate the ILC design and convergence analysis, data dropout and one-step
communication delay are formulated. First formulate the data-dropout problem. Denote γ(t)
a stochastic variable with Bernoulli distribution taking binary values 0 and 1, where γ(t) = 0
denotes an occurrence of data dropout and γ(t) = 1 denotes a normal data communication.
The probabilities of γ(t) are

P[γ(t) = 1
]

= E[γ(t)] = γ,

P[γ(t) = 0
]

= 1 − E[γ(t)] = 1 − γ,
(2.3)
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where γ > 0 is a known constant. Here, we assume that γ(t) is a stationery stochastic process,
thus the data dropout rate is independent of the time t. In subsequent derivations, we treat γ
as time invariant.

When the data dropout occurs in multiple communication channels, we can similarly
define E[γj] = γj > 0 for the jth communication channel. Thus, denote

Γ = diag
(

γj
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

γ1 0 · · · 0

0 γ2 · · · 0

...
...

. . .
...

0 0 · · · γr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.4)

the corresponding mathematical expectation is

E[Γ] = Γ, (2.5)

where Γ > 0 is known a priori.
Due to the data dropout, the plant output received by the controller at the (i + 1)th

iteration is

Γi+1yi+1(t). (2.6)

Generally speaking, the occurrences of data dropouts at two iterations are uncorrelated, thus
independent. On the other hand, ILC law at the current iteration, the (i + 1)th iteration, uses
only signals of the previous iteration, namely, ith iteration, as shown in (2.2). Thus yi+1(t)
with the control input ui+1(t) contains data dropouts upto the ith iteration. Therefore, Γi+1
and yi+1(t) are independent, that is,

E[Γi+1yi+1(t)] = E[Γi+1]E[yi+1(t)]

= Γi+1E[yi+1(t)].
(2.7)

Without the loss of generality, we assume E[Γi] = Γ, namely, the data dropout rate is invariant
at different iterations.

Next formulate the one-step communication delay problem. Denote w(t) is a random
delay factor with Bernoulli distribution, which takes binary values 0 and 1 that indicate,
respectively, the presence and absence of an one-step communication delay. Here we assume
that w(t) is a stationery stochastic process, thus the occurrence of the communication delay
is independent of the time t. In subsequent derivations we treat w as time invariant. With
multiple communication channels, we define matrix W = diag(wj), where wj denotes the
occurrence of communication delay at the jth communication channel. Denote E[w] = w

and E[W] = W . The plant output received by ILC with possible communication delay is
formulated by

yoi (t) = Wiyi(t) + [1 −Wi]yi(t − 1), (2.8)
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where Wi is the communication delay at the ith iteration. Without the loss of generality,
we assume E[Wi] = W , namely, the probability of the communication delay is invariant at
different iterations. Analogous to data dropout, assume that communication delay at any two
iterations are independent, thenWi+1 andWi are independent, so areWi+1 and yi+1(t) because
yi+1(t) contains communication delays upto the ith iteration through the ILC law (2.2).

It is worthwhile noting that stochastic variables γ and w are not completely indepen-
dent. A delayed or nondelayed communication occurs only when γ = 1, that is, no data
dropout. Hence, we should have the condition probability for data transmission without
delay

Prob
[

γ = 1, w = 1
]

= P[γ = 1
]P[w = 1 | γ = 1

]

= γw, (2.9)

and the condition probability for data transmission with one-step delay

P[γ = 1, w = 0
]

= P[γ = 1
]P[w = 0 | γ = 1

]

= P[γ = 1
](

1 − P[w = 1 | γ = 1
])

= γ(1 −w).
(2.10)

As a consequence, we have

E[γw] = γw. (2.11)

The relationship between data drop out and communication delay, (2.11), can be extended to
multiple channels at the ith iteration

E[ΓiWi] = ΓW. (2.12)

At the ith iteration, the output signals perturbed by data dropout and one-step com-
munication delay can be expressed as

ỹi(t) = Γiyoi (t) = Γi[Wiyi(t) + (I −Wi)yi(t − 1)], (2.13)

where I is a unity matrix of appropriate dimensions. The mathematical expectation of ỹi(t)
can be derived using the independence property between Γi, Wi, and yi, as well as the rela-
tionship (2.12)

E[ỹi(t)] = E{Γi[Wyi(t) + (I −W)yi(t − 1)]}

= Γ
{

WE[yi(t)] +
(

I −W
)

E[yi(t − 1)]
}

.
(2.14)

The objective of control design is to seek an appropriate ILC law that can take into
consideration data dropout and communication delay concurrently. The following ILC law is
adopted

ui+1(t) = ui(t) + Lẽi(t + 1), (2.15)
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where

ẽi(t + 1) = Γi[yd(t + 1) − ỹi(t + 1)]

= Γi[yd(t + 1) −Wiyi(t + 1) − (I −Wi)yi(t)]

= Γi[Wiei(t + 1) + (I −Wi)ei(t) + (I −Wi)δ(t)],

(2.16)

where δ(t) � yd(t + 1) − yd(t).

3. Convergence Analysis for Left-Invertible Systems r ≥ p

In this section, we derive the convergence property of the ILC (2.15) in the presence of data
dropout and communication delays.

In ILC, the learning convergence can be derived in terms of either the output tracking
error, ei(t), or the input tracking error, Δui(t). In this section, we prove the learning con-
vergence property of Δui(t).

Assumption 3.1. For a given output reference trajectory yd(t), which is realizable, there exists a unique
desired control input ud(t) ∈ R

p such that

xd(t + 1) = Axd(t) + Bud(t),

yd(t) = Cxd(t),
(3.1)

where ud(t) is uniformly bounded for all t ∈ [0, T]. It is assumed that for all i ∈ Z+, xi(0) is a
random variable with E[xi(0)] = x0 = xd(0).

Define the input and state errors

Δui+1 � ud(t) − ui+1(t),

Δxi+1 � xd(t) − xi+1(t),
(3.2)

then from (2.1) and (3.1), we have

Δxi(t + 1) = AΔxi(t) + BΔui(t),

ei(t) = CΔxi(t).
(3.3)

From (2.15), using the relationship (2.12), we have

E[ẽi+1(t + 1)] = E[Γi[yd(t + 1) −Wiyi(t + 1) − (I −Wi)yi(t)]]

= E[Γi[Wiei(t + 1) + (I −Wi)ei(t) + (I −Wi)(yd(t + 1) − yd(t))]]

= Γ
{

WE[ei(t + 1)] +
(

I −W
)

E[ei(t)] +
(

I −W
)

E[δ(t)]
}

.

(3.4)
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Theorem 3.2. Suppose that the update law (2.15) is applied to the networked control system and
satisfied the Assumption 3.1. If there exist ρ satisfying

∥

∥

∥Ip − LΓWCB
∥

∥

∥ ≤ ρ < 1, (3.5)

then the input error along the iteration axis, E[Δui(t)], converges to a bound that is proportional to
the factor δ(t).

Proof. First, subtracting ud(t) from both sides of the ILC law (2.15) yields

Δui+1(t) = Δui(t) − Lẽi(t + 1). (3.6)

Applying the ensemble operator E[·] to both sides of (3.6) and substituting the relationship
(3.4) with ei(t) = CΔxi(t), we obtain

E[Δui+1(t)] = E[Δui(t)] − LΓWCE[Δxi(t + 1)]

− LΓ
(

I −W
)

CE[Δxi(t)] − LΓ
(

I −W
)

δ(t).
(3.7)

Substituting the state error dynamics (3.3) into (3.7) leads to the following relationship:

E[Δui+1(t)] =
(

Ip − LΓWCB
)

E[Δui(t)]

− L
[

ΓWCA + Γ
(

I −W
)

C
]

E[Δxi(t)] − LΓ
(

I −W
)

δ(t).
(3.8)

Define ρ � ‖Ip − LΓWCB‖.
Now let us handle the second term on the right hand side of (3.8), which is related to

Δxi(t). Applying the ensemble operation to the following relationship:

Δxi(t) = At[xd(0) − xi(0)] +
t−1
∑

k=0

At−1−kBΔui(k), (3.9)

Substituting the relation (3.9) into (3.8), taking the norm ‖ · ‖2 on both sides, the fol-
lowing relationship is derived:

‖E[Δui+1(t)]‖2 ≤ ρ‖E[Δui(t)]‖2 +
∥

∥

∥LΓWCA + LΓ
(

I −W
)

C
∥

∥

∥at‖xd(0) − E[xi(0)]‖2

+
∥

∥

∥LΓWCA + LΓ
(

I −W
)

C
∥

∥

∥‖B‖
t−1
∑

k=0

at−1−k‖E[Δui(k)]‖2

+
∥

∥

∥LΓ
(

I −W
)∥

∥

∥‖δ(t)‖2,

(3.10)

where a ≥ ‖A‖ and in this work we choose a > 1 if ‖A‖ ≤ 1.
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In order to handle the exponential term with at in (3.11), we introduce the λ norm.
From Assumption 3.1, multiplying both sides of (3.10) by a−λt and taking the supermum
over [0, T] yield

sup
t∈[0,T]

a−λt‖E[Δui+1(t)]‖2 ≤ ρ sup
t∈[0,T]

a−λt‖E[Δui(t)]‖2

+ β1 sup
t∈[0,T]

a−λt
t−1
∑

k=0

at−1−k‖E[Δui(k)]‖2

+ β2 sup
t∈[0,T]

a−λt‖δ(t)‖2,

(3.11)

where β1 = ‖LΓWCA +LΓ(I −W)C‖‖B‖, β2 = ‖LΓ(I −W)‖, and ηi = ‖xd(0) − E[xi(0)]‖ that is
independent of t. Since ‖δ(t)‖ is bounded, so is

μ = sup
t∈[0,T]

a−λt‖δ(t)‖2. (3.12)

Substituting the properties of Lemma A.1 into (3.11) yields

‖E[Δui+1]‖(λ,a) ≤
(

ρ + β1
1 − a−(λ−1)T

aλ − a

)

‖E[Δui]‖(λ,a) + β2μ. (3.13)

Since 0 ≤ ρ < 1, it is possible to choose λ sufficiently large such that

ρ1 = ρ + β1
1 − a−(λ−1)T

aλ − a
< 1. (3.14)

Therefore we can rewrite (3.13) as

‖E[Δui+1]‖(λ,a) ≤ ρ1‖E[Δui]‖(λ,a) + β2μ, (3.15)

which implies

lim
i→∞

‖E[Δui]‖(λ,a) ≤
β2μ

1 − ρ1
. (3.16)

Note that μ is proportional to δ(t), namely, the maximum difference between yd(t +
1) − yd(t) in t ∈ [0, T], which is bounded and small when the reference trajectory is smooth
or the sampling interval is sufficiently small. When the probability associated with the data
communication delay, W , is known a priori, we can further revise the reference trajectory to
an augmented one, such that the resulting δ(t) = 0.

Corollary 3.3. Revising the original reference yd(t) into an augmented one yad(t) = Wyd(t) + (I −
W)yd(t − 1), then δ(t) = 0 and the ILC (2.15) ensures a zero-tracking error.
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Proof. Note that E[yoi (t)] = WE[yi(t)] + (I − W)E[yi(t − 1)]. Suppose that yi(t) = yd(t), then
the delay-perturbed output should be WE[yd(t)] + (I − W)E[yd(t − 1)]. In other words, the
augmented reference trajectory for yoi (t+ 1) should be ya

d
(t) = Wyd(t) + (I −W)yd(t− 1). As a

result, yoi (t) = ya
d
(t) implies yi(t) = yd(t). Now replacing yd(t + 1) in (2.16) with ya

d
(t + 1), we

can derive

ẽj(t + 1) = Γj
[

yad(t + 1) − yoj (t + 1)
]

= Γj
[

Wjyd(t + 1) −Wjyj(t + 1) +
(

I −Wj

)

yd(t − 1) − (I −Wj

)

yj(t)
]

= ΓjWjej(t + 1) + Γj
(

I −Wj

)

ej(t).

(3.17)

Comparing the above expression with (2.16), we conclude that δ(t) = 0, subsequently μ = 0,
which implies a zero-tracking error according to (3.16).

4. Convergence Analysis for Right-Invertible Systems r ≤ p

In this section, we prove the learning convergence property of ei(t).

Assumption 4.1. (Ir − CBLΓW)−1 always exists.

Theorem 4.2. Suppose that the update law (2.15) is applied to the networked control system and
satisfied the Assumption 4.1. If

ρ′ �
∥

∥

∥Ir − CBLΓW
∥

∥

∥ < 1, (4.1)

then the tracking error along the iteration axis, E[ei(t)], converges to a bound that is proportional to
the factor δ(t).

Proof. First note the relationship:

ei+1(t + 1) = yd(t + 1) − yi+1(t + 1)

= ei(t + 1) + yi(t + 1) − yi+1(t + 1)

= ei(t + 1) + CA[xi(t) − xi+1(t)] + CB[ui(t) − ui+1(t)],

(4.2)

xi(t) = Atxi(0) +
t−1
∑

k=0

At−1−kBui(k). (4.3)

Substituting ILC law (2.15), (2.16), and (4.3) into (4.2) yields

ei+1(t + 1) = ei(t + 1) + CAt+1[xi(0) − xi+1(0)]

− C
t−1
∑

k=0

At−kBLẽi(k + 1) − CBLẽi(t + 1)
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= ei(t + 1) + CAt+1[xi(0) − xi+1(0)]

− C
t−1
∑

k=0

At−kBLΓi[Wiei(k + 1) + (I −Wi)ei(k) + (I −Wi)δ(k)]

− CBLΓi[Wiei(t + 1) + (I −Wi)ei(t) + (I −Wi)δ(t)]

= (Ir − CBLΓiWi)ei(t + 1) + CAt+1[xi(0) − xi+1(0)]

− C
t
∑

k=0

At−kBLΓiWiei(k + 1) − C
t−1
∑

k=0

At−k−1BLΓi(I −Wi)ei(k)

− C
t
∑

k=0

At−kBLΓi(I −Wi)δ(k).

(4.4)

Assumption 4.3. Assume E[xi+1(0)] − E[xi(0)] = 0.

Applying the ensemble operator E[·] to both sides of (4.4) and substituting the rela-
tionship (4.2), we obtain

E[ei+1(t + 1)] =
(

Ir − CBLΓW
)

E[ei(t + 1)] − C
t−1
∑

k=0

At−k−1BLΓWE[ei(k + 1)]

− C
t
∑

k=0

At−kBLΓ
(

I −W
)

E[ei(k)] − C
t
∑

k=0

At−kBLΓ
(

I −W
)

E[δ(t)].
(4.5)

Taking the norm ‖ · ‖2 on both sides of (4.5), the following relationship is derived

‖E[ei+1(t + 1)]‖2 ≤
∥

∥

∥Ir − CBLΓW
∥

∥

∥‖E[ei(t + 1)]‖2 + ‖C‖
t−1
∑

k=0

at−k−1‖BL‖ΓW‖E[ei(k + 1)]‖2

+ ‖C‖
t
∑

k=0

at−k‖BL‖Γ
(

I −W
)

‖E[ei(k)]‖2

+ ‖C‖
t
∑

k=0

at−k‖BL‖Γ
(

I −W
)

‖E[δ(t)]‖2,

(4.6)

where a ≥ ‖A‖ and in this work we choose a > 1 if ‖A‖ ≤ 1.



Mathematical Problems in Engineering 11

In order to handle the exponential term with at in (4.5), we introduce the λ norm.
Multiplying both sides of (4.5) by a−λt and taking the supermum over [0, T] yield

sup
t∈[0,T]

a−λt‖E[ei+1(t)]‖2 ≤ sup
t1∈[0,T]

∥

∥

∥I − CBLΓW
∥

∥

∥ sup
t∈[0,T]

a−λt‖E[ei(t)]‖2

+ ‖C‖ sup
t∈[0,T]

a−λt
t
∑

k=1

at−k‖BL‖ΓW‖E[ei(k)]‖2

+ ‖C‖ sup
t∈[0,T]

a−λt
t−1
∑

k=0

at−k−1‖BL‖Γ
(

I −W
)

‖E[ei(k)]‖2

+ ‖C‖ sup
t∈[0,T]

a−λt
t
∑

k=0

at−k‖BL‖Γ
(

I −W
)

‖E[δ(t)]‖2.

(4.7)

Substituting the properties of Lemma A.2 into (4.7) yields

‖E[ei+1]‖(λ,a) ≤
(

ρ′ + β4
1 − a−(λ−1)T

a(λ−1) − 1

)

‖E[ei]‖(λ,a) + β5μ, (4.8)

where β3 � ‖C‖‖BL‖Γ and β4 � ‖C‖‖BL‖Γ(I −W)((1 − a−(λ−1)T )/(a(λ−1) − 1)).
Since 0 ≤ ρ′ < 1, it is possible to choose λ sufficiently large such that

ρ2 = ρ′ + β3
1 − a−(λ−1)T

a(λ−1) − 1
< 1. (4.9)

Therefore, we can rewrite (4.8) as

‖E[ei+1]‖(λ,a) ≤ ρ2‖E[ei]‖(λ,a) + β4μ, (4.10)

which implies

lim
i→∞

‖E[ei]‖(λ,a) ≤
β4μ

1 − ρ2
. (4.11)

5. Numerical Examples

Consider the following linear discrete-time system:

xi(t + 1) =

⎡

⎢

⎢

⎣

0.50 −0.25 1.00

0.15 0.30 −0.50
−0.75 0.25 −0.25

⎤

⎥

⎥

⎦

xi(t) +

⎡

⎢

⎢

⎣

0

0

1

⎤

⎥

⎥

⎦

ui(t),

yi(t) =
[

0 0 1.0
]

xi(t),

(5.1)
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with the initial condition xi(0) = 0. The desired trajectory is yd(t) = sin(2πt/50). The tracking
period is {0, 1, . . . , 49}. The control profile of the first iteration is u0(t) = 0 for t = 0, 1, . . . , 49.
Two sets of probabilities for the data dropout rate and communication delay are considered,
which are γ = 0.9, w = 0.9, γ = 0.6, and w = 0.6, respectively. The learning gain is L = 0.5,
which yields ‖I − LγwCB‖ = 0.595 < 1, and ‖I − LγwCB‖ = 0.82 < 1 with respect to the two
sets of probabilities. The tracking performance of two ILC algorithms is given in Figure 2,
where Max Error denotes the maximum absolute error of each iteration.

6. Conclusion

In this work, we address a class of networked control system problems with random data
dropout and communication delay. D-type ILC is applied to handle this remote control
systems problem with repeated tracking tasks. Through analysis, we illustrate the desired
convergence property of the ILC. Althoughwe focus on one-step communication delay in this
work, the results could be extended to multiple delays, which is one of our ongoing research
topics. In our future work, we will also explore the extension to more generic nonlinear
dynamic processes.

Appendix

Lemma A.1. For all a > 1, for all λ > 1, for all i ∈ Z+, the inequality:

sup
t∈[0,T]

a−λt
t−1
∑

τ=0

at−1−τ‖E[Δui(τ)]‖2 ≤
1 − a−(λ−1)T

aλ − a
‖E[Δui]‖(λ,a) (A.1)

holds.

Proof. Consequently

sup
t∈[0,T]

a−λt
t−1
∑

τ=0

at−1−τ‖E[Δui(τ)]‖2 = a−1 sup
t∈[0,T]

a−t(λ−1)
t−1
∑

τ=0

a−λτ‖E[Δui(τ)]‖a(λ−1)τ

≤ a−1‖E[Δui]‖(λ,a) sup
t∈[0,T]

a−t(λ−1)a
(λ−1)t − 1
aλ−1 − 1

≤
(

1 − a−(λ−1)T

aλ − a

)

‖E[Δui]‖(λ,a).

(A.2)

Lemma A.2. For all a > 1, for all λ > 1, for all i ∈ Z+, the inequalities

sup
t∈[0,T]

a−λt
t−1
∑

k=0

at−1−k‖E[ei(k)]‖2 ≤
1 − a−(λ−1)T

a(λ−1) − 1
‖E[ei]‖(λ,a),

sup
t∈[0,T]

a−λt
t
∑

k=1

at−1−k‖E[ei(k)]‖2 ≤
1 − a−(λ−1)T

a(λ−1) − 1
‖E[ei]‖(λ,a)

(A.3)

hold.
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Figure 2: The tracking error profiles for the discrete-time linear system with data dropout and one-step
communication delay. (a) is learning results with the data dropout rate γ = 0.9 and communication delay
rate w = 0.9. (b) is learning results with the data dropout rate γ = 0.6 and communication delay rate
w = 0.6.

Proof. Consequently

sup
t∈[0,T]

a−λt
t−1
∑

k=0

at−1−k‖E[ei(k)]‖2 ≤ sup
t∈[0,T]

a−λt
t
∑

k=0

at−k‖E[ei(k)]‖2

= sup
t∈[0,T]

a−t(λ−1)
t
∑

k=0

a−λk‖E[ei(k)]‖a(λ−1)k

≤ ‖E[ei]‖(λ,a) sup
t∈[0,T]

a−t(λ−1)a
(λ−1)t − 1
aλ−1 − 1

≤
(

1 − a−(λ−1)T

aλ−1 − 1

)

‖E[ei]‖(λ,a),

sup
t∈[0,T]

a−λt
t
∑

k=1

at−1−k‖E[ei(k)]‖2 ≤ sup
t∈[0,T]

a−λt
t
∑

k=0

at−k‖E[ei(k)]‖2

= sup
t∈[0,T]

a−t(λ−1)
t
∑

k=0

a−λk‖E[ei(k)]‖a(λ−1)k

≤ ‖E[ei]‖(λ,a) sup
t∈[0,T]

a−t(λ−1)a
(λ−1)t − 1
aλ−1 − 1

≤
(

1 − a−(λ−1)T

aλ−1 − 1

)

‖E[ei]‖(λ,a).

(A.4)
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