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This paper investigates the problem of robust filter design for a class of nonlinear stochastic
systems with state-dependent noise. The state and measurement are corrupted by stochastic
uncertain exogenous disturbance and the dynamic system is modeled by Itô-type stochastic
differential equations. For this class of nonlinear stochastic systems, the robust H∞ filter can
be designed by solving linear matrix inequalities (LMIs). Moreover, a mixed H2/H∞ filtering
problem is also solved by minimizing the total estimation error energy when the worst-case
disturbance is considered in the design procedure. A numerical example is provided to illustrate
the effectiveness of the proposed method.

1. Introduction

Over the past decades, the robust H∞ filtering problem has been investigated extensively
since it is very useful in signal processing and engineering applications [1–5]. The so-called
H∞ filtering problem is to design an estimator to estimate the unknown state combination
via measurement output, which guarantees the L2 gain (from the external disturbance to the
estimation error) to be less than a prescribed level γ > 0. In contrast to classical Kalman filter,
it is not necessary to know the exact statistic information about the external disturbance in
theH∞ filter design. Obviously, there may be more than one solution toH∞ filtering problem
with a desired robustness. Since theH2 performance is appealing for engineering, it naturally
leads to the mixed H2/H∞ filtering problem [6–8]. Compared with the sole H∞ filter, the
mixedH2/H∞ filter is more attractive in engineering practice, since the former is a worst-case
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design which tends to be conservative whereas the latter minimizes the average performance
with a guaranteed worst-case performance. The robust H2/H∞ filtering problem for linear
perturbed systems with steady-state error variance constraints was investigated in [6], and
the mixed H2/H∞ filter for polytopic discrete-time systems was discussed in [7].

On the other hand, stochasticH∞ control and filtering problems for systems expressed
by stochastic Itô-type differential equations have attracted a great deal of attention [9–13, 23].
A bounded real lemma was proposed for linear continuous-time stochastic systems [11],
according to which full- and reduced-order robustH∞ problems for linear stochastic systems
were investigated by [12, 13], respectively. Most of the aforementioned works were limited to
linear stochastic systems. Recently, theH∞ filtering problem for nonlinear stochastic systems
has become another popular research topic [14–20]. Wang et al. [14] studied the robust
H∞ filtering problem for a class of uncertain time-delay stochastic systems with sector-
bounded nonlinearities. For general nonlinear stochastic systems, Zhang et al. [15] found
that theH∞ filter can be obtained by solving a second-order Hamilton-Jacobi inequality (HJI).
Considering that it is difficult to solve the HJI, Tseng [17] designed the H∞ fuzzy filter for
nonlinear stochastic systems via solving LMIs instead of an HJI. However, there is little work
dealing with the H2/H∞ filtering problem for nonlinear stochastic systems.

In this paper, we will deal with the robust filtering problem for a class of nonlinear
stochastic systems. The state is corrupted not only by white noise but also by exogenous
disturbance signal, and themeasurement equation also includes noises. Our goal in this paper
is to construct an asymptotically stable observer that leads to a mean square stable estimation
error process whose L2 gain with respect to disturbance signal is less than a prescribed level.
Moreover, a stochastic H2/H∞ filtering is designed for the nonlinear stochastic systems.
Our main results are expressed in linear matrix inequalities (LMIs), which are more easily
computed in practical application.

This paper is organized as follows: in Section 2, some definitions and notations are
introduced; Section 3 treats with the H∞ and mixed H2/H∞ filtering problems, and the
main outcomes of this section are Theorems 3.2 and 3.6; a numerical example is presented to
illustrate the effectiveness of the proposed filtering method in Section 4; Section 5 concludes
this paper.

Notations. For convenience, we adopt the following notations.Sn: the set of all n×n symmetric
matrices; its components may be complex. A′: the transpose of the corresponding matrix
A. A ≥ 0 (A > 0): A is positive semidefinite (positive definite) symmetric matrix. |x| :=
(
∑n

i=1 x
2
i )

1/2, that is, |x| denotes the Euclidean 2-norm of x, where x = (x1, x2, . . . , xn)
′ ∈ Rn.

L2(R+,Rl): the space of nonanticipative stochastic processes y(t) with respect to filter Ft

satisfying ‖y(t)‖2L2
:= E

∫∞
0 |y(t)|2dt < ∞. C0

2({t > 0} × U): class of functions V (t, x) twice
continuously differential with respect to x ∈ U and once continuously differential with
respect to t > 0 except possibly at the point x = 0.

2. Problem Setting

Consider the following nonlinear stochastic system governed by Itô differential equation:

dx(t) =
(
f(x(t)) + B0w(t)

)
dt + σ(x(t))dw0(t), (2.1)

with the following measurement equation:

dy(t) = (A1x(t) + B1w(t))dt + C1x(t)dw1(t), (2.2)
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and the controlled output

z(t) = Dx(t). (2.3)

In the above, x(t) ∈ Rn is called the system state, y(t) ∈ Rr is the measurement output, z(t) is
the state combination to be estimated.w0(t), w1(t) are the standard Wiener processes defined
on the probability space (Ω,F,P) related to an increasing family (Ft)t∈R+

of σ-algebras
Ft ⊂ F. Without loss of generality, we can supposew0(t), w1(t) are one-dimensional, mutually
uncorrelated. B0, A1, B1, C1, D are constant matrices of suitable dimensions, w ∈ L2(R+,Rq)
represents the exogenous disturbance signal. Under very general conditions on f and σ,
stochastic systems (2.1)-(2.2) have, respectively, a unique strong solution xs,ξ(t) for any
t ≥ s ≥ 0 and initial state x(s) = ξ ∈ Rn; see [21].

Now, we first introduce the following definitions.

Definition 2.1 (see [9]). We say that the equilibrium point x ≡ 0 of system

dx(t) = f(x(t))dt + σ(x(t))dw0(t) (2.4)

is exponentially mean square stable, if for some positive constants ρ, �,

E|x(t)|2 ≤ ρ|x(0)|2 exp(−�t), t ≥ 0. (2.5)

Remark 2.2. It is well known that for stochastic linear time-invariant systems, the exponential
mean square stability is equivalent to asymptotical mean square stability [9].

Definition 2.3. Nonlinear stochastic uncertain system (2.1) is said to be internally stable at the
origin, if (2.1)with w = 0 is exponentially mean square stable.

Lemma 2.4 (see [9]). The trivial solution of (2.4) is exponentially mean square stable for t ≥ 0 if
there exists V (t, x) ∈ C0

2({t > 0} × Rn) such that

k1|x|2 ≤ V (t, x) ≤ k2|x|2, LV (t, x) ≤ −k3|x|2 (2.6)

for some positive constants k1, k2, k3, where L is the so-called an infinitesimal generator of (2.4).
Now, suppose f(x) and σ(x) can be linearized, respectively, as

f(x) = Ax + F0(x), F0(0) = 0,

σ(x) = Cx + F1(x), F1(0) = 0,
(2.7)

then the linearized stochastic system of (2.1) becomes

dx = (Ax + B0w + F0(x))dt + (Cx + F1(x))dw0, (2.8)

where A and C are constant matrices.
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Consider the following filter for the estimation of z(t):

dx̂ = Afx̂dt + Bfdy, x̂(0) = x̂0, ẑ = Dx̂, (2.9)

where x̂ ∈ Rn. Let ξ′ = [x′ x′ − x̂′], z̃ = z − ẑ, then

dξ = Ãξdt + D̃1ξdw0 + D̃2ξdw1 + F̃1dt + F̃2dw0 + F̃3wdt, (2.10)

where

Ã =
[

A 0
A − BfA1 −Af −Af

]

, D̃1 =
[
C 0
C 0

]

, D̃2 =
[

0 0
−BfC1 0

]

,

F̃1 =
[
F0(x)
F0(x)

]

, F̃2 =
[
F1(x)
F1(x)

]

, F̃3 =
[

B0

B0 − BfB1

]

.

(2.11)

For any given disturbance attenuation level γ > 0, one wants to find Af, Bf , such that

‖z̃(t)‖2L2
< γ2‖w(t)‖2L2

(2.12)

holds for any w ∈ L2(R+,Rq). Define the H∞ performance index as

Js = ‖z̃(t)‖2L2
− γ2‖w(t)‖2L2

. (2.13)

Obviously, (2.12) holds iff Js < 0. As in [12], H∞ and mixed H2/H∞-based robust state estimation
problems are formulated as follows.

(i) Stochastic H∞ filtering problem: given γ > 0, find an estimator x̂ of the form (2.9) leading
(2.10) to being internally stable; Moreover, Js < 0 for all nonzero w ∈ L2(R+,Rn) with
ξ(0) = 0.

(ii) Stochastic H2/H∞ filtering problem: of all the H∞ filter of (i), one finds the one that
minimizes the steady error variance

lim
t→∞

E
[
z̃′(t)z̃(t)

]
, (2.14)

where in this case,w(t) = η̇, η is taken as a standard Wiener process, independent ofw0(t) andw1(t),
so w(t) is a white noise. (2.2) and (2.8) can be written as (see, e.g., [22])

dy(t) = A1x(t)dt + B1dη(t) + C1x(t)dw1(t),

dx(t) = (Ax(t) + F0(x(t)))dt + (Cx(t) + F1(x(t)))dw0(t) + B0dη(t),
(2.15)

respectively.
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3. Stochastic H∞ and Mixed H2/H∞ Filter Design

In this section, we will discuss, respectively, stochasticH∞ and mixedH2/H∞ filtering prob-
lems.

3.1. Stochastic H∞ Filter Design

In this section, some sufficient conditions are given for H∞ filter design; our main results are
as follows.

Theorem 3.1. Suppose there exists a scalar λ > 0, such that

|Fi(x)| ≤ λ|x|, i = 0, 1, ∀x ∈ Rn. (3.1)

If the following matrix inequalities

PÃ + Ã′P + 2D̃′
1PD̃1 + D̃′

2PD̃2 + P + 6λ2αI +Q +
1
γ2

PF̃3F̃
′
3P < 0, (3.2)

0 < P ≤ αI (3.3)

have a solution P > 0, α > 0, then (2.10) is internally stable and H∞ filtering performance Js < 0,
where Q = (0 D)′(0 D).

Proof. We first show (2.10) to be internally stable, that is, the following system

dξ = Ãξdt + D̃1ξdw0 + D̃2ξdw1 + F̃1dt + F̃2dw0(t) (3.4)

is asymptotically mean square stable. LetLξ be the infinitesimal operator of (3.4), V (ξ) = ξ′Pξ
with αI ≥ P > 0 to be determined. According to Lemma 2.4, in order to show (3.4) to be
internally stable, we only need to show

LξV (ξ) ≤ −k3|ξ|2 (3.5)

for some k3 > 0. Note that

LξV (ξ) =
∂V ′(ξ)
∂ξ

(
Ãξ + F̃1

)
+
1
2

(
D̃1ξ + F̃2

)′ ∂2V (ξ)
∂ξ2

(
D̃1ξ + F̃2

)
+
1
2

(
D̃2ξ

)′ ∂2V (ξ)
∂ξ2

(
D̃2ξ

)

= ξ′
(
PÃ + Ã′P + D̃′

1PD̃1 + D̃′
2PD̃2

)
ξ + 2F̃ ′

1Pξ + F̃ ′
2PF̃2 + 2ξ′D̃′

1PF̃2.

(3.6)
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By condition (3.1), we have

2F̃ ′
1Pξ ≤ ξ′Pξ + F̃ ′

1PF̃1 ≤ ξ′Pξ + αF̃ ′
1F̃1 = ξ′Pξ + 2αF ′

0F0

≤ ξ′Pξ + 2α|F0|2 ≤ ξ′Pξ + 2αλ2|ξ|2.
(3.7)

Similarly,

2ξ′D̃′
1PF̃2 ≤ ξ′D̃′

1PD̃1ξ + 2αλ2|ξ|2,

F̃ ′
2PF̃2 ≤ 2αλ2|ξ|2.

(3.8)

Substituting (3.7), (3.8) into (3.6) and considering (3.2), it follows

LξV (ξ) ≤ ξ′
(
PÃ + Ã′P + 2D̃′

1PD̃1 + D̃′
2PD̃2 + P + 6αλ2I

)
ξ

< − ξ′
(

Q +
1
γ2

PF̃3F̃
′
3P

)

ξ ≤ 0.
(3.9)

By Lemma 2.4, the internal stability of (2.10) is proved.
Secondly, we further show the H∞ filtering performance Js < 0. Let Lξ,w be the

infinitesimal generator of (2.10). For V (ξ) = ξ′Pξ, it is easy to show that

Lξ,wV (ξ) = LξV (ξ) + 2ξ′PF̃3w. (3.10)

For any T > 0 and ξ(0) = 0, we have

Js(T) := E

∫T

0

[
|z̃(t)|2 − γ2|w(t)|2

]
dt

= E

∫T

0

{[
|z̃(t)|2 − γ2|w(t)|2

]
dt + d

(
ξ′Pξ

)} − E[ξ(T)Pξ(T)]

≤ E

∫T

0

[
|z̃(t)|2 − γ2|w(t)|2 +Lξ,wV (ξ)

]
dt.

(3.11)

Note that

Lξ,wV (ξ) ≤ ξ′
(
PÃ + Ã′P + 2D̃′

1PD̃1 + D̃′
2PD̃2 + P + 6λ2αI

)
ξ + 2ξ′PF̃3w,

|z̃(t)|2 = ξ′Qξ.

(3.12)

So

|z̃(t)|2 − γ2|w(t)|2 +Lξ,wV (ξ) ≤
[
ξ
w

]′[Λ11 PF̃3

F̃ ′
3P −γ2I

][
ξ
w

]

< 0, (3.13)
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where

Λ11 := PÃ + Ã′P + 2D̃′
1PD̃1 + D̃′

2PD̃2 + P + 6λ2αI +Q. (3.14)

By the well-known Schur’s complement and (3.2), there exists ε > 0, such that

[
Λ11 PF̃3

F̃ ′
3P −γ2I

]

< −εI. (3.15)

Summarizing the above analysis, (3.11) yields

Js(T) ≤ −εE
∫T

0

(
|ξ(t)|2 +w(t)|2

)
dt ≤ −εE

∫T

0
|w(t)|2dt. (3.16)

So for any T > 0, E
∫T
0 |z̃(t)|2dt ≤ (γ2 − ε)E

∫T
0 |w(t)|2dt.

Let T → ∞, then

‖z̃(t)‖2L2
≤ (

γ2 − ε
)‖w(t)‖2L2

(3.17)

which yields Js < 0. This theorem is proved.

Theorem 3.1 only has theoretical sense, because it is difficult to be used in designing
H∞ filter. The following result is of more important in practice.

Theorem 3.2. Under the condition of Theorem 3.1, if the following LMIs

[
P11 − αI 0

0 P22 − αI

]

< 0, (3.18)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 A
′P22 −A′

1Z
′
1 − Z′ √

2C
′P11

√
2C

′P22 −C′
1Z

′
1 P11B0

P22A − Z1A1 − Z a22 0 0 0 P22B0 − Z1B1√
2P11C 0 −P11 0 0 0√
2P22C 0 0 −P22 0 0

−Z1C1 0 0 0 −P22 0
B′
0P11 B′

0P22 − B′
1Z

′
1 0 0 0 −γ2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.19)

have solutions P11 > 0, P22 > 0, α > 0, Z1 ∈ Rn×r , Z ∈ Rn×n, then (2.10) is internally stable and
Js < 0.

Moreover,

dx̂ = P−1
22 Zx̂dt + P−1

22 Z1dy (3.20)

is the correspondingH∞ filter. In (3.19), a11 = P11A+A′P11 + 6λ2αI +P11, a22 = −Z −Z′ + 6λ2αI +
D′D + P22.
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Proof. By Schur’s complement, (3.2) is equivalent to

⎡

⎢
⎢
⎢
⎣

PÃ + Ã′P + P + 6λ2αI +Q
√
2D̃′

1P D̃′
2P PF̃3√

2PD̃1 −P 0 0
PD̃2 0 −P 0
F̃ ′
3P 0 0 −γ2I

⎤

⎥
⎥
⎥
⎦

< 0. (3.21)

Taking P = diag(P11, P22) and substituting (2.11) into (3.21), we have

⎡

⎢
⎢
⎣

Ψ11 Ψ′
12 Ψ′

13 φ′
14

Ψ12 Ψ22 0 0
Ψ13 0 Ψ33 0
Ψ14 0 0 Ψ44

⎤

⎥
⎥
⎦ < 0, (3.22)

where

Ψ11 =

[
P11A +A′P11 + 6λ2αI + P11

(
A − BfA1 −Af

)′
P22

P22
(
A − BfA1 −Af

) −P22Af −A′
f
P22 + 6λ2αI + P22 +D′D

]

,

Ψ22 = Ψ33 = −P =
[−P11 0

0 −P22

]

, Ψ44 = −γ2I,

Ψ′
12 =

[√
2C′P11

√
2C′P22

0 0

]

, Ψ′
13 =

[
0 −C′

1B
′
f
P22

0 0

]

, Ψ′
14 =

[
P11B0

P22
(
B0 − BfB1

)
]

.

(3.23)

(3.22) is equivalent to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11
(
A − BfA1 −Af

)′P22
√
2C′P11

√
2C′P22 −C′

1B
′
fP22 P11B0

P22
(
A − BfA1 −Af

)
a22 0 0 0 P22

(
B0 − BfB1

)

√
2P11C 0 −P11 0 0 0√
2P22C 0 0 −P22 0 0

−P22BfC1 0 0 0 −P22 0
B′
0P11

(
B0 − BfB1

)′P22 0 0 0 −γ2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,
(3.24)

where a11 = P11A + A′P11 + 6λ2αI + P11, a22 = −P22Af − A′
fP22 + 6λ2αI + P11. Let P22Af =

Z, P22Bf = Z1, then (3.22) becomes (3.19). From our assumption, Af = P−1
22 Z,Bf = P−1

22 Z1, so
anH∞ filtering equation is constructed as in the form of (3.20). Theorem 3.2 is proved.
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3.2. Mixed H2/H∞ Filtering

To design the mixed stochasticH2/H∞ filter, we need to choose the one from the set of allH∞
filters, which also minimizes the estimation error variance, or concretely speaking, minimizes
the H2 performance

J2 := lim
t→∞

E
{
z̃′(t)z̃(t)

}
= lim

t→∞
E
{
ξ′(t)(0 I)′D′D(0 I)ξ(t)

}

= lim
t→∞

Tr
{
D(0 I)Eξ(t)ξ′(t)(0 I)′D′}.

(3.25)

Two performances Js in (2.13) and J2 in (3.25) associated with H∞ robustness and H2

optimization have constructed, respectively. Now, we need to design the mixedH2/H∞ filter
to maximize Js and minimize J2. Consider the following linear stochastic constant system

dξ = A11ξdt +
l∑

i=1

Biiξdwi, (3.26)

where {wi, i = 1, . . . , l} are independent, standard Wiener processes. The following lemma
will be used in this section.

Lemma 3.3 (see [23]). System (3.26) is exponentially mean square stable iff for any R > 0, the
following Lyapunov-type equation

PA11 +A′
11P +

l∑

i=1

B′
iiPBii = −R (3.27)

has a unique positive definite solution P > 0.
In the next, for simplicity, when (3.26) is exponentially stable, one also says (A11, B11,

. . . , Bll) is stable.
As we have pointed out before, at this stage, we assume w(t) = η̇(t); (2.10) accordingly

becomes

dξ = Ãξdt + D̃1ξdw0 + D̃2ξdw1 + F̃1dt + F̃2dw0 + F̃3dη. (3.28)

Let X(t) = E[ξ(t)ξ′(t)] in (3.28), then by Itô’s formula, we have

Ẋ(t) = ÃX(t) +X(t)Ã′ + E
[
F̃1ξ

′ + ξF̃ ′
1

]
+ D̃1XD̃′

1

+ E
[
D̃1ξF̃

′
2 + F̃2ξ

′D̃′
1

]
+ E

[
F̃2F̃

′
2

]
+ D̃2X(t)D̃′

2 + F̃3F̃
′
3.

(3.29)

By means of

E
[
F̃1ξ

′ + ξF̃ ′
1

]
≤ E

[
F̃1F̃

′
1

]
+X(t),

E
[
D̃1ξF̃

′
2 + F̃2ξ

′D̃′
1

]
≤ D̃1XD̃′

1 + E
[
F̃2F̃

′
2

]
,

(3.30)
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we have

Ẋ(t) ≤ ÃX(t) +X(t)Ã′ + 2D̃1X(t)D̃′
1 + D̃2X(t)D̃′

2

+X(t) + 2E
[
F̃2F̃

′
2

]
+ E

[
F̃1F̃

′
1

]
+ F̃3F̃

′
3.

(3.31)

Now, we suppose Fi(x) (i = 0, 1) satisfy

Fi(x)F ′
i(x) ≤ Gixx

′G′
i, i = 0, 1, ∀x ∈ Rn, (3.32)

where G1, G2 are constant matrices of suitable dimensions. At this stage,

F̃iF̃
′
i =

[
I 0
I I

][
FiF

′
i 0

0 0

][
I I
0 I

]

≤
[
I 0
I I

][
Gixx

′G′
i 0

0 0

][
I I
0 I

]

=
[
I 0
I I

][
Gi 0
0 0

]

ξξ′
[
G′

i 0
0 0

][
I I
0 I

]

=
[
Gi 0
Gi 0

]

ξξ′
[
G′

i G′
i

0 0

]

:= G̃iξξ
′G̃′

i, i = 0, 1,

(3.33)

where

G̃i =
[
Gi 0
Gi 0

]

. (3.34)

So (3.31) becomes

Ẋ(t) ≤ ÃX(t) +X(t)Ã′ + 2D̃1X(t)D̃′
1 + D̃2X(t)D̃′

2 +X(t) + 2G̃2X(t)G̃′
2 + G̃1X(t)G̃′

1 + F̃3F̃
′
3.

(3.35)

In addition, if X1(t) solves

Ẋ1(t) = ÃX1(t) +X1(t)Ã′ + 2D̃1X1(t)D̃′
1 + D̃2X1(t)D̃′

2 +X1(t)

+ 2G̃2X1(t)G̃′
2 + G̃1X1(t)G̃′

1 + F̃3F̃
′
3

X1(0) = X(0)

(3.36)

then it is easy to prove that X(t) ≤ X1(t). Denoting X1 := limt→∞X1(t), where X1 satisfies

ÃX1 +X1Ã
′ + 2D̃1X1D̃

′
1 + D̃2X1D̃

′
2 + 2G̃2X1G̃

′
2 + G̃1X1G̃

′
1 +X1 + F̃3F̃

′
3 = 0. (3.37)
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Obviously, limt→∞X(t) ≤ X1, accordingly,

J2 ≤ Tr
{
D(0 I)X1(0 I)′D′

}
= Tr

{
X1Q

}
. (3.38)

As in [12, 24], it is easily seen the following fact.

Lemma 3.4. If P̂ is a solution of

Ã′P̂ + P̂ Ã + 2D̃′
1P̂ D̃1 + D̃′

2P̂ D̃2 + 2G̃′
2P̂ G̃2 + G̃′

1P̂ G̃1 +Q + P̂ = 0 (3.39)

then Tr(X1Q) = Tr(P̂(F̃3F̃
′
3)).

Secondly, suppose P > 0 satisfies

Ã′P + PÃ + 2D̃′
1PD̃1 + D̃′

2PD̃2 +Q + P + 2G̃′
2PG̃2 + G̃′

1PG̃1 < 0. (3.40)

By means of Lemma 3.3, one can show P > P̂ . So we have the following lemma.

Lemma 3.5. P > P̂ , where P and P̂ stand for the positive definite solutions of (3.40) and (3.39),
respectively.

From Lemmas 3.4–3.5, it gives

J2 = lim
t→∞

Tr
{
D(0 I)X(t)(0 I)′D′}

≤ lim
t→∞

Tr
{
D(0 I)X1(t)(0 I)′D′}

= Tr
{
D(0 I)X1(0 I)′D′

}

= Tr
{
X1Q

}
= Tr

(
P̂ F̃3F̃

′
3

)

= Tr
(
F̃ ′
3P̂ F̃3

)

≤ Tr
(
F̃ ′
3PF̃3

)
:= Ĵ2.

(3.41)

Hence, to solve the mixed stochastic H2/H∞ filtering problem, we seek to minimize an upper-bound
on Ĵ2 subject to (3.2), (3.3), and

PÃ + Ã′P + 2D̃′
1PD̃1 + D̃′

2PD̃
′
2 + P + 2G̃′

2PG̃2 + G̃′
1PG̃1 +Q < 0. (3.42)
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(3.42) having a positive definite solution P > 0 is equivalent to

⎡

⎢
⎢
⎢
⎢
⎢
⎣

PÃ + Ã′P + P +Q
√
2D̃′

1P D̃′
2P G̃′1P

√
2G̃′

2P√
2PD̃1 −P 0 0 0
PD̃2 0 −P 0 0
PG̃1 0 0 −P 0√
2PG̃2 0 0 0 −P

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0. (3.43)

A suboptimal H2/H∞ filtering can be obtained by minimizing Tr(H) subject to (3.2), (3.3), (3.43),
and

H − F̃ ′
3PF̃3 > 0. (3.44)

(3.44) is equivalent to

[
H F̃ ′

3P

PF̃3 P

]

> 0. (3.45)

We still take P = diag(P11, P22) > 0, P22Bf = Z1, P22Af = Z, then (3.3), (3.2), (3.43), and (3.45)
become, respectively, as (3.18), (3.19),

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ11 γ12
√
2C′P11

√
2C′P22 −C′

1Z
′
1 G′

1P11 G′
1P22 G′

2P11 G′
2P22

γ21 γ22 0 0 0 0 0 0 0√
2P11C 0 −P11 0 0 0 0 0 0√
2P22C 0 0 −P22 0 0 0 0 0

−Z1C1 0 0 0 −P22 0 0 0 0
P11G1 0 0 0 0 −P11 0 0 0
P22G1 0 0 0 0 0 −P22 0 0
P11G2 0 0 0 0 0 0 −P11 0
P22G2 0 0 0 0 0 0 0 −P22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

⎡

⎣
H B′

0P11 B′
0P22 − B′

1Z
′
1

P11B0 P11 0
P22B0 − Z1B1 0 P22

⎤

⎦ > 0,

(3.46)

where γ11 = P11A +A′P11 + P11, γ12 = A′P22 −A′
1Z

′
1 − Z′, γ21 = P22A − Z1A1 − Z, γ22 = −Z − Z′ +

D′D + P22. Therefore, we have the following theorem.

Theorem 3.6. Under the conditions of Theorem 3.2 and assumption (3.32), if there exists a solution
(P11 > 0, P22 > 0, Z, Z1, α > 0) to (3.18), (3.19), (3.46), then a suboptimal mixed stochastic
H2/H∞ filtering is obtained by solving P11 and P22 from the following convex optimization problem:
minP11,P22,Z,Z1,α Tr(H) subject to (3.18),(3.19), (3.46), and the corresponding filter is given by (3.20).

Remark 3.7. In the proof of Theorems 3.2 and 3.6, the matrix P is chosen as diag(P11, P22) for
simplicity. In order to reduce the conservatism of the conditions, the matrix P can also be
chosen as

[
P11 P12
P ′
12 P22

]
. However, this case will increase the complexity of computation.



Mathematical Problems in Engineering 13

4. Numerical Example

Example 4.1. Consider the following nonlinear stochastic system governed by Itô differential
equation

dx = (Ax + B0w + F0(x))dt + (Cx + F1(x))dw0,

dy = (A1 + B1w)dt + C1xdw1, z = Dx,
(4.1)

where

A =
[−3 1/2
−1 −3

]

, B0 =
[
1
0

]

, C =
[
1 0
0 0

]

,

F0(x) = 0.3 tanh(x), F1(x) = 0.3 sin(x),

A1 =
[−1 1
1 −1

]

, B1 =
[
0
1

]

, C1 =
[
1 0
0 1

]

,

D =
[
0
1

]

, w =
1

1 + 2t
, t ≥ 0.

(4.2)

Consider the following filter for the estimation of z(t):

dx̂ = Afx̂dt + Bfdy, ẑ = Dx̂. (4.3)

Setting γ = 0.9, and using the LMI control toolbox of Matlab, the estimation gains ofH∞ filter
are derived from Theorem 3.2:

Af =
[
5.6231 3.7259
−0.1617 8.2289

]

, Bf =
[
0.1812 −1.8190
−0.2525 0.4635

]

. (4.4)

From Theorem 3.6, the estimation gains of H2/H∞ filter are obtained as follows:

Af =
[
4.1449 3.4665
−0.2469 6.3382

]

, Bf =
[
0.5270 −1.2388
−0.3693 0.3445

]

. (4.5)

The initial condition in the simulation is assumed to be ξ0 = [0.3 0.2 − 0.02 − 0.05]′. Figures 1
and 2 show the trajectories of x1(t), x̂1(t), x2(t), x̂2(t) by using the proposedH∞ andH2/H∞
filters, respectively. The trajectories of the estimation error z̃(t) for H∞ and H2/H∞ filters
are shown in Figures 3 and 4, respectively. From Figures 3 and 4, it is obvious that the
performance of the proposed H2/H∞ filter is better than that of theH∞ filter.

In [15], the H∞ and H2/H∞ filters for general nonlinear stochastic systems were
obtained by solving a second-order nonlinear HJI. Generally, it is difficult to solve the HJI. In
fact, for the special nonlinear stochastic system (4.1), the H∞ and H2/H∞ filtering problems
can be solved via the LMI technique instead of the HJI according to Theorems 3.2 and 3.6 in
this paper. Simulation results show the effectiveness of the proposed method.
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Figure 1: Trajectories of x1(t), x̂1(t) and x2(t), x̂2(t) for the proposedH∞ filter.
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Figure 2: Trajectories of x1(t), x̂1(t) and x2(t), x̂2(t) for the proposedH2/H∞ filter.

5. Conclusions

In this paper, we have discussed the robust H∞ filtering problem for a class of nonlinear
stochastic systems. Meanwhile, the mixed H2/H∞ filtering analysis is also considered. Since
the results can be solved by LMIs, the proposed method has much advantage in practical
computation. Although we only demand the state equation to be nonlinear, one can tackle
the case that when both the state and measurement equations are nonlinear.
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Figure 3: Trajectory of the estimation error z̃(t) for the proposedH∞ filter.

0

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

Output of estimation error

0 10 20 30 40 50 60

t

z̃z
(z
)

Figure 4: Trajectory of the estimation error z̃(t) for the proposedH2/H∞ filter.
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