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A one-dimensional cellular automaton traffic flow model, which considers the deceleration in
advance, is addressed in this paper. The model reflects the situation in the real traffic that drivers
usually adjust the current velocity by forecasting its velocities in a short time of future, in order to
avoid the sharp deceleration. The fundamental diagram obtained by simulation shows the ability
of this model to capture the essential features of traffic flow, for example, synchronized flow, meta-
stable state, and phase separation at the high density. Contrasting with the simulation results of the
VE model, this model shows a higher maximum flux closer to the measured data, more stability,
more efficient dissolving blockage, lower vehicle deceleration, and more reasonable distribution of
vehicles. The results indicate that advanced deceleration has an important impact on traffic flow,
and this model has some practical significance as the result matching to the actual situation.

1. Introduction

With the drastic growth in the vehicle amount, traffic congestion has become more and
more serious. The transportation problems have caused extensive attention to transportation
industry, physics community, and mathematics community [1–13]. Owing to the properties
of cellular automaton model (CA Model), such as the discreteness of space and time, the
simplicity and flexibility of algorithm and the easiness to be simulated on computer, it could
effectively simulate the vehicles movement in traffic and be widely used and developed
in the study of traffic flow [1–8]. In 1992, Nagel and Schreckenberg proposed the famous
NaSch model [1]. The model deals with single-lane traffic flow of cars moving in a one-
dimensional cellular chain under periodic boundary conditions, which only considers vehicle
acceleration, deceleration, random delays, and update of vehicle location. According to the
above simple rules, this model can be used to reproduce the basic phenomena encountered in
real traffic, for example, the occurrence of phantom traffic jams. However, some features have
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not been considered in the NaSch model, such as the metastable state. To fix the omission,
a number of improvements for the evolution rules have been proposed [2–8]. Literature [2]
proposed the BJHmodel, which considers a possible delay before a car pulls away from being
stationary due to the blocking of the leading vehicle. Literature [3] considered a velocity-
dependent randomization delay probability and presented the VDR Model. Literature [4]
took into account the velocity effect of a car on the successive and proposed the VE (velocity
effect)model. Literature [5] presented a cellular automaton model for single-lane traffic flow,
and the model considers the effect of headway distance between two successive cars on
the randomization of the latter car. Literature [6] took into account the diversity of traffic
behaviors under real traffic situations induced by various driving characters and habits to
modify the weighted probabilistic cellular automaton model. Literature [7] modified the
NaSch model by enabling the randomization probability to be adjusted on the bases of
drivers’ memory. Literature [8] proposed an improved cellular automaton model to describe
the urban traffic flow with the consideration of traffic light and driving behavior effects. All
of the CAModels adjust the current velocity only based on considering the velocity of vehicle
itself, correlating velocity, vehicle distance, safe distance, and so forth in the perspective
of space, and the adjustment of the vehicle velocity is often achieved by different random
deceleration properties P. In the process of evolution, all the vehicles view the maximum
velocity as the desired velocity, in other words, all the vehicles expect to reach the maximum
velocity by gradual acceleration if the travel condition ahead permits. However, because the
models do not take into account the deceleration of vehicles, it can lead to a terrible situation:
if the following vehicle moves close to a still vehicle at the maximum velocity, it will have
a sharp deceleration from the maximum velocity to zero in the next second. If that situation
does occur, it is inevitably to get a rear-end collision in the actual traffic.

In the actual traffic, in order to avoid the happening of sudden deceleration and rear-
end collision and to drive the vehicle steadily, the current vehicle velocity depends not only
on the velocity of itself, the relative velocity with the leading vehicle, the distance between
the vehicles, the safety distance, and so forth, but also on the velocity changing trend of
the current vehicle and the leading vehicles. Therefore, at any time of driving, drivers must
estimate the velocity in next few seconds and decidewhether to accelerate, decelerate, or keep
the velocity. For example, when meeting a red traffic light or the front vehicle moving slowly
and not accelerating in next few seconds, the vehicle needs decelerate in advance. On the basis
of the NaSch model of traffic flow, this paper proposes a one-dimensional cellular automaton
traffic flow Model with advanced decelerations. Considering time factor, the model adjusts
the current velocity by the forecasting velocity of the next several time steps to avoid the sharp
deceleration to some extent, enhances the stable performance of traffic flow and keeping the
smooth flow of traffic better. Our model shows the metastable state, phase separation, and
hysteresis phenomenon by computer simulating, which exists in actual traffic.

2. The Establishment of Model

In the NaSch Model, vehicles randomly distributed in a one-dimensional discrete cellular
chain, whose length is L. Each cell may either be empty or be occupied by one vehicle. All
vehicles are assumed to move from the left to the right. The nth vehicle in the time-step t is
located at the position xn(t), moving with an integral velocity vn(t) ∈ {0, . . . , vmax}, where
n ∈ {1, 2, . . . ,N} and vmax (vmax ≥ 1) are the maximum velocity which a vehicle can reach.
The gap between consecutive vehicles is dn(t) = xn+1(t) − xn(t) − ln+1, which is the number of
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empty cells in front of the nth vehicle in the time-step t. At each discrete time-step t → t+1, an
arbitrary arrangement of N vehicles is updated in parallel according to the following rules:

(i) acceleration: vn(t + 1) = vn(t) + 1;

(ii) deceleration: vn(t + 1) = min(vn(t + 1), dn);

(iii) randomization: vn(t + 1) = max(vn(t + 1) − 1, 0) with the probability P;

(iv) update of location: xn(t + 1) = xn(t) + vn(t + 1).

In some expansion and amendments to the NSModel, a variety of ways to preestimate
the velocity v′

n+1(t + 1) of the leading vehicle in the next time-step were used, such as the VE
model [4], and deceleration rules were updated as follows:

vn(t + 1) = min
(
dn(t) + v′

n+1(t + 1), vmax
)
. (2.1)

Because the deceleration rules in NaSch and its expansive models are based on the greedy
mechanism, the vehicles move forward by the currently allowed maximum velocity as much
as possible.When the velocity difference is bigger, and the gap is smaller between consecutive
vehicles, according to the given decelerating rules, it is inevitable that the following vehicle
will abruptly decelerate. In the model of this paper, in order to avoid this condition, the
velocities in the next steps time-steps are firstly estimated before determining the velocity
in current time. If the abrupt deceleration exists in these next steps time-steps, the method
that the vehicle gradually decelerates in advance is used to ensure the safe driving. Of course,
as the result of the increasing of time-steps steps, there are more errors caused by estimation.
So the paper sets steps ≤ 3, equal to predicting velocity in 3 seconds. The vehicle velocity
estimation is based on greedy mechanism.

(i) From a given configuration at time-step t, the forward effective distance deff
n (t + 1)

at the next time-step t + 1 can be obtained by

deff
n (t + 1) = dn +max

(
vanti
n+1 − gapsafe, 0

)
. (2.2)

Among vanti
n+1 = min(dn+1(t), vn+1(t)) is the anticipated velocity of the leading vehicle, gapsafe

is the security gap. Then calculate estimated velocity vest
n (t + 1) at the time-step t + 1 by

vest
n (t + 1) = min

(
deff
n (t + 1),min(vn(t) + 1, vmax)

)
. (2.3)

At the same time, this step also confirms the permitted maximum velocity at the time-step
t + 1.

(ii)Using the samemethod, the vehicle velocity at the time-step t+i+1 can be calculated
according to estimated velocity vest

n (t + i) and estimated effective distance dest
n (t + i) at the

time-step t + i (i = 2 · · · steps − 1), until the estimated velocity vest
n (t + steps) at the time-step

t + steps is obtained.
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(iii) Calculate the possible moving distance leststeps =
∑steps

i=1 vest
n (t+ i) of the nth vehicle in

the steps time-steps, if leststeps ≥ steps × vn(t), it means the n-th vehicle will accelerate or keep
current velocity during the period from time-step t + 1 to time-step t + steps. The velocity at
the time-step t + 1 determined as

vn(t + 1) = vest
n (t + 1). (2.4)

Otherwise, it means the nth vehicle must abrupt deceleration during the period from
time-step t+1 to time-step t+steps. In order to decelerate gradually, given the descent velocity
difference of each time-step is Δv during the steps time-steps, the moving distance leststeps can
be expressed as

leststeps =
steps∑

i=1

(vn(t) − i ×Δv). (2.5)

Thus the descent velocity difference Δv is further attained as follows:

Δv =
2 × steps × vn(t) − 2 × leststeps

steps × (
steps + 1

) . (2.6)

And the velocity at the time-step t + 1 determined as

vn(t + 1) = min
(
vn(t) −Δv, vest

n (t + 1)
)
. (2.7)

In the process of the velocity estimated, the security gap gapsafe is important. Accidents
can be avoided only if the security gap is ensured. Here we claim that the security gap is
variable according to the velocity of the leading car. Because the gradually deceleration rule
is used in this model, the velocity of the leading car may be less than anticipated velocity vanti

n+1
when it decelerate in advance. In order to drive safely, we always consider the velocity of the
leading car as the worst condition and define the security gap as

gapsafe =
vanti
n+1

steps + 1
. (2.8)

In order to analyze the impact of driver’s skill level and psychological conditions on
the flow, the cars are divided into two types, AD and NAD. The cars in AD can judge the
velocity at the next time-step depending on the rules in this model. While the cars in NAD
always use the estimate velocity vest

n (t + 1) as the velocity at the time-step t + 1, rad is used
to represent the ratio of drivers in AD and meanwhile rad = 1 means all of the drivers are
decelerating in advance.
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Based on the above, the rules of the traffic flow model based on Advanced
Decelerations are set as follows.

(i) Acceleration: vn(t + 1) = min(vn(t) + 1, vmax).

(ii) Estimated velocity from time-step t + 1 to t + steps:

vest
n (t + 1) = min

(
deff
n (t + 1),min(vn(t) + 1, vmax)

)

vest
n (t + i) = min

(
deff
n (t + i − 1),min

(
vest
n (t + i − 1) + 1, vmax

)) (
i = 2 · · · steps).

(2.9)

(iii) Deceleration: calculate prediction driving distance leststeps and descent velocity
difference Δv in steps time-steps, then

vn(t + 1) =

{
min

(
vn(t) −Δv, vest

n (t + 1)
)

ifn ∈ AD, leststeps < steps × vn(t),

vest
n (t + 1) otherwise.

(2.10)

(iv) Randomization: with a certain probability p do

vn(t + 1) = max(vn(t + 1) − 1, 0). (2.11)

(v) Update of location

xn(t + 1) = xn(t) + vn(t + 1). (2.12)

In this model, when the current vehicle velocity is decided, the space factors, such as
the security gap and the velocity of itself and the leading, are not only considered, but also
the space factors, the velocities in the next steps time-steps are estimated. When steps = 1, the
model degenerate to the VE model [4].

3. Results and Analysis of Numerical Simulation

In the simulations, the length of each cell is given by 1.5m, and L = 5 × 103 cells are assumed.
The length of each vehicle is 7.5 meters, which occupies l = 5 cells. The periodic boundary
condition is assumed. One time-step is taken as 1 s. The maximum velocity is taken as vmax =
20, which corresponds to the speed 108 km/h in real traffic. N is the total number of the
vehicles distributed on the selected road and vn is the velocity of the nth vehicle. The mean
flow is calculated via the relation q = ρ × v, meanwhile the car density is ρ = N × l/L and the
mean velocity is v = (1/N)

∑N
i=1 vi.

When we started to perform numerical simulation, all vehicles with a given density
were initially arranged randomly on the whole lane. Each run was conducted 1 × 104 time-
steps, in order to remove the transient effects, we discarded the data of the first 4 × 104 time-
steps. Themean velocities were obtained by averaging over 30 runs. Because the flux from the
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Figure 1: The fundamental diagram under P = 0, rad = 1, and steps = 1, 2, 3.

VE model are higher than those from the NSmodel and are much closer to the measurements
results [4], the VE model is used as comparison.

Figure 1 depicts the fundamental diagram under the deceleration probability P = 0
and AD ratio rad = 1 together with the different estimated time-steps steps. In the diagram,
the model curves under different estimated steps steps coincide with each other, at the
same time, the hysteresis phenomenon which is similar to VE Model [4] can be observed.
The fundamental diagrams are obtained from two different types of initial states: the
homogeneous state and the completely jamming state.

Figure 2 depicts the fundamental diagram under the deceleration probability P = 0.3
and AD ratio rad = 1 together with the different estimated time-steps steps which are also
obtained from two different types of initial states. In Figure 2, ρ1 and ρ2 show the positions
of the two phase transition points, which divide the whole density scale into three phases
having different macroscopic characters of traffic flow. A tiny difference in densities near
the two phase-transition points can produce totally different steady states in the end. For
example, Figures 3(b) and 3(c) show the phase-transition near ρ1; Figures 3(d) and 3(e)
show the phase transition near ρ2. In the region ρ < ρ1, homogeneous states are steady
as shown in Figures 3(a) and 4(b). Jamming states will dissolve soon, and the traffic will
turn into a homogeneous free flow after evolvement. In the region ρ > ρ2, jamming states
are steady as shown in Figures 3(e) and 3(f). Little Jamming states will assemble to large
ones, and the traffic will be steady on a phase-separated state in the end. There are one or
more large jams and several free flow regimes in the final system. In the ρ1 < ρ < ρ2 region,
the global prospect of the steady states is reflected in Figures 3(c), 3(d), 3(e), and 3(f). The
hysteresis curves, which are characteristics similar to that of VE models [4], can be observed.
The metastable states can stay long and finally evolve to different steady states determined
by the initial conditions. For example, Figure 3(c) shows the diagram from a homogeneous
initial state while the diagram in Figure 3(d) is from a jamming initial state. The former is
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Figure 2: The fundamental diagram under P = 0.3 and rad = 1 (a) steps = 1, 2, 3; (b) steps = 1; (c) steps = 2;
(d) steps = 3. “homogeneous” is obtained from a homogeneous initial state while the lower, “jamming” is
from a completely jamming initial state.

symmetrical everywhere, while the following shows a road which consists of a jamming part
and a homogeneous part. Both of the global densities are ρ = 0.154. Only from different initial
states, different outcomes are totally obtained.

Although similarity can be found in the different estimated time-steps steps, there is
essential distinction between them. In Figure 2(b), the critical points are ρ1 = 0.137, ρ2 = 0.20,
and the maximum flux is 3.939 under steps = 1 (the VE model). In Figure 2(c), the critical
points are ρ1 = 0.145, ρ2 = 0.21, and the maximum flux is 4.134 under steps = 2. In Figure 2(d),
the critical points are ρ1 = 0.154, ρ2 = 0.23, and the maximum flux is 4.523 under steps = 3. One
can see that with the increase of estimated time-steps, the critical points and the maximum
flux become increasingly big; meanwhile, they are closer and closer to the real data.

Figure 4 depicts the maximum change of the velocity at each step versus the density
under the different p. Figure 4(a) shows that the maximum changing quantity of the velocity
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Figure 3: The spatial-temporal diagrams about phase transitions under steps = 3 (a), (b) ρ = 0.153; (c), (d)
ρ = 0.154; (e), (f) ρ = 0.23; (g) ρ = 0.24; (h) ρ = 0.4. (a), (c), (e), and (g) are from homogeneous initial states,
while (b), (d), (f), and (h) are from a jamming initial state.

under p = 0 will reach 19 cells when steps = 1, while it is 6 and 4, respectively, when steps
= 2 and 3. Figure 4(b) shows that the maximum changing quantity of the velocity under
P = 0.3 reach 20 cells where steps = 1, while it is 11 and 9, respectively, under steps = 2 and 3.
These show that with the increase of estimated time-steps, the maximum changing quantity
of each time-step velocity decreases obviouslywhich is in accordancewith the real conditions.
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Figure 4: The maximum change of the velocity at each step versus the density under the different P (a)
P = 0; (b) P = 0.3.
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It means that according to estimated results to adjust vehicle velocity in advance can reduce
the sudden deceleration and improve the driving safety.

Figure 5 shows the fundamental diagram under the deceleration probability P = 0.3
together with the different AD ratio rad. In Figure 5, the flux is almost the same as above
when traffic is a homogeneous free flow. However, the flux gradually improves under the
same estimated time-steps with the increase of the AD ratio rad while it also gradually
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Figure 6: Blockage ablation simulation figure under ρ = 0.1, P = 0.1, rad = 1 (a) steps = 1; (b) steps = 2; (3)
steps = 3.

improves under the same AD ratio rad with the increase of the estimated time-steps when
the traffic density is higher. These illustrate that when the driver chooses the currently
permitted maximum velocity as much as possible, traffic flow may not achieve maximum
actually. However, it is beneficial to improve traffic flow by adjusting their driving behaviors
in advance, which is in accordance with the real conditions.

A signal light is placed in themiddle of the lane.When it evolves to 10000 time step, the
green light turns to red light lasting for 100 steps, and then the green light on. The simulation
results of Figure 6 show that the traffic jam caused by red light can be eliminated in a shorter
time and be restored to the free flow state when steps > 1 (Figures 6(b), 6(c)). Although he
traffic jam can be eliminated when steps = 1 (Figure 6(a)), it must go through a long time.
Comparingwith the simulation results, these illustrate that the driver can be better to respond
to emergencies that may occur at anytime in traffic when he selects the appropriate speed
forward. As a result, this will enhance the stability of the traffic flow and be better to maintain
the traffic flow smooth. But the blindly followingwill worsen traffic congestion (see Figure 7).

Figure 7 shows the velocity fluctuations in evolution process of 1000 steps. In Figures
7(a), 7(b), and 7(c), when the density is lower (ρ = 0.1) under the state of steps = 1, 2, and 3,
vehicle can be maintained at a relatively smooth moving, and the velocity fluctuations stay
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Figure 7: The velocity fluctuations map in 1000 time steps under P = 0.1, rad = 1 (a) ρ = 0.1, steps = 1; (b)
ρ = 0.1, steps = 2; (c) ρ = 0.1, steps = 3; (d) ρ = 0.3, steps = 1; (e) ρ = 0.3, steps = 2; (f) ρ = 0.3, steps = 3.
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Figure 8: The headway fluctuations map in 1000 time steps under P = 0.1, rad = 1 (a) ρ = 0.1, steps = 1; (b)
ρ = 0.1, steps = 2; (c) ρ = 0.1, steps = 3; (d) ρ = 0.3, steps = 1; (e) ρ = 0.3, steps = 2; (f) ρ = 0.3, steps = 3.

between −2 to 1. In Figures 7(d), 7(e), and 7(f), under the density is higher (ρ = 0.3), when the
state of steps = 1, the vehicle velocity fluctuations are serious and sometimes the fluctuation
is up to −20, that is to say, the velocity reduces from maximum 20 to 0 directly; at the same
time, when the state of steps > 1, the vehicle can be maintained at a relatively smooth moving,
and along with the increasing of steps, the vehicle velocity fluctuation amplitude decreases.
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The above illustrate that the vehicle cannot decelerate abruptly if the drivers adjust their
speeds in advance according to the size of the forecasted velocity, so that the traffic flow
remains more stable, and the probability of traffic accident is smaller, which matches the
actual traffic state.

Figure 8 shows the headway fluctuations in evolution process of 1000 steps. In Figures
8(a), 8(b), and 8(c), after a finite evolution, the results show that the headway is at a certain
amplitude of the fluctuation and the fluctuation range is small when the traffic density is
ρ = 0.1 and under the state of steps = 1, 2, and 3. In Figures 8(d), 8(e), and 8(f), after a finite
evolution, the simulation results show that the headway is in the small range of relatively
stable fluctuations when the traffic density is ρ = 0.3 and steps > 1, while the headway is in
disorder substantial random fluctuations when the traffic density is ρ = 0.3 and steps = 1.
All these illustrate that the vehicles can be more evenly distributed on the road if the drivers
adjust their driving behavior in advance depending on the size of the predicted velocity, so
that the traffic flow remains more stable and the probability of traffic accident is lower, which
matches the actual traffic state.

4. Conclusion

From the views of time and space, this paper proposes the cellular automaton model
based on the deceleration in advance. The model reflects the phenomenon in the actual
traffic that drivers usually adjust the current velocity by forecasting its velocities in a short
time of future. Computer simulations reproduce the metastable state, hysteresis, and phase
separation phenomenon. After the observations of the density-flow relationship, the stability
of traffic flow, the efficiency of blockage ablation, the velocity fluctuation, and the headway
fluctuations, it is found that the vehicles will not suddenly decelerate and can be relatively
even-distributed on the roads, the blockage caused by emergencies can be eliminated in a
shorter time, the utilization rate of the road resources is higher, the traffic flow is greater;
which better match the actual traffic state. All these support the view that the drivers who
make the velocities prejudgment and fully respond to the actual traffic conditions in advance
have an influence on traffic flow.
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