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A series of direct smelting reduction experiment has been carried out with high phosphorous
iron ore of the different bases by thermogravimetric analyzer. The derivative thermogravimetric
(DTG) data have been obtained from the experiments. One-step forward local weighted linear
(LWL) method , one of the most suitable ways of predicting chaotic time-series methods which
focus on the errors, is used to predict DTG. In the meanwhile, empirical mode decomposition-
autoregressive (EMD-AR), a data mining technique in signal processing, is also used to predict
DTG. The results show that (1) EMD-AR(4) is the most appropriate and its error is smaller than the
former; (2) root mean square error (RMSE) has decreased about two-thirds; (3) standardized root
mean square error (NMSE) has decreased in an order of magnitude. Finally in this paper, EMD-AR
method has been improved by golden section weighting; its error would be smaller than before.
Therefore, the improved EMD-AR model is a promising alternative for apparent reaction rate
(DTG). The analytical results have been an important reference in the field of industrial control.

1. Introduction

The complexities in smelting reduction process of iron and steel come from the interaction
between the fluid dynamics and chemical kinetics mechanisms. The research direction has
changed to how to establish hybrid kinetic model by combining fluid dynamics equations
with chemical kinetics algebraic equations and taking factors at the level of microchemical
reactions into consideration. Some macrokinetic parameters should be modeled, such as the
volume of wind, differential pressure, and feed rate (obtained by dynamic and real-time
detection in the process). However, micro-kinetic parameters in chemical reaction process
cannot be got by detection and identification online. The apparent reaction rate changes
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with the chemical reaction and fluid. In addition, the significance of its kinetic analysis is
pretty obvious. Thus, the majority of research focuses on mathematical and physical model
based on kinetics [1–4]. There are many uncertain factors affecting the apparent reaction rate.
Moreover, a great difference exists between the physical model of smelting reduction and the
unreacted-core model in the blast furnace. So its calculation model would not be accurate
enough, even nonignorable errors exist [5]. One advantage of time-series analysis methods
is to infer the future value from the historical value without considering other factors. Time-
series analysis methods are very convenient and accurate to study the evolution of apparent
reaction rate. In this paper, time-series analysis methods are used to study the prediction
model on the DTG data (apparent reaction rate) obtained by thermo gravimetric technique.
It can be seen that the model has expressed the dynamic process of smelting reduction and
has got high hit rate under uncertainty. Finally, the predicting method has been improved
effectively.

The rest of the paper is organized as follows. In Section 2, the appropriate predicting
method is employed to analyze the features of derivative thermo gravimetric data. The
one-step forward local weighted linear method and its analysis and discussion of the
experimental data are shown in Section 3. The EMD method and AR model for analyzing
experimental data will be presented in Section 4; in the meanwhile, some improvement of
the EMD-AR model is also provided. Finally, a brief summary is discussed in Section 5.

2. Features Analysis of Derivative Thermogravimetric Data

First, the features of DTG are analyzed. Correlation dimension, an important evidence to
establish the existence of chaotic continuous systems, is calculated with the reconstruction
map of the fractal dimension. For the truly random signals, the correlation dimension graph
will look like a 45-degree straight line. It is indicating that no matter how you embed the
noise, it will evenly fill that space. Chaotic (or periodic) signals have a distinct spatial struc-
ture, and their correlation dimension will saturate as some point while embedding dimension
is increased.

The correlation dimension reaches saturation by calculating the correlation dimension
of DTG data, as shown in Figure 1. It is shown that the nonlinear chaotic characteristics exist
in the system.

In VRA (visual recurrence analysis), we can construct such a model from a range
of classes, such as nearest neighbor, locally constant, kernel regression, locally linear, local-
ly weighted linear, radial basis models, and support vector regression [6–9]. Then, the appro-
priate predicting method is selected. In general, the methods of predicting chaotic time-series
include multistep and one-step. One-step is better than multistep for the errors curve of DTG.
Locally weighted linear method, one of the one-step methods, is superior to other methods
for the errors’ curve of DTG.

3. Prediction Analyses of One-Step Forward Locally
Weighted Linear Method

3.1. Locally Weighted Linear (LWL) Method

With a given time-series {x1, x2, x3, . . . xn} composed of n observations, multistep-ahead pre-
diction consists of predicting {xn+1, xn+2, xn+3, . . . xn+h}. The h next values of the time-series,
where h > 1, are the so-called prediction horizon [10, 11].
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Figure 1: Evolution diagram of correlation dimension.

One-step estimate is generated by

xn+1 = f
(
xn, xn−t, xn−2t, . . . xn−(d−1)t

)
, (3.1)

where d is the embedding dimension and t is time delay.
Suppose X = (xn, xn−t, xn−2t, . . . xn−(d−1)t) and Xi = (xi, xi−t, xi−2t, . . . xi−(d−1)t), 1 ≤ i ≤ k,

where k is neighborhoods.
The weight of Xi is defined by

Pi =
K(di)

∑k
i=1 K(di)

, (3.2)

where K(·) is essentially a weighting function used to assign the contribution of each neigh-
bor to the prediction in locally weighted linear predictor and di is the distance between X
and Xi. The Gaussian kernel function is to be used here, which is calculated in the following:

K(·) = exp−
(
distance

k

)2

, (3.3)

where distance is the Euclidean distance.
The locally weighted linear methods can be expressed in
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The situation that the embedding dimension is one (m = 1) was discussed; others
(m > 1) are similar:
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. (3.5)

The weighted least squares method is applied to (3.5), which can be demonstrated as

h∑

i=1

Pi(xi+1 − a − bxi)
2 = min . (3.6)

Then partial derivatives of a or b are as follows:

h∑

i=1

Pi(xi+1 − a − bxi) = 0,

h∑

i=1

Pi(xi+1 − a − bxi)xi = 0.

(3.7)

Solutions are expressed in
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(3.8)

Taking a, b into xn+1 = a + bxn, then, the predicted value was got.

xn+1 =
h∑
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(3.9)

The calculated performance is otherwise known as the root mean square error (RMSE)
and the normalized mean squared error (NMSE). NMSE increased the role of large-value
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Table 1: Compositions of each type of materials required.

Bases (R) 0.8 1.1 1.4 1.7 2.0

Mineral content (mg) 7.48 6.85 6.82 6.53 6.37
Coal content (mg) 1.40 1.17 1.16 1.11 1.09
Calcium oxide content (mg) 1.12 1.98 2.02 2.36 2.54

Table 2: Errors analysis.

Bases (R)
One-step LWL

RMSE NMSE

0.8 0.1099 0.8771
1.1 0.1047 0.9404
1.4 0.1059 0.9841
1.7 0.1073 0.9704
2.0 0.1196 0.9031

errors in the indicators, thereby improved the sensitivity of this indicator. Equations (3.10)
and (3.11) are using one-step prediction:

RMSE =

√∑n
i=1
(
pi − ai

)2

n
, (3.10)

NMSE = max

{ ∑n
i=1
(
pi − ai

)2

∑n
i=1 (mean − ai)2

,

∑n
i=1
(
pi − ai

)2

∑i
i=1 (ai−1 − ai)2

}

, (3.11)

where pi is the predictive value and ai is the real value.
Based on (3.11), the smaller NMSE is from the predicted values and actual values. The

predictions are quite accurate, and the NMSE for the prediction of 200 points is only 0.8771.
That means our predictive model explains about 99.123% of the variance in the series.

3.2. Results and Discussion

Derivative thermogravimetric data of the Huimin ore reflect the change of the apparent
reaction rate in the smelting reduction process. Experiment extent is confirmedwith bases 0.8,
1.1, 1.4, 1.7, 2.0; respectively, the compositions of each type of materials required are shown
in Table 1.

The TGA experiment equipment is produced by Netzsch, modeling as STA 449 F3. It
is protected with nitrogen gas flowing at 50mL/min. And argon, acting as purge gas, flows
at the rate of 10mL/min. There are 200 points around 1400◦C predicted. The performances of
their prediction charts using one-step forward locally weighted linear method are shown in
Figure 2.

From Figure 2, the prediction is well matched, especially in the trend of rise or decline.
It is shown that RMSE remains at about 0.1, and the error is small and stable in Table 2; in the
meanwhile, NMSE is maintained at about 0.9, which explains more than 99% of the variance.
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Figure 2: Prediction effect for different values of R.
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4. Prediction Analysis of Derivative Thermogravimetric Data of
the EMD-AR Method

Empirical mode decomposition (EMD) has been successfully applied to many fields, such as
communication, society, economy, engineering, and achieved good effects [12–19]. The AR
model forecasting methods is intended to apply to the system of smelting reduction.

4.1. Empirical Mode Decomposition

EMD method is developed from the simple assumption that any signal consists of different
simple intrinsic modes of oscillations. Each linear or nonlinear mode will have the same
number of extreme and zero crossings. There is only one extreme between successive zero-
crossings. Each mode should be independent of the others. In this way, each signal could be
decomposed into a number of intrinsic mode functions (IMFs), each of which must satisfy
the following definitions [15].

(a) In thewhole data set, the number of extreme and the number of zero-crossingsmust
either equal or differ from each other at most by one.

(b) At any point, the mean value of the envelope defined by local maxima and the
envelope defined by the local minima is zero.

An IMF represents a simple oscillatory mode compared with the simple harmonic
function.

With the definition, any signal x(t) can be decomposed as follows.

(1) Identify all local extremes, and then connect all the local maxima by a cubic spline
line as the upper envelope.

(2) Repeat the procedure for the local minima to produce the lower envelope. The
upper and lower envelopes should cover all the data among them.

(3) The mean of upper and low envelope value is designated as m1, and the difference
between the signal x(t) and m1 is the first component, h1; that is,

h1 = x(t) −m1. (4.1)

Generally speaking, h1 will not necessarily meet the requirements of the IMF, because
h1 is not a standard IMF. It needs to be selected for k times until the mean envelope tends
to zero. Then the first intrinsic mode function c1 is denoted, which stands for the most
high-frequency component of the original data sequence. At this point, the data could be
represented as

h1k = h1(k−1) −m1k, (4.2)
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where h1k is the datum after k times’ siftings. h1(k−1) stands for the datum after k − 1 times’
sifting. Standard deviation (SD) is used to determine whether the results of each filter com-
ponent meet the IMF or not. SD is defined as

SD =
T∑

k=1

∣
∣h1(k−1)(t) − h1k(t)

∣
∣2

h2
1(k−1)(t)

, (4.3)

where T is the length of the data.
The value of standard deviation SD is limited in the range of 0.2 to 0.3, which means

that when 0.2 < SD < 0.3, the decomposition process can be finished. The physical considera-
tions of this standard are the following: it is necessary to not only ensure hk(t) to meet the IMF
requirements but also control the decomposition times. So in this way the IMF components
could retain amplitude modulation information in the original signal.

(4) When h1k has met the basic requirements of SD on the condition of c1 = h1k, the
signal x(t) of the first IMF component c1 would be gotten and a new series r1 could
be achieved after deleting the high-frequency components. That is to say

r1 = x(t) − c1. (4.4)

The new sequence is treated as the original data, and repeat the above (3.1)–(3.3)
processes. Then the second intrinsic mode function c2 could be got.

(5) Repeat (3.1)–(3.4) until rn will no longer be decomposed into the IMF. The sequence
rn is called the remainder of the original data x(t). rn is a monotonic sequence,
indicating the overall trend of the raw data x(t) or mean, which is usually referred
as the so-called trend items. It is of clear physical significance.

The process is expressed as follows

r1 = x(t) − c1, r2 = r1 − c2, . . . , rn = rn−1 − cn. (4.5)

Then,

x(t) =
n∑

i=1

ci + rn. (4.6)

The original data can be expressed as the IMF component and remainder.
The rate trend characterized by five kinds of base after EMD decomposition is shown

in Figure 3.
Seen from Figure 3, the experimental data are divided into 13 groups. The last group

is a trend term and parabolic curve, indicating there is an inner maximum of the apparent
reaction rate existing in the unsteady-state process. And the temperature ranges from 600
to 800◦C; when the temperature falls in this range, various crystalline phases of iron oxides
change, but the mass will not change much [20].
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Figure 3: EMD trend line.

4.2. AR Model

Consider

Xt =
p∑

j=1

ajXt−j + εt, t ∈ Z. (4.7)

Equation (4.7) is a p step autoregressive model, referring asAR(p)model [21]. Station-
ary time-series {Xt} that meets the model AR(p) is called the AR(p) sequence. That a =
(a1, a2, . . . , ap)

T is named as the regression coefficients of the AR(p)model.

4.3. Modified EMD-AR Method

Huimin ore was analyzed with different base at sampling points of 8144, after the decom-
position of EMD, the data can be divided into 13 groups, and the last group is a trend term.

Firstly, each component is tried out through the ADF stationary test, as can be seen
from Table 3; 1%, 5%, 10% of the values are greater than the level of ADF critical value, which
is no unit root. So it can be said to meet the stationary time-series. From Table 4, according to
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Table 3: ADF test table.

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −32.84661 0.0000

Test critical values 1% level −3.430977
5% level −2.861702
10% level −2.566898

∗MacKinnon 1996 [23] one-sided P values.
Augmented Dickey-Fuller test equation.
Dependent variable: D(SER01).
Date: 06/07/11 Time: 16: 10.
Sample (adjusted): 10 8144.
Included observations: 8135 after adjustments.

the geometric decay of the correlation coefficient and partial correlation coefficients fourth-
order truncation, it can be regarded as AR (3.4) model. After the analyses of 13 groups, the
majority are positioned in AR (3.4). For simplicity, AR (3.4) model should be taken into
account.

Then with the previous 7944 data points, each group of data is predicted to 8144 in the
method of AR (3.4)model.

Calculation results are represented in

xn+1 =
13∑

i=2

3∑

j=0

an−j,i × xn−j,i, (4.8)

where xn−j,i is the autoregressive variable of the ith component. an−j,i is the corresponding
self-group regression coefficients.

Equation (4.9) is revised by the golden section weighting:

xn+1 = 0.618xn+1 + 0.382xn. (4.9)

4.4. Analysis and Comparison of Experimental Results

The results calculated by using MATLAB programming are shown in Figure 4.
As can be seen from Figure 4, the trend match is quite well. The overall hit rate is

also high, reaching a basic agreement. In Tables 3 and 4, the steadiness can be determined by
the decay of autocorrelation and 4 steps truncated of partial autocorrelation, so the fourth-
step autoregressive model is taken into account. The chaotic time-series are generally non-
stationary, even after repeated differential data cannot be stationary. It is shown that the
EMD can compensate the deficiency of nonsteadiness. Prediction performance is poorer when
adding white noise disturbance than those without noise, and the deterministic signal is
comparatively evident. The model of golden weighted correction is better. The result of error
analysis is shown in Table 5.

Based on Table 5, RMSE of EMD-AR method has decreased about two-thirds than the
local linear weighting method. NMSE decreased in an order of magnitude. The improved
EMD-AR error is smaller. The average error (AE) is also very small, especially minimum
errors of R = 1.1 and 1.4, where reduction effort was better [22].
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Figure 4: Continued.
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Figure 4: EMD-AR prediction effects.
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In Figure 5, it is obviously shown the characteristic of the normal distribution for
DTG data, which reflect the ergodicity of the apparent reaction rate in the smelting process;
Figure 6 further clearly demonstrates the statistical laws of DTG, there exists the pair of “∞”
curves (including internal ∞ curve and external ∞ curve, resp.), and many scattered points
distribute around the curves. So it can be concluded that it belongs to the random discrete
dynamic system, and it will be the breakthrough in the curve equation research.

5. Conclusion

(1) As can be seen, the predicted value was identical with the true value of the DTG
using one-step forward locally weighted linear prediction method in a high degree,
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Table 4: lists autocorrelation and partial autocorrelation.

Autocorrelation Partial correlation AC PAC Q-Stat Prob.

1 0.952 0.952 7384.9 0.0000
2 0.825 −0.866 12936. 0.0000
3 0.648 0.253 16355. 0.0000
4 0.455 0.317 18040. 0.0000
5 0.279 0.066 18673. 0.0000
6 0.142 −0.086 18836. 0.0000
7 0.052 −0.075 18858. 0.0000
8 0.008 −0.024 18859. 0.0000
9 −0.003 −0.004 18859. 0.0000
10 0.003 −0.014 18859. 0.0000
11 0.013 −0.022 18861. 0.0000
12 0.016 −0.021 18863. 0.0000
13 0.007 −0.021 18863. 0.0000
14 −0.014 −0.034 18865. 0.0000
15 −0.046 −0.034 18882. 0.0000
16 −0.081 −0.011 18935. 0.0000
17 −0.115 −0.007 19042. 0.0000
18 −0.142 −0.019 19208. 0.0000
19 −0.162 −0.020 19421. 0.0000
20 −0.171 0.007 19659. 0.0000
21 −0.170 0.032 19895. 0.0000
22 −0.159 0.025 20100. 0.0000
23 −0.139 0.002 20258. 0.0000
24 −0.112 0.014 20360. 0.0000
25 −0.080 0.024 20411. 0.0000
26 −0.044 0.013 20428. 0.0000
27 −0.009 0.004 20428. 0.0000
28 0.022 −0.026 20432. 0.0000
29 0.048 −0.005 20451. 0.0000
30 0.064 0.002 20484. 0.0000
31 0.069 −0.026 20523. 0.0000
32 0.065 −0.011 20557. 0.0000
33 0.052 0.013 20579. 0.0000
34 0.034 −0.005 20589. 0.0000
35 0.015 −0.018 20591. 0.0000
36 −0.002 −0.003 20591. 0.0000

which shows that themethod is better; this can also be seen by the errors’ data itself.
The evolution model of the apparent rate is expressed much more clearly.

(2) EMD-AR (3.4) steps have been derived from the data stationary test analysis and
autocorrelation and partial correlation coefficient. It is shown that the RMSE of the
EMD-AR method has decreased two-thirds than local linear weighting method;
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Table 5: Error analysis.

Base (R) RMSE NMSE AE
One-step
LWL EMD-AR Improved

EMD-AR
One-step
LWL EMD-AR Improved

EMD-AR
Improved
EMD-AR

0.8 0.1099 0.0417 0.0306 0.8771 0.0751 0.0679 −0.0017
1.1 0.1047 0.0312 0.0289 0.9404 0.0812 0.0778 −7.53E (−5)
1.4 0.1059 0.0389 0.0326 0.9841 0.0956 0.0935 −6.31E (−4)
1.7 0.1073 0.0527 0.0266 0.9704 0.0678 0.0596 0.0024
2.0 0.1196 0.0297 0.0278 0.9031 0.0534 0.0489 0.0016
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Figure 6: State space chart of DTG (m = 2, τ = 1).

NMSE decreased in an order of magnitude. Error of using improved EMD-AR
method is smaller; the average error (AE) is also very small, especially minimum
errors of R = 1.1 and 1.4 where reduction effect is better. It is shown that golden
weighted correction to EMD-AR method is effective.

(3) DTG trend item is parabolic curve, indicating there is an inner maximum of the
apparent reaction rate existing in the unsteady-state process. And the temperature
ranges from 600 to 800◦C; when the temperature falls in this range, various crystal-
line phases of iron oxides changes, but the mass will not change much.
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