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A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed
based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the
KPCA principal space and residual space into two subspaces. Comparedwith traditional statistical
techniques, the fault subspace is separated based on the fault-relevant influence. This method
can find fault-relevant principal directions and principal components of systematic subspace
and residual subspace for process monitoring. The proposed monitoring approach is applied to
Tennessee Eastman process and penicillin fermentation process. The simulation results show the
effectiveness of the proposed method.

1. Introduction

Process monitoring and fault diagnosis are important for the safety and reliability of
industrial processes [1–12]. As a data-driven process monitoring methodology, multivariate
statistical analysis techniques, such as principal component analysis (PCA) and partial least
squares (PLS), have been used widely for detection and diagnosis of abnormal operating
situations in many industrial processes in the last few decades [5, 13–16]. The major
advantage of these methods is ability to handle larger number of highly correlated variables
and reduce the high-dimensional process measurement into a low-dimensional latent space.
The monitoring based on these methods is straightforward.

PCA is one of the most widely used linear techniques for transforming data into a
new space. It divides data information into the significant patterns, such as linear tendencies
or directions in model subspace, and the uncertainties, such as noises or outliers located in
residual subspace. T2 statistic and SPE statistic, represented by Mahalanobis and Euclidian
distances, are used to elucidate the pattern variations in the model and residual subspaces,
respectively [17–19]. PLS decomposition methods are used similar to PCA for process
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monitoring and are more effective in supervising the variations in the process variables
that are more influential on quality variables [20–22]. T2 statistic and SPE statistic are also
employed in the PLS monitoring system. These methods develop a normal operating model
with the normal data gathered from the normal process and define the normal operation
regions. The new process behaviors can thus be compared with the predefined ones by the
monitoring system to ensure whether they remain normal or not. When the process moves
out of the normal operation regions, it is concluded that an “unusual and faulty” change
in the process behaviors has occurred. Nowadays, many extensions of the conventional
PCA/PLS algorithms have been reported [15, 23–31]. Recently, Li et al. proposed a total
projection to latent structure (T-PLS) and discussed the policy of process monitoring and
fault diagnosis based on the new structure [32, 33]. They analyzed the problem faced in
conventional PLS based process monitoring policy which only divides the measured variable
space into two subspaces and uses two monitoring statistics for PLS scores and residuals,
respectively. They indicated that the output-irrelevant variations are also included by PLS
scores and PLS residuals do not necessarily cover only small X-variations. The proposed
T-PLS algorithm further decomposed the PLS systematic subspace to separate the output-
orthogonal part from the output-correlated part, and the PLS residual subspace to separate
large variations from noises. T-PLS based monitoring system was then developed based on
the four-process subspace.

KPCA is one nonlinear version of PCA. It can efficiently compute PCs in a high-
dimensional feature space using nonlinear kernel functions. The core idea of KPCA is to first
map the data space into a feature space using a nonlinear mapping and then carry out the
PCA operation in the feature space. KPCA divides the data into a systematic subspace and
a residual subspace and uses T2 statistic and SPE statistic to monitor these two subspaces,
respectively [13, 15, 16, 34].

In this paper, to improve the KPCA model, a fault-relevant KPCA algorithm is
proposed and the approach of process monitoring based on the new fault-relevant KPCA
algorithm is proposed for fault detection. The proposed method further decomposes both the
KPCA principal space and residual space into two subspaces by checking the influences by
process disturbances. The basic objective for further subspace decomposition is to separate
the part which is influenced greatly by the fault from the part that is not clearly fault-relevant,
that is, to find the fault-relevant directions and fault-relevant principal components. Then a
new monitoring method is proposed based on the fault-relevant directions. Compared with
traditional statistical techniques, the fault subspace is separated based on the fault-relevant
influence.

The remaining sections of this paper are organized as follows. Section 2 revisits the
KPCA model and then presents the fault-relevant KPCA algorithm. Section 3 introduces
the on-line monitoring method of fault-relevant KPCA. Model development and on-line
monitoring are proposed in Section 3. In Section 4, the simulation results are given to illustrate
the effectiveness of the new method. At last the conclusions are drawn in Section 5.

2. Algorithm of Fault-Relevant KPCA

For the traditional PCA algorithm, some faults may not influence all the principal directions;
that is, to a given fault, some principal directions are not relevant. KPCA algorithm is the
method for nonlinear data extended from PCA algorithm, so it has the same characteristics
mentioned above [35]. The proposed fault-relevant KPCA algorithm finds the principal
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directions which are relevant to, or affected by the disturbances and then measures the
changes of the variation along these principal directions. Therefore the proposed algorithm
has higher sensitivity and accuracy for process monitoring and it can detect the faults faster.

The purpose of the proposed algorithm is to get the fault-relevant principal directions
in the systematic subspace and those of the residual subspace. With the obtained fault-
relevant principal directions and a new set of data, the scores of new data can be gotten.
Therefore, the T2 statistic and SPE statistic can be further calculated to monitor the process.

In KPCA, the training samples x1, x2, . . . , xN ∈ RM gotten from normal process are
mapped into feature space using nonlinear mapping:Φ : RM → F. The covariance matrix in
the feature space F can be calculated as follows:

CΦ =
1
N

N∑

j=1

Φ
(
xj
)
Φ
(
xj
)T
, (2.1)

where it is assumed that
∑N

k=1 Φ(xk) = 0, and Φ(·) is a nonlinear mapping function that
projects the input vectors from the input space to F. Principal components in F can be
obtained by finding eigenvectors of CΦ, which is straightforward to the PCA procedure in
input space, using the equation as follows:

λp = CΦp, (2.2)

where λ denotes eigenvalues and p denotes eigenvectors of covariance matrix CΦ.
For λ/= 0, solution p (eigenvector) can be regarded as a linear combination of

Φ(x1),Φ(x2), . . . ,Φ(xN), that is, p =
∑N

j=1 αjΦ(xj).
Using kernel trickKij = 〈Φ(xi) ·Φ(xj)〉, the eigenvalue problem can be expressed as a

simplified form as follows:

λα =
(

1
N

)
Kα, (2.3)

where α = [α1α2 · · ·αN]T and K ∈ RN×N are a gram matrix which is composed of Kij .
Then, the calculation is equivalent to resolving the eigen problem of (2.3). To satisfy the

assumption
∑N

k=1 Φ(xk) = 0,K must be mean-centered before the calculation. The centered
gram matrix K can be easily obtained by K = K − KE − EK + EKE, where each element of
E is equal to 1/N and E ∈ RN×N . Also, the coefficient α should be normalized to satisfy
‖α‖2 = (1/N)λ, which corresponds to the normality constraint, ‖p‖2 = 1 of eigenvector.

The scores T of vector X are then extracted by projecting Φ(x) onto eigenvectors p in
F and the number of scores is N. As some principles, R scores are selected to be principal
components, and R corresponding directions of p are gotten at the same time [36, 37]. R
directions selected from p span the systematic subspace and the remaining N-R directions
span the residual subspace. The PCs of X is

T = [t1t2 · · · tR],

tk = 〈pk,Φ(x)〉 =
N∑

i=1

αk
i 〈Φ(xi),Φ(x)〉 = Kαk,

(2.4)

where k = 1, . . . , R, and R is the number of principal components.
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Now PCs of training data are gotten the PCs that are relevant to faults will be found
next as follows.

First, a fault process spaceΦf(x) is separated into a systematic subspace and a residual
subspace following the separation rule of the process space Φ(x). One data set Xf ∈ RL×M

collected from a fault case is projected into F with the same mapping function Φ(·) to get
Φf(x)

Tf =
[
tf,1tf,2 · · · tf,R

]
,

tf,k =
〈
pk,Φf(xi)

〉

=
N∑

i=1

ak
i

〈
Φf(xi),Φ(xi)

〉

= Kfα
k,

(2.5)

where Kf,ij = (Φf(xi) ·Φ(xj)), Kf = Kf − EL×NK −KfE + EL×NKE, and

EL×N =
1
N

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦ ∈ RL×N. (2.6)

Tf spans the systematic subspace of Φf(x).
Then, the fault-relevant PCs of fault data Φf(x) can be gotten via

Tf,r =
〈
Pr ,Φf(x)

〉
,

Pr =
[
pr,1pr,2 · · · pr,l

]
,

pr,l =
N∑

j=1

αl
jΦ

(
xj
)
, l = 1, . . . , Rf,r .

(2.7)

From (2.7), (2.8) can be obtained as follows:

tlf,r = Kfα
l, l = 1, . . . , Rf,r , (2.8)

where Rf,r = rank(Tf), and the subscript r denotes fault relevant.
And the fault-relevant PCs of normal data Φ(x) can be calculated with the same

principle:

Tr = 〈Pr ,Φ(x)〉,

tlr = Kαl, l = 1, . . . , Rf,r .
(2.9)
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In this way, some largest fault-relevant directions of normal data and fault data are
revealed, respectively. Define the ratio of the fault-relevant PC variances between fault case
and normal case as follows:

Ratioi =
var

(
Tf,r(:, i)

)

var(Tr(:, i))
, i = 1, 2, . . . , Rf,r , (2.10)

where var(·) denotes the variance of PCs and Tf,r(:, i) denotes the ith column vector in matrix
Tf,r as well as Tr(:, i).

The largest value of Ratioi denotes the direction along which there are the largest
changes of process variation from normal status to fault case. If the Ratioi index is smaller
than 1, it means that the concerned variations in the fault status are smaller than those in
normal case. Keep the directions with values of larger than 1 which are the fault-relevant
directions with increased variations. The number of retained principal directions is Rp. The
Rp fault-relevant principal directions compose Pp and the remaining R-Rp directions of Pr ,
which are fault irrelevant, compose Po. Tp are the fault-relevant PCs of normal data with Rp

components and To are the fault-irrelevant PCs, with R-Rp components.
The pk =

∑N
j=1 α

k
j Φ(xj), k = 1, . . . , R span the systematic subspace and the pk =

∑N
j=1 α

k
j Φ(xj), k = R + 1, . . . ,N span the residual subspace. Define the column number of

principal directions in residual subspace are R∗, R∗ = N − R and define P∗ as follows:

P∗ =
[
pR+1pR+2 · · · pN

]
. (2.11)

Then, the PCs of normal case in the residual subspace can be calculated as follows:

T∗ = 〈P∗,Φ(x)〉,
T∗ = [tR+1tR+2 · · · tN],

tk =
〈
p∗k,Φ(xi)

〉

=
N∑

i=1

ak
i 〈Φ(xi),Φ(xi)〉

= Kαk, k = R + 1, . . . ,N.

(2.12)

Similarly, the PCs of fault case in the residual subspace can be calculated as follows:

T∗
f =

〈
P∗,Φf(x)

〉
,

T∗
f =

[
tf,R+1tf,R+2 · · · tf,N

]
,

tf,k =
〈
p∗k,Φf(xi)

〉

=
N∑

i=1

ak
i

〈
Φf(xi),Φ(xi)

〉

= Kfα
k, k = R + 1, . . . ,N.

(2.13)
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Following the ways of (2.7), the fault-relevant principal directions and principal
components in residual subspace of fault case can be obtained, respectively. One has

T∗
f,r =

〈
P∗
r ,Φf(x)

〉
, (2.14)

P∗
r =

[
pR+1pR+2 · · · pR∗

f,r

]
, (2.15)

pr,l =
N∑

j=1

αl
jΦ

(
xj
)
, l = R + 1, . . . , R∗

f,r , (2.16)

t∗lf,r = Kfα
l, l = R + 1, . . . , R∗

f,r , (2.17)

T∗
f =

[
tf,R+1tf,R+2 · · · tf,R∗

f,r

]
, (2.18)

where R∗
f,r = rank(T∗

f). Then the principal components in residual subspace of normal case
can be also worked out with obtained fault-relevant principal directions in (2.15) as follows:

t∗lr = Kαl, l = R + 1, . . . , R∗
f,r , (2.19)

T∗
r =

[
tR+1tR+2 · · · tR∗

f,r

]
. (2.20)

Then the fault-relevant residual subspace of fault case is Φ∗
f,r(x) = T∗

f,r
P∗
r
T and the

fault-relevant residual subspace of normal case is Φ∗
r(x) = T∗

rP
∗
r
T . Define the ratio of the

squared errors between fault case and normal case along each direction in the fault-relevant
residual subspace:

Ratioj =

∥∥∥T∗
f,r

(
:, j

)
P∗
r

(
:, j

)T∥∥∥
2

∥∥∥T∗
r

(
:, j

)
P∗
r

(
:, j

)T∥∥∥
2

=
T∗
f,r

(
:, j

)TT∗
f,r

(
:, j

)

T∗
r

(
:, j

)TT∗
r

(
:, j

) , j = 1, 2, . . . , R∗
f,r − R.

(2.21)

The largest value denotes the direction along which there are the largest changes
of squared errors from normal status to fault case. Keep those fault-relevant residual
directions with values of larger than 1 which are the fault-relevant directions with increased
squared errors. The final number of dimensions of fault-relevant residual subspace is R∗

P .
Correspondingly, the fault-relevant residual subspace is spanned by P∗

p which is composed
of the sorted directions extracted from P∗

r . The remaining directions of P∗
r , which are fault

irrelevant, compose P∗
o. The fault-relevant PCs of normal case compose T∗

p which has R∗
P

components and the fault-irrelevant PCs compose T∗
o, withN-R∗

p components.
There exist a number of kernel functions. According to Mercer’s theorem of functional

analysis, there exists a mapping into a space where a kernel function acts as a dot product
if the kernel function is a continuous kernel of a positive integral operator. Hence, the
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requirement on the kernel function is that it satisfies Mercer’s theorem. Theoretically, all
functions that satisfy Mercer’s theorem can be utilized, while there are several most widely
used kernel functions such as Gaussian function (K(x, y) = exp(−‖x − y‖2/c)), polynomial
(K(x, y) = 〈x, y〉d), sigmoid (K(x, y) = tanh(β0〈x, y〉 + β1)), where d, β0, β1, and c
are specified a priori by the user. Gaussian kernel is selected in this paper for its good
performance.

3. On-Line Monitoring Strategy of Fault-Relevant KPCA

The fault-relevant KPCA-based monitoring method is similar to that using KPCA. The
Hotelling’s T2 statistic and the Q-statistic in the feature can be interpreted in the same way.
Two systematic subspaces both have their own T2 statistic and two residual subspaces both
have their ownQ-statistic too. Define the T2 statistic of fault-relevant systematic subspace T2

p

and that of fault-irrelevant systematic subspace T2
o. Define the Q-statistic of fault-relevant

residual subspace SPEp and that of fault-irrelevant residual subspace SPEo. For one new data
set Xnew ∈ RN×M, those four statistics can be obtained as follows:

T2
p = Tp newΛ−1

p Tp new
T , (3.1)

T2
o = TonewΛ−1

o Tonew
T , (3.2)

SPEp =
N∑

i=R

t2new,i −
R∗
p∑

j=1

t∗p new,j
2, (3.3)

SPEo =
N∑

i=R

t2new,i −
N−R∗

p∑

j=1

t∗onew,j
2. (3.4)

In (3.1) and (3.3), Tp new = 〈Pp,Φnew(x)〉 = Knewαl, l is the fault-relevant directions of
systematic subspace with Rp components. Λp are the fault-relevant directions of λ, with Rp

components. One has

Knew,ij =
〈
Φnew(xi) ·Φ

(
xj
)〉
, (3.5)

where

Knew = Knew − EM×NK −KnewE + EM×NKE, EM×N =
1
N

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦ ∈ RM×N. (3.6)

In (3.2) and (3.4), Tonew = 〈Po,Φnew(x)〉 = Knewαl, and l is the fault-irrelevant
directions of systematic subspace with R-Rp components. Λo is the fault-irrelevant directions
of λ, with R-Rp components.

In (3.2) and (3.4), t∗new,i is the ith component of T∗
new and T∗

new = 〈P∗,Φnew(x)〉 = Knewα.
In (3.3), t∗p new,j is the jth component of T∗

p new and T∗
p new = 〈P∗

p,Φnew(x)〉 = Knewαl, l
denotes the fault-relevant directions of residual subspace with R∗

P components.
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In (3.4), t∗onew,j is the jth components of T∗
onew and T∗

onew = 〈P∗
o,Φnew(x)〉 = Knewαl, l

denotes the fault-irrelevant directions of residual subspace with N-R∗
p components.

The confidence limit of T2 is obtained using the F-distribution [38]:

T2
p,N,α ∼ p(N − 1)

N − p
Fp,N−p,α, (3.7)

where N is the number of samples in the model and p is the number of PCs.
The confidence limit of SPE can be computed from its approximate distribution [39]:

SPEα ∼ gχ2
h, (3.8)

where g is a weighting parameter included to account for the magnitude of SPE and h
accounts for the degrees of freedom. If a and b are the estimated mean and variance of the
SPE, then g and h can be approximated by g = b/2a and h = 2a2/b.

3.1. Developing the Different Fault-Relevant Models

(1) Acquire normal operating data and several different known fault data sets.

(2) Given a set of M-dimensional normal operating data xk ∈ RM, k = 1, . . . ,N and
a set of M-dimensional fault data xf,k ∈ RM, k = 1, . . . ,N, compute the kernel
matrix K ∈ RN×N by [K]ij = Kij = 〈Φ(xi),Φ(xj)〉 = [k(xi, xj)] and Kf ∈ RN×N by
[Kf]ij = Kf,ij = 〈Φf(xi),Φ(xj)〉 = [k(xf,i, xj)].

(3) Carry out centering in the feature space for
∑N

k=1 Φ(xk) = 0 and
∑N

k=1 Φf(xk) = 0 as
follows:

K = K −KE − EK + EKE,

Kf = Kf − EK −KfE + EKE,
(3.9)

where

E =
1
N

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦ ∈ RN×N. (3.10)

For k different faults, k different Kf , that is, k different models can be gotten.

(4) Solve the eigenvalue problem λα = (1/N)Kα and normalize α such that ‖α‖2 =
1/Nλ.

3.2. On-Line Monitoring

The main thought of on-line monitoring is that k different models are developed with k
different fault data sets. Monitoring statistics are calculated, respectively, in these models



Mathematical Problems in Engineering 9

with the on-line data at the same time. When the monitoring statistic of one model goes out
of the confidence limit, the abnormality is detected and the fault is identified meanwhile, that
is, the type of fault with which that model was developed. The specific steps are as follows.

(1) Obtain new data for each sample.

(2) Given the M-dimensional test data xt ∈ RM, compute the kernel vector kt ∈ R1×N ,
[kt]ij = Kt,ij = 〈Φt(xi),Φ(xj)〉 = [k(xt,i, xj)], where xj ∈ RM is the normal operating
data.

(3) Mean center the test kernel vector kt as follows:

kt = kt − 1tK − ktE + 1tKE, (3.11)

where K and E are obtained from step 2 and 3 of the modeling procedure and 1t =
1/N[1, . . . , 1] ∈ R1×N .

(4) For the test data Xt, compute Tnew,Tp new,Tonew,T∗
p new,T

∗
onew with P, Pp, Po, P∗

p, P
∗
o in

k models, respectively.

(5) Calculate the monitoring statistics of four subspaces of the test data in k different
models.

(6) Monitor whether T2 or d exceeds its control limit calculated in the modeling
procedure.

4. Simulation Study

The proposed fault-relevant KPCA method was applied to fault detection and diagnosis in
benchmark simulations of Tennessee Eastman process and penicillin fermentation process
and compared with the conventional KPCA model.

4.1. Tennessee Eastman Benchmark

The well-known TE process has been widely used for testing various process monitoring
and fault diagnosis methods [11, 12] since it was first introduced by Downs and Vogel [40].
The process is constructed by five major operation units: a reactor, a product condenser,
a vapor-liquid separator, a recycle compressor, and a product stripper. It contains two
blocks of process variables: 41 measured variables and 11 manipulated variables. Process
measurements are sampled with interval of three minutes . The details on the process
description can be found in Downs and Vogel’s work.

As a complex chemical process, TE process provides a superior simulation platform
to validate the proposed method. In this study, fifty-two variables, including 41 process
measurement variables and 11 manipulated variables, are used. Four hundred and eighty
normal samples are used for model identification. Fifteen known faults as described in
Downs and Vogel’s work are considered. Faults 1–7 are associated with step changes in
different process variables, for example, in theA/C feed ratio andD feed temperature. Faults
8–12 are associated with random variables in certain variables, for example, an increase in the
variability of reactor cooling water inlet temperature. For Fault 13, there is a slow drift in the
reaction kinetics. For Faults 14 and 15, two cooling water valves are stuck.
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Figure 1: Monitoring results of the Tennessee Eastman process based on (a) fault-relevant KPCA and (b)
KPCA in the case of Fault 1.

Based on KPCA algorithm, the normal process space is decomposed into a systematic
subspace and a residual subspace first. Then some fault-relevant directions or principal
components are picked up from the systematic subspace with the help of information
extracted from fault data. In this article, Fault 1, Fault 7, and Fault 13 are used to
develop different monitoring models. In the models built with these faults, all the principal
components in the residual subspace are fault relevant, so that the SPE charts are the same as
that of KPCA.

For Fault 1, Figure 1(a) shows the T2
p statistic values calculated with fault-relevant

principal components calculated by fault-relevant KPCA method and Figure 1(b) shows the
KPCA T2 statistic values. The KPCA T2 statistic give alarming signals from the 181th sample
and fault-relevant T2

p goes out of control from the 175th sample. The T2
p statistic detected the

fault earlier than T2 statistic.
For Fault 7, the results in Figure 2 show that the T2

p statistic notice the fault earlier
than T2 statistic. The real T2

p chart for this fault goes down when it detects the fault; therefore
it was turned so that conventional chart confidence limit could be used to detect the fault.
The fault-relevant method detected the fault from the 163th sample while the KPCA method
detected the fault from the 167th sample.

For Fault 13, as shown in Figure 3, the two statistics have the same monitoring result.
Both statistics detected the fault from the 213th sample.

In summary, the proposed method pays more attention to the fault-relevant
process variations and separates them from the fault-irrelevant variations for monitoring.
Comparatively, KPCA model treats them together. For Fault 1, Fault 7, and Fault 13, the
monitoring results show that the fault-relevant KPCAbasedmonitoring performance is better
than that based on KPCA model. For Fault 13, the proposed method based on monitoring
performance is not worse than that based on KPCA.
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Figure 2: Monitoring results of the Tennessee Eastman process based on (a) fault-relevant KPCA and (b)
KPCA in the case of Fault 7.
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Figure 3: Monitoring results of the Tennessee Eastman process based on (a) fault-relevant KPCA and (b)
KPCA in the case of Fault 13.
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Figure 4: Penicillin fermentation process.

The choosing of the kernel parameter is important for KPCA and other kernel
methods, which would affect their performances. Similarly, the kernel parameter is also an
influential factor in this method and its monitoring. Changing of the kernel parameter, the
shape of the T2

p chart changes. For some faults, a good kernel parameter for T2 statistic of
KPCA may not be appropriate for T2

p statistic which is sensitive to the fault with another
kernel parameter. For some faults, the fault-relevant principal components are also sensitive,
but the T2

p statistic calculated by these components is not satisfactory. Therefore, for some
faults, the proposed method does not have a satisfactory performance.

4.2. Penicillin Fermentation

In this section, the proposedmethod is applied to the monitoring of a well-known benchmark
process, penicillin fermentation process. A flow diagram of the penicillin fermentation
process is given in Figure 4. Trajectories of nine variables from a nominal batch run are shown
in Figure 5. The production of secondary metabolites such as antibiotics has been the subject
of many studies because of its academic and industrial importance. Here, we focus on the
process to produce penicillin, which has nonlinear dynamics and multiphase characteristics.
In typical operating procedure for the modeled fed-batch fermentation, most of the necessary
cell mass is obtained during the initial preculture phase. When most of the initially added
substrate has been consumed by themicroorganisms, the substrate feed begins. The penicillin
starts to be generated at the exponential growth phase and continues to be produced until the
stationary phase. A low substrate concentration in the fermentor is necessary for achieving
a high product formation rate due to the catabolite repressor. Consequently, glucose is fed
continuously during fermentation at the beginning. In the present simulation experiment, a
total of 60 reference batches are generated using a simulator (PenSim v2.0 simulator). Detail
process description is well explained from http://www.chee.iit.edu/∼cinar/software.htm.
These simulations are run under closed-loop control of pH and temperature, while glucose
addition is performed under open loop. Small variations are automatically added to mimic
the real normal operating conditions under the default initial setting conditions. The duration
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Figure 5: Continued.
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Figure 5: Trajectories of nine variables from a nominal batch run.
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Figure 6: Monitoring results of the penicillin fermentation process based on (a) fault-relevant KPCA and
(b) KPCA in the case of Fault 1.

of each batch is 400 h, consisting of a pre-culture phase of about 45 h and a fed-batch phase of
about 355 h [41, 42].

The models are constructed using the proposed method. KPCA is then tested against
monitoring of fault batches. Fault 1 is implemented by introducing a 10% step increase in the
Aeration rate at 100 h and retaining until 300 h. Fault 2 is implemented by introducing a 2%
step increase in the Aeration rate at 100 h and retaining until 300 h. Fault 3 is implemented by
introducing a 10% step increase in the agitator power at 100 h and retaining until 300 h. The
monitoring results are shown in Figures 6, 7, and 8, respectively. As shown in Figure 6, the
proposed fault-relevant KPCA method and KPCA can detect faults varying in large ranges.
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Figure 7: Monitoring results of the penicillin fermentation process based on (a) fault-relevant KPCA and
(b) KPCA in the case of Fault 2.
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Figure 8: Monitoring results of the penicillin fermentation process based on (a) fault-relevant KPCA and
(b) KPCA in the case of Fault 3.
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In our study, when the faults vary in a small range, the proposed method can detect faults
successfully, but the T2 of KPCA cannot detect the faults, as shown in Figures 7 and 8.
Therefore the proposed method can detect tiny fault and it is more sensitive than KPCA for
these faults.

5. Conclusions

In this article, the fault-relevant KPCA algorithm is proposed to decompose the process
variations from the fault-relevant perspective. By further decomposing the KPCA subspaces,
the underlying process information can be more comprehensively looked into, which is
helpful to the detection of abnormal changes. Fault-relevant principal components extracted
from KPCA systematic subspace and residual subspace are used to monitor the process. With
fault-relevant principal components, instead of with all principal components which may
not be influenced by the disturbances, better monitoring results are gotten. The case study on
TEP and penicillin fermentation process is performed to show the performance of the fault-
relevant KPCA algorithm for process monitoring. In general, swifter and more sensitive fault
detection is reported in comparison with the conventional KPCA method.
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