
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 761708, 12 pages
doi:10.1155/2012/761708

Research Article
Opposition-Based Barebones Particle Swarm for
Constrained Nonlinear Optimization Problems

Hui Wang

School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China

Correspondence should be addressed to Hui Wang, wanghui cug@yahoo.com.cn

Received 29 December 2011; Revised 9 April 2012; Accepted 10 May 2012

Academic Editor: Jianming Shi

Copyright q 2012 Hui Wang. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper presents a modified barebones particle swarm optimization (OBPSO) to solve con-
strained nonlinear optimization problems. The proposed approach OBPSO combines barebones
particle swarm optimization (BPSO) and opposition-based learning (OBL) to improve the quality
of solutions. A novel boundary search strategy is used to approach the boundary between the
feasible and infeasible search region. Moreover, an adaptive penalty method is employed to handle
constraints. To verify the performance of OBPSO, a set of well-known constrained benchmark
functions is used in the experiments. Simulation results show that our approach achieves a
promising performance.

1. Introduction

Many engineering problems can be converted to constrained optimization problems. The aim
of constrained optimization is to find a feasible solution with minimized cost (In this paper,
we only consider minimization problems). A general constrained minimization optimization
problem can be defined as follows.

Minimize f(x) (1.1)

subject to

gj(x) ≤ 0, j = 1, 2, . . . , q,

hj(x) = 0, j = q + 1, 2, . . . , m,
(1.2)

2 Mathematical Problems in Engineering

where g(x) is inequality constraint, h(x) is the equality constraint, m is the number of
constraints, q is the number of inequality constraints, and m − q is the number of equality
constraints.

Particle swarm optimization (PSO) is a population-based stochastic search algorithm
developed by Kennedy and Eberhart [1]. Although PSO shares many similarities with
evolutionary algorithms (EAs), the standard PSO does not use evolution operators such as
crossover and mutation. For PSO’s simple concept, easy implementation, and effectiveness,
it has been widely applied to many optimization areas.

Although PSO has shown a good performance over many optimization problems, it
does not work well when solving complex problems. Especially for constrained optimization
problems, the standard PSO could hardly search promising solutions. The possible reason is
that constrained optimization problems are usually multimodal and having some constraints.
PSO could easily fall into local minima and hardly search feasible solutions. To enhance the
performance of PSO on constrained optimization problems, many improved PSO variants
have been proposed in the past several years.

Meng et al. [2] used a quantum-inspired PSO (QPSO) to solve constrained economic
load dispatch. The QPSO shows stronger search ability and quicker convergence speed,
not only because of the introduction of quantum computing theory, but also due to two-
novel strategies: self-adaptive probability selection and chaotic sequences mutation. Coelho
[3] presented a novel quantum-behaved PSO (QPSO) to solve constrained engineering
design problems. The proposed approach embedded a Gaussian mutation into QPSO to
prevent premature convergence to local minima. Sun et al. [4] proposed an improved vector
PSO (IVPSO) based on multidimensional search, in which a simple constraint-preserving
method is used to handle constraints. Liu et al. [5] used a hybrid PSO called PSO-DE to
solve constrained numerical and engineering optimization problems. The PSO-DE integrates
PSO with differential evolution (DE) to obtain a good performance. Venter and Haftka [6]
proposed a new method to solve constrained optimization problems. The constrained, single
objective optimization problem is converted into an unconstrained, biobjective optimization
problem that is solved using a multiobjective PSO algorithm. Lu and Chen [7] presented
an enhanced PSO by employing a dynamic inertia weight to avoid premature convergence.
The inertia weight of every individual is dynamically controlled by the Euclidean distance
between individual and the global best individual. Daneshyari and Yen [8] proposed a
cultural-based constrained PSO to incorporate the information of the objective function and
constraint violation. The archived information facilitates communication among swarms in
the population space and assists in selecting the leading particles in three different levels:
personal, swarm, and global levels.

There have been many modifications to the original PSO algorithm to improve the
efficiency and robustness of the search. Although these modified PSO variants have shown
good search abilities, their performance greatly depends on the control parameters in the
velocity updating model, such as inertia weight (w) and acceleration coefficients (c1 and c2).
Recently, a parameter-free PSO, known barebones PSO (BPSO) [9], used Gaussian normal
distribution to update the particles in the population. It does not involve inertia weight,
acceleration coefficients, and velocity. Its performance has been found to be competitive,
and a number of BPSO algorithms have been proposed in the past several years. Omran
et al. [10] incorporate the idea of BPSO into DE. Krohling and Mendel [11] employed a jump
strategy in BPSO to avoid premature convergence. Motivated by the idea of BPSO, this paper
presents an improved BPSO, namely OBPSO, to solve constrained nonlinear optimization
problems. In OBPSO, opposition-based learning (OBL) concept [12] is used for population

Mathematical Problems in Engineering 3

initialization and generation jumping. To verify the performance of OBPSO, a set of well-
known constrained benchmark problems are used in the experiments. Results obtained by
the proposed OBPSO are compared with those in the literature and discussed.

The rest of the paper is organized as follows. In Section 2, the standard PSO and
barebones PSO are briefly introduced. Section 3 describes our proposed approach. Section 4
presents experimental simulations, results, and discussions. Finally, the work is concluded in
Section 5.

2. Belief Descriptions of PSO and Barebones PSO

In traditional PSO, a member in the swarm, called a particle, represents a potential solution
in the D-dimensional search space. Each particle has two vectors: velocity and position. It is
attracted by its previous best particle (pbest) and the global best particle (gbest) during the
evolutionary process. The velocity vij and position xij of the jth dimension of the ith particle
are updated according to (2.1) [13]:

vij(t + 1) = w · vij(t) + c1 · rand1ij ·
(
pbestij(t) − xij(t)

)

+ c2 · rand2ij ·
(
gbestj(t) − xij(t)

)
,

xij(t + 1) = xij(t) + vij(t + 1),

(2.1)

where i = 1, 2, . . . ,N is the particle’s index, N is the population size, Xi = (xi1, xi2, . . . , xiD) is
the position of the ith particle; Vi = (vi1, vi2, . . . , viD) represents the velocity of the ith particle;
the pbesti = (pbesti1, pbesti2, . . . , pbestiD) is the best previous position yielding the best fitness
value for the ith particle; gbest = (gbest1, gbest2, . . . , gbestD) is the global best particle found
by all particles so far. The parameter w, called inertia factor, which is used to balance the
global and local search abilities of particles [13], rand1ij and rand2ij are two random numbers
generated independently within the range of [0, 1], c1 and c2 are two learning factors which
control the influence of the social and cognitive components, and t = 1, 2, . . . indicates the
iteration number.

Recently, Kennedy [9] developed the barebones PSO (BPSO). This new version of PSO
eliminates the velocity term, and the position is updated as follows.

xij(t + 1) = G

(
gbestj(t) + pbestij(t)

2
,
∣∣∣gbestj(t) − pbestij(t)

∣∣∣
)
, (2.2)

where xij(t+1) is the position of the ith particle in the population, andG represents a Gaussian
distributionwithmean (gbestj(t)+pbestij(t))/2 and standard deviation |gbestj(t)−pbestij(t)|.

Note that the particle positions are sampled by the above Gaussian distribution. The
BPSO facilitates initial exploration, due to large deviation (initially, pbestwill be far from the
gbest). As the number of generation increases, the deviation approaches to zero, by focussing
on exploitation of the pbest and gbest [14].

4 Mathematical Problems in Engineering

3. Opposition-Based Barebones PSO (OBPSO)

3.1. Opposition-Based Learning

Opposition-based learning (OBL) developed by Tizhoosh [12] is a new concept in
computational intelligence. It has been proven to be an effective concept to enhance
various optimization approaches [15–17]. When evaluating a solution x to a given problem,
simultaneously computing its opposite solution will provide another chance for finding a
candidate solution which is closer to the global optimum.

Let X = (x1, x2, . . . , xD) be a candidate solution in a D-dimensional space, where
x1, x2, . . . , xD ∈ R and xj ∈ [aj , bj], j ∈ 1, 2, . . . , D. The opposite solution X∗ = (x∗

1, x
∗
2, ..., x

∗
D) is

defined by [15]

x∗
j = aj + bj − xj . (3.1)

By staying within variables’ interval static boundaries, we would jump outside of the
already shrunken search space and the knowledge of the current converged search space
would be lost. Hence, we calculate opposite particles by using dynamically updated interval
boundaries [aj(t), bj(t)] as follows [15].

x∗
ij = aj(t) + bj(t) − xij , (3.2)

aj(t) = min
(
xij(t)

)
, bj(t) = max

(
xij(t)

)
, (3.3)

x∗
ij = rand

(
aj(t), bj(t)

)
, if x∗

ij < xmin

∥∥∥x∗
ij > xmax,

i = 1, 2, . . . ,N, j = 1, 2, . . . , D,

(3.4)

where xij is the jth position element of the ith particle in the population, x∗
ij is the opposite

particle of xij , aj(t) and bj(t) are the minimum and maximum values of the jth dimension in
current search space, respectively, rand(aj(t), bj(t)) are random numbers within [aj(t), bj(t)],
[xmin, xmax] is the box-constraint of the problem, andN is the population size, and t = 1, 2, . . .,
indicates the generations.

3.2. Adaptive Constraint Handling

To handle the constraints in solving constrained optimization problems, this paper employs
an adaptive penalty method (APM) which was early considered in [18–20]. It aims to
help users avoid manually defining the coefficients of penalty functions. In the APM, each
constraint of the candidate solutions is monitored. If a constraint seems to be more difficult
to satisfy, then a larger penalty coefficient is added.

For each candidate solution, its jth constraint violation cvj(x) is computed as follows:

cvj(x) =

{∣∣hj(x)
∣∣

min
{
0, gj(x)

}
,

(3.5)

where hj(x) is the jth equality constraint, and gj(x) is the jth inequality constraint.

Mathematical Problems in Engineering 5

The fitness value of candidate solution is defined by

F(x) =

⎧
⎪⎨
⎪⎩

f(x), if x is feasible

f̂(x) +
m∑
j=1

(
kj · cvj(x)

)
, otherwise, (3.6)

where m is the number of constraints, kj is a penalty coefficient for each constraint, and f̂(x)
is defined by

f̂(x) =

{
f(x), if f(x) is better than f(x)
f(x), otherwise,

(3.7)

where f(x) is the average objective function values in the current swarm, and it is computed
as

f(x) =
1
N

·
N∑
i=1

f(xi), (3.8)

where N is the population size.
For the penalty coefficient kj , it determines the scaled factor of the jth constraint. Every

generation, the kj is adaptively adjusted as follows.

kj =
∣∣∣f(x)

∣∣∣ · cvj(x)∑m
l=1 (cvl(x))

2
, (3.9)

where cvl(x) is the violation of the lth constraint averaged over the current swarm, and it is
computed by

cvj(x) =
1
N

·
N∑
i=1

cvij(x), (3.10)

where cvij(x) is the violation of ith particle on the jth constraint.

3.3. Boundary Search Strategy

For constrained optimization problems, the solution search space can be divided into two
parts: feasible space and infeasible space. In some cases, the global optimum is located at
the boundaries of feasible space. It is difficult to find this kind of solutions. Because many
algorithms can hardly judge the boundaries of feasible space. To tackle this problem, this
paper employs a boundary search strategy as follows.

6 Mathematical Problems in Engineering

New solution

Infeasible region

Boundaries

Feasible region

Figure 1: The boundary search strategy.

If the current population containsM feasible solutions andN −M infeasible solutions
(M < N), then we randomly select one feasible solution x and one infeasible solution y.
Based on x and y, a new solution z is generated by

zj = 0.5 · xj + 0.5 · yj, (3.11)

where j = 1, 2, . . . , D.
Note that the boundary search strategy works when the current population contains

feasible and infeasible solutions. Figure 1 clearly illustrates the boundary search. As seen, if
the new solution z is infeasible, then replace y with z. Because z is nearer to the boundary
than y. If z is feasible, then replace x with z. Because z is nearer to the boundary than x.

3.4. The Proposed Approach

The proposed approach (OBPSO) uses a similar procedure to that of opposition-based
differential evolution (ODE) for opposition-based population initialization and dynamic
opposition [15]. To handle the constraints, we define a new fitness evaluation function
as described in (3.6). Moreover, we also use a boundary search strategy to find the
solutions located at the margin of the feasible region. The framework of OBPSO is shown
in Algorithm 1, where P is the current population, OP is the population after using OBL, Pi

is the ith particle in P , OPi is the ith particle in GOP, po is the probability of opposition, N is
the population size,D is the dimension size, [aj(t), bj(t)] is the interval boundaries of current
population, FEs is the number of fitness evaluations, and MAX FEs is the maximum number
of fitness evaluations.

4. Experimental Verifications

4.1. Test Problems

To verify the performance our proposed approach, we employ a set of 13 benchmark
functions from the literature [21, 22]. The main characteristics of these benchmark functions
are summarized in Table 1. For specific definitions of these functions, please refer to [23].

Mathematical Problems in Engineering 7

1 Uniform randomly initialize each particle in the swarm;
2 Initialize pbest and gbest;
3 While FEs ≤ MAX FEs do

/∗ Barebones PSO ∗/
4 for i = 1 to N do
5 Calculate the position of the ith particle Pi according to (2.2);
6 Calculate the fitness value of Pi according to (3.6);
7 FEs ++;
8 end

/∗ Opposition-based learning ∗/
9 if rand(0, 1) ≤ po then
10 Update the dynamic interval boundaries [aj(t), bj(t)] in P according to (3.3);
11 for i = 1 toN do
12 Generate the opposite particle of Pi according to (3.2)
13 Calculate the fitness value of Pi according to (3.6)
14 FEs ++;
15 end
16 SelectN fittest particles from {P , OP} as current population P ;
17 end

/∗ Boundary search strategy ∗/
18 if M < N then
19 K = min{M,N −M}
20 for i = 1 to K do
21 Randomly select a feasible solution x and an infeasible solution y;
22 Generate a new solution z according to (3.11);
23 Calculate the fitness value of z according to (3.6);
24 FEs ++;
25 if z is feasible then
26 x = z;
27 end
28 else
29 y = z;
30 end
31 end
32 end
33 Update pbest and gbest;
34 end

Algorithm 1: The proposed OBPSO algorithm.

4.2. Comparison of OBPSO with Similar PSO Algorithms

In this section, we compare the performance of OBPSO with standard PSO, barebones
PSO (BPSO), and OBPSO without boundary search strategy (OBPSO-1). To have a fair
comparison, the same settings are used for common parameters. The population size N is
set to 40. For PSO, The inertia weight w is set to 0.72984. The acceleration coefficients c1 and
c2 are set to 1.49618. The maximum velocity Vmax was set to the half range of the search space
for each dimension. For OBPSO-1 and OBPSO, the probability of opposition po is set to 0.3.
For each test functions, both OBPSO and PSO stop running when the number of iterations
reaches to 1,000.

Table 2 presents average results of the four PSO algorithms over 30 runs, where Mean
represents the mean best function values. As seen, PSO outperforms BPSO on only one

8 Mathematical Problems in Engineering

Table 1: Summary of main characteristics of benchmark problems, where F means the feasible region, S
is the whole search region, NE represents nonlinear equality, NI indicates nonlinear inequality, LI means
linear inequality, and α is the number of active constraints at optimum.

Problems D Type |F|/|S| LI NE NI α

G01 13 Quadratic 0.011% 9 0 0 6
G02 20 Nonlinear 99.990% 1 0 1 1
G03 10 Polynomial 0.002% 0 1 0 1
G04 5 Quadratic 52.123% 0 0 6 2
G05 4 Cubic 0.000% 2 3 0 3
G06 2 Cubic 0.006% 0 0 2 2
G07 10 Quadratic 0.000% 3 0 5 6
G08 2 Nonlinear 0.856% 0 0 2 0
G09 7 Polynomial 0.512% 0 0 4 2
G10 8 Linear 0.001% 3 0 3 3
G11 2 Quadratic 0.000% 0 1 0 1
G12 3 Quadratic 4.779% 0 0 93 0
G13 5 Exponential 0.000% 0 3 0 3

problem G05. BPSO achieves better results than PSO on 7 problems. Both of them can find
the global optimum on 5 problems. It demonstrates that the barebones PSO is better than
standard PSO for these problems.

For the comparison of OBPSO with BPSO, both of them obtain the same results on 6
problems. For the rest 7 problems, OBPSO performs better than BPSO. It demonstrates that
the opposition-based learning is helpful to improve the quality of solutions.

To verify the effects of the boundary search strategy, we compare the performance of
OBPSO with OBPSO-1. For the OBPSO-1 algorithm, it does not use the proposed boundary
search strategy. As seen, OBPSO outperforms OBPSO-1 on 6 problems, while they obtain
the same results for the rest 7 problems. These results demonstrate the effectiveness of the
boundary search strategy.

Figure 2 shows the evolutionary processes on four representative problems. It can be
seen that OBPSO converges faster than other 3 PSO algorithms. The OBPSO-1 shows faster
convergence rate than PSO and BPSO. This confirms that the opposition-based learning is
beneficial for accelerating the evolution [15].

4.3. Comparison of OBPSO with Other State-of-the-Art PSO Variants

In this section, we compare the performance of OBPSO with three other PSO variants on the
test suite. The involved algorithms and parameter settings are listed as follows.

(i) New vector PSO (NVPSO) [4].

(ii) Dynamic-objective PSO (RVPSO) [21].

(iii) Self-adaptive velocity PSO (SAVPSO) [22].

(iv) Our approach OBPSO.

Mathematical Problems in Engineering 9

Table 2: Mean best function values achieved by PSO, BPSO, OBPSO-1, and OBPSO, and the best results
among the four algorithms are shown in bold.

Functions Optimum PSO mean BPSO mean OBPSO-1 mean OBPSO mean
G01 −15 −13.013 −14.46 −15 −15
G02 −0.803619 −0.47191 −0.58944 −0.70536 −0.79973
G03 −1.0 −1.00468 −1.00339 −1.00287 −1.00126
G04 −30665.539 −30665.5 −30665.5 −30665.5 −30665.5
G05 5126.4981 5213.14 5228.32 5154.76 5126.68
G06 −6961.814 −6961.81 −6961.81 −6961.81 −6961.81
G07 24.306 25.9185 25.3492 24.8576 24.4196
G08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
G09 680.630 680.679 680.630 680.630 680.630
G10 7049.248 7639.4 7474.5 7292.82 7049.2605
G11 0.750 0.749 0.749 0.749 0.749
G12 −1.0 −1.0 −1.0 −1.0 −1.0
G13 0.05395 0.819146 0.61415 0.52312 0.33837

0 200 400 600 800 1000

Iterations (G1)

−16

−14

−12

−10

−8

−6

−4

−2

M
ea

n
be

st
 fu

nc
ti

on
 v

al
ue

PSO
BPSO

OBPSO-1
OBPSO

(a) G1

0 200 400 600 800 1000

Iterations (G2)

−0.8

−0.6

−0.4

−0.2

0

PSO
BPSO

OBPSO-1
OBPSO

M
ea

n
be

st
 fu

nc
ti

on
 v

al
ue

(b) G2

0 200 400 600 800 1000

Iterations (G10)

7000

8000

9000

10000

M
ea

n
be

st
 fu

nc
ti

on
 v

al
ue

PSO
BPSO

OBPSO-1
OBPSO

(c) G10

0 200 400 600 800 1000

Iterations (G13)

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
be

st
 fu

nc
ti

on
 v

al
ue

PSO
BPSO

OBPSO-1
OBPSO

(d) G13

Figure 2: The evolutionary processes of PSO, BPSO, OBPSO-1, and OBPSO on four selected problems.

10 Mathematical Problems in Engineering

Table 3:Comparison results of OBPSOwith other three PSO algorithms, where “w/t/l”means that OBPSO
wins in w functions, ties in t functions, and loses in l functions, compared with its competitors. The best
results among the four algorithms are shown in bold.

Functions Optimum NVPSO [4]mean RVPSO [21]mean SAVPSO [22] mean OBPSO mean
G01 −15 −13.871875 −14.7151 −14.4187 −15
G02 −0.803619 −0.336263 −0.74057 −0.413257 −0.79973
G03 −1.0 −1.00484 −1.0034 −1.0025 −1.00126
G04 −30665.539 −30665.5 −30665.5 −30665.5 −30665.5
G05 5126.4981 5126.4957 5202.3627 5241.0549 5126.68
G06 −6961.814 −6961.81 −6961.81 −6961.81 −6961.81
G07 24.306 25.1301 24.989 24.317 24.4196
G08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
G09 680.630 680.634430 680.653 680.630 680.630
G10 7049.248 7409.065752 7173.2661 7049.2701 7049.2606
G11 0.750 0.749 0.749 0.749 0.749
G12 −1.0 −1.0 −1.0 −1.0 −1.0
G13 0.05395 0.465217 0.552753 0.681123 0.33837
w/t/l — 7/5/1 8/5/0 6/6/1 —

The parameter settings of NVPSO are described in [4]. For RVPSO and SAVPSO,
their parameter settings are given in [22]. For OBPSO, we use the same parameter values as
described in the previous section. For each test functions, all algorithms stop running when
the number of iterations reaches to the maximum value 1,000.

Table 3 presents average results of NVPSO, RVPSO, SAVPSO, and OBPSO over 30
runs, where Mean represents the mean best function values. The comparison results among
OBPSO and other algorithms are summarized as w/t/l in the last row of the table, which
means that OBPSO wins inw functions, ties in t functions, and loses in l functions, compared
with its competitors.

From the results of Table 3, OBPSO outperforms NVPSO on 7 problems, while NVPSO
only achieves better results on a single problem. For the rest 5 problems, both OBPSO and
NVPSO can find the global optimum. OBPSO performs better than RVPSO on 8 problems,
while both of them obtain the same results for the rest 5 problems. For the comparison of
SAVPSO and OBPSO, both of them achieve the same results on 6 problems. For the rest 7
problems, OBPSO wins 6, while SAVPSO wins only 1.

5. Conclusion

This paper proposes a modified barebones particle swarm optimization to solve constrained
nonlinear optimization problems. The proposed approach is called OBPSO which employs
two novel strategies including opposition-based learning and boundary search. Compared
to other improved PSO variants, OBPSO is almost a parameter-free algorithm (except for
the probability of opposition). Moreover, an adaptive penalty method is used to handle
constraints. Experimental verifications on a set of constrained benchmark functions show
that OBPSO achieves a promising performance compared to four other PSO variants. The
parameter po may affect the performance of OBPSO. To determine the best choice of po,
different values of po will be investigated. This will be conducted in the future work.

Mathematical Problems in Engineering 11

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for their detailed and
constructive comments that helped them to increase the quality of this work. This work
is supported by the Science and Technology Plan Projects of Jiangxi Provincial Education
Department (nos. GJJ12641, GJJ12633, and GJJ12307), and the National Natural Science
Foundation of China (nos. 61070008, 61165004).

References

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International
Conference on Neural Networks. Part 1, pp. 1942–1948, December 1995.

[2] K. Meng, H. G. Wang, Z. Y. Dong, and K. P. Wong, “Quantum-inspired particle swarm optimization
for valve-point economic load dispatch,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 215–
222, 2010.

[3] L. D. S. Coelho, “Gaussian quantum-behaved particle swarm optimization approaches for con-
strained engineering design problems,” Expert Systems with Applications, vol. 37, no. 2, pp. 1676–1683,
2010.

[4] C. L. Sun, J. C. Zeng, and J. S. Pan, “An new vector particle swarm optimization for constrained
optimization problems,” in Proceedings of the International Joint Conference on Computational Sciences
and Optimization (CSO ’09), pp. 485–488, April 2009.

[5] H. Liu, Z. Cai, and Y. Wang, “Hybridizing particle swarm optimization with differential evolution for
constrained numerical and engineering optimization,” Applied Soft Computing Journal, vol. 10, no. 2,
pp. 629–640, 2010.

[6] G. Venter and R. T. Haftka, “Constrained particle swarm optimization using a bi-objective
formulation,” Structural and Multidisciplinary Optimization, vol. 40, no. 1–6, pp. 65–76, 2010.

[7] H. Lu and X. Chen, “A new particle swarm optimization with a dynamic inertia weight for solving
constrained optimization problems,” Information Technology Journal, vol. 10, no. 8, pp. 1536–1544, 2011.

[8] M. Daneshyari and G. G. Yen, “Constrained multiple-swarm particle swarm optimization within a
cultural framework,” IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 18, pp. 1–16,
2011.

[9] J. Kennedy, “Bare bones particle swarms,” in Proceedings of the IEEE Swarm Intelligence Symposium (SIS
’03), pp. 80–87, 2003.

[10] M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “Bare bones differential evolution,” European
Journal of Operational Research, vol. 196, no. 1, pp. 128–139, 2009.

[11] R. A. Krohling and E. Mendel, “Bare bones particle swarm optimization with Gaussian or cauchy
jumps,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’09), pp. 3285–3291, May
2009.

[12] H. R. Tizhoosh, “Opposition-based learning: a new scheme for machine intelligence,” in Proceedings of
the International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA
’05) and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC
’05), pp. 695–701, November 2005.

[13] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE
International Conference on Evolutionary Computation (ICEC ’98), pp. 69–73, May 1998.

[14] A. P. Engelbrecht, “Heterogeneous particle swarm optimization,” in Proceedings of the International
Conference on Swarm Intelligence, pp. 191–202, 2010.

[15] R. S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-based differential evolution,”
IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 64–79, 2008.

[16] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca, “Enhancing particle swarm optimization
using generalized opposition-based learning,” Information Sciences, vol. 181, no. 20, pp. 4699–4714,
2011.

[17] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-based differential evolution for solving
high-dimensional continuous optimization problems,” Soft Computing, vol. 15, no. 11, pp. 2127–2140,
2011.

[18] A. C. C. Lemonge and H. J. C. Barbosa, “An adaptive penalty scheme for genetic algorithms in
structural optimization,” International Journal for Numerical Methods in Engineering, vol. 59, no. 5, pp.
703–736, 2004.

12 Mathematical Problems in Engineering

[19] E. K. da Silva, H. J. C. Barbosa, and A. C. C. Lemonge, “An adaptive constraint handling technique
for differential evolution with dynamic use of variants in engineering optimization,”Optimization and
Engineering, vol. 12, no. 1-2, pp. 31–54, 2011.

[20] X. Pan, Y. Cao, and Q. Pu, “Improved particle swarm optimization with adaptive constraint handling
for engineering optimization,” Journal of Information and Computational Science, vol. 8, no. 15, pp. 3507–
3514, 2011.

[21] H. Y. Lu and W. Q. Chen, “Dynamic-objective particle swarm optimization for constrained
optimization problems,” Journal of Combinatorial Optimization, vol. 12, no. 4, pp. 409–419, 2006.

[22] H. Y. Lu andW. Q. Chen, “Self-adaptive velocity particle swarm optimization for solving constrained
optimization problems,” Journal of Global Optimization, vol. 41, no. 3, pp. 427–445, 2008.

[23] J. J. Liang, T. P. Runarsson, E. Mezura-Montes et al., “Problem definitions and evaluation criteria
for the CEC 2006, special session on constrained real-parameter optimization,” Tech. Rep., Nanyang
Technological University, Singapore, 2006.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

