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This paper presents an efficient geometric parameterization technique for the continuation power
flow. It was developed from the observation of the geometrical behavior of load flow solutions. The
parameterization technique eliminates the singularity of load flow Jacobian matrix and therefore
all the consequent problems of ill-conditioning. This is obtained by adding equations lines passing
through the points in the plane determined by the loading factor and the total real power losses
that is rewritten as a function of the real power generated by the slack bus. An automatic step
size control is also provided, which is used when it is necessary. Thus, the resulting method
enables the complete tracing of P-V curves and the computation of maximum loading point of any
electric power systems. Intending to reduce the CPU time, the effectiveness caused by updating the
Jacobian matrix is investigated only when the system undergoes a significant change. Moreover,
the tangent and trivial predictors are compared with each other. The robustness and simplicity as
well as the simple interpretation of the proposed technique are the highlights of this method. The
results obtained for the IEEE 300-bus system and for real large systems show the effectiveness of
the proposed method.

1. Introduction

The power flow problem (PF) consists of an algebraic analysis of power system under steady-
state operating conditions. In this analysis, the electric power system is represented by a
set of nonlinear algebraic equations that are used for computing the operating points of the
electrical power system for various loading conditions. Its solution provides the magnitudes
and angles of voltages, tap changer setting values for the on-load tap changers (OLTCs)
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transformers, and the real and reactive power flows and losses on each branch of power
network (line transmission and transformer). The PF is used in steady-state stability analysis
for assessing voltage stability margins and the areas prone to voltage collapse. It is important
to know whether the system has a feasible and secure operating point when either a sudden
change in system loading or branch outages occur. When the PF equations have no solution
for a given loading condition, it is concluded that the generation and network are not
physically able to meet the demand required. In this situation, modifications are necessary
in the generation dispatch and/or in the electrical network topology.

Among the three types of load representation (constant power, constant current, and
constant impedance) for steady-state stability analysis, constant power typically results in the
most pessimisticMLP and in the smallest voltage collapsemargin [1, 2]. Unlessmore accurate
load representations are known, it is recommended to use the constant power representation
because it approximates the action of distribution system voltage regulating devices [2]. This
model will result in a more secure operational system condition and should be used if the
systems security is evaluated through themaintenance of aminimumvoltage stabilitymargin
[1, 2]. However, for systems where the constant PQ loads models are used, the gradual load
increment will lead to a saddle-node bifurcation, which corresponds to the maximum loading
point (MLP) [3–5]. The conventional power flow presents convergence problems to obtain
the MLP of electric power systems, because the Jacobian matrix is singular at this point.
Therefore, the use of conventional PF to obtain the power flow curves (P-V curve, which is
the curve of bus voltage profiles as a function of their loading) is restricted to its upper part.
The MLP indirectly defines the boundary between the stable and unstable operating regions
and it is important in the application of modal analysis, since the most important information
regarding effective remedial measures to enhance system voltage stability is obtained at the
MLP or in its adjacent. Besides the MLP determination, these curves have also been used
to determine the maximum power transfer among system areas, to adjust margins, and to
compare planning strategies [6].

By reformulation of the power flow equations, the continuation methods eliminate
the singularity of Jacobian matrix and the related numerical problems. Usually this is done
by adding parameterized equations [5–13]. Due to robustness provided by these methods
in solving nonlinear algebraic equations [9], they have been widely used in the analysis
of electric power systems for obtaining multiple solutions, contingency analysis, real power
losses reduction, the tracing of loading curves (P-V curves), and the determination of MLP
[5–8, 10, 11, 13, 14]. Such publications, including the latest books on the subject [15–19],
show that there is a growing interest in the power industry even in small improvements
of CPF methods, which provide better performance for tracing the whole P-V curves. The
most common parameterization techniques used by CPF to remove the singularity of the PF
Jacobian matrix are the geometric [5, 8, 10, 12, 20] and local ones [7, 9].

The continuation power flow traces the complete P-V curves by automatically chang-
ing the value of a parameter. In the local parameterization technique [7], a parameter change
always occurs close to MLP. Generally, the loading factor (λ) is an initially chosen parameter.
Close to the MLP, it changes to the voltage magnitude that presents the largest variations
and after a few points, it changes back to λ. The voltage magnitudes and angles may also be
chosen as parameters, but, in these cases, the new Jacobian matrix can become singular at the
MLP, or in the lower or upper part of the P-V curve [8].

The addition of the equation of total real power losses to the PF equations has pro-
posed in [10]. In this case, instead of specifying the loading factor and geting the converged
state, it specifies the desired amount of total real power losses, and the solution provides
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the operating point, including the loading factor, for those that losses occur. Adopting a fixed
step size for the value of new parameter and through successive solutions of the new system
of equations, one can determine all the other points on the P-V curve. The advantage given
to the use of this technique was that, in most cases examined, the local parameterization was
only needed to points located just after the MLP. Later it was found that for many large
systems, the singularities of both Jacobian matrices are practically coincident, that is, the
noses are also coincident. Therefore, in many cases still remains the difficulty to know the
real cause of the divergence. It is consequent of a poor initial guess, of physical limitation
of electric power system, or of numerical problems related to power flow algorithms. To
overcome these limitations, in [13], a line equation was added to the power flow problem,
which passes through a point in the plane determined by the loading factor (λ) and total real
power losses (Pa). The angular coefficient of line is the only used parameter, but in order
to avoid the singularity of the Jacobian matrix of the new parameter and thus determination
of the MLP, it was needed to define an automatic procedure to switch from a set of line to
other. Nevertheless, the method fails in determining the MLP of some systems, such as the
904-bus, even with the selection of very small step sizes. The method proposed in [13] fails
to obtain the MLP because it is a real large, heavily loaded, electrical power system with
voltage instability problems that have the strong local characteristic. For systems like this,
the P-V curve of most buses presents a sharp nose, that is, the loading factor and the voltage
magnitude present a simultaneous reversion in its variation tendency, and they reach their
maximum value at the same point. In other words, the curve noses are coincident and both
Jacobian matrices are singular at the MLP.

Aiming to improve the technique proposed by Garbelini et al. in [13], this paper
proposes some modifications consisting in rewriting the equation of total real power losses
as a function of the real power generated at the slack bus; using the coordinates of the set of
lines of a point located between two points close to the MLP, in case of divergence; using the
evolution of total power mismatch rather than a fixed step to change the coordinates of the set
of lines; considering the total real power losses normalized by its base case value. With these
modifications, the proposed method allows the complete tracing of P-V curves, obtaining of
MLP, and afterward the assessment of voltage stability margin.

The proposed geometric parameterization technique shows the robustness and also
is simple and easy to implement and interpret. It is applied to obtain the whole P-V curves
of the IEEE 300-bus system and from three real large, heavy loaded systems such as 638-
bus and 787-bus systems that correspond to parts of South-Southeast Brazilian system, and
of a 904-bus Southwestern American system. The results show that the method presents
good convergence characteristics and theMLP can be computed with any specified precision,
without the numerical problems related to the singularity.

2. Formulation of the Proposed Continuation Power Flow

The P-V curve is obtained by tracing a bus voltage profile as a function of its loading. To
automate this procedure, the load flow equations are reformulated to include the loading
factor (λ), which is used to gradually increase load and the generation level. The new set of
PF equations is written as

ΔP(θ,V, λ) = Psp(λ) − Pcal(θ,V) = λ(Pgsp − Pcsp) − P cal(θ,V) = 0

ΔQ(θ,V, λ) = Qsp(λ) −Qcal(θ,V) = λQcsp −Qcal(θ,V) = 0,
(2.1)
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where V and θ are, respectively, the vectors of voltage magnitudes and phase angles, Psp(λ)
is the difference between the vectors of real power generation (Pgsp) and consumption (Pcsp)
specified at the load (PQ) and generator (PV) buses, and Qsp(λ) is the vector of reactive
power consumption (Qcsp) specified at the PQ buses. The superscripts sp and cal mean
specified and calculated values, respectively. The real and reactive powers at bus k are given
by

P cal
k (θ,V) = Vk

NB∑

m=1

Vm[Gkm cos(θk − θm) + Bkm sin(θk − θm)]

Qcal
k (θ,V) = Vk

NB∑

m=1

Vm[Gkm sin(θk − θm) − Bkm cos(θk − θm)],

(2.2)

where NB is the total number of system buses, Vk and θk are the voltage magnitude and
angle at the bus k, and Gkm and Bkm terms represent the conductance and susceptance of (k,
m) element in the nodal admittance matrix Y = [G] + j[B].

The system of (2.1) considers a network loading proportional to the base case and
a constant power factor. The specified real Psp(λ) and reactive Qsp(λ) power vectors can
be defined as being equal to λ(kPgPgsp + kPcPcsp) and λkQcQcsp, respectively. The vectors
kPg , kPc, and kQc are parameters used to characterize a specific load scenario. Using the
aforementioned parameters, it is possible to simulate different variations of real and reactive
power for each bus.

In general, the continuation power flow (CPF) consists of a parameterization proce-
dure, a predictor step with a step size control, and a corrector step.

2.1. Parameterization Techniques and the Problems Related to the Choice of
the Continuation Parameter

The parameterization provides a way to identify each solution along with the trajectory to
be obtained. In the local parameterization technique [7], a parameter change always occurs
close to MLP. Generally, the loading factor (λ) is the parameter initially chosen. Close to the
MLP, the parameter changes to the voltage magnitude that presents the largest variations in
tangent vector, and after a few points, it changes back to λ. However, as will be shown in
Figures 1(a), 1(b), 2(a), 2(c), 2(d), and 2(f), the use of this technique for the automatic choice
of the parameter can present difficulty, because the set of buses whose voltage magnitude
can be used as the continuation parameter can be considerably constrained, particularly in
systems with large number of generation buses (PV), and those which have problems of local
voltage instability. In these systems, the P-V curve of most buses presents a sharp nose. The
loading factor and the voltage magnitude present a simultaneous reversion in its variation
tendency, that is, the noses are coincident and then both Jacobian matrices are singular at the
MLP [20], as the normalized determinants (|Jλ|, |JV9 |) presented in Figures 2(a) and 2(c). As
stated in [21], even the arc length parameterization technique [8, 14] fails to obtain the MLP
for P-V curves with sharp nose.

The goal of the following figures is to show in detail the difficulties that are present
during the choice of continuation parameter. The explanation may be helpful to better
understanding of the most relevant difficulties to overcome and also to develop an efficient
and automatic procedure to trace P-V curves of electric power systems. In these figures,
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Figure 1: IEEE 118-bus system: (a) P-V curves for the base case, (b) total real power losses (Pa) as function
of loading factor (λ) for the base case, (c) P-V curves for a contingency case (outage of transmission line
between the buses 11 and 13), (d) λ-Pa curve for a contingency case (outage of transmission line between
the buses 11 and 13).

one can observe the curvature of the P-V curve of some variables that are candidates to be
used as the continuation parameter. Figure 1(a) shows that close to the MLP, at least four
voltage magnitudes (V1, V8, V9, and V10) could be used as continuation parameter in the local
parameterization technique, while, in Figure 1(c), only the voltage magnitude of bus 13 (V13)
could be used as parameter.

Figure 2 shows the MLP (“A,” “B,” and “C”) of three operating conditions: without
limit control of reactive power and tap, with tap limits, and with control of both limits
of reactive power and tap. Figure 3 shows the pre- and postcontingency P-V curves for
the outage of a transmission line. It is important to note that in general, these curves are
not previously known and their curvatures may be very different from each other due to
changes in operating conditions such as the limits of reactive power (Qg) of generators and
synchronous condensers, the limits of transformers tap, and transmission line outages. From
Figures 2(d) and 2(e), one can verify that the voltage magnitudes of buses 4 and 8 (V4 and V8)
are maintained constant as long as their respective generated reactive powers (Qg4 and Qg8)
are within their respective limits. When their upper limits are hit, their types are switched to
PQ. Then, as the system is progressively loaded, the voltage magnitudes begin to fall and the
generated reactive powers will be kept constant. Note from Figures 2(f) and 2(g) that, while
the transformer tap (t8) remains within its upper and lower limits (1.05 and 0.95, resp.), its
voltage magnitude (V5) is maintained constant. When it hits its tap range limit, the voltage
magnitude will begin to fall. The same does not happen with the transformer tap (t51) that
is kept constant at its maximum value throughout the procedure and so it practically does
not regulate the voltage magnitude at the bus 37 (V37). Hence, such variables (V4, V5, V8, V37,
t51, and t8) are not appropriated to trace the complete P-V curves since, in many cases, or
their values remain constant over a large portion of the curve, or both Jacobian matrices are
singular at MLP, or as the case of voltage magnitudes of the buses 9, 75, and 118, which are
appropriated as continuation parameter at a given operating condition (Figure 3), but are
not in other conditions, as for the contingency of transmission line presented at Figure 3,
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Figure 2: IEEE 118-bus system: (a) effect of limits on the P-V curves, (b) total real power losses (Pa) as
function of loading factor (λ), that is, λ-Pa curve, (c) normalized determinants, (d) voltage magnitudes at
critical bus (9) and at PV buses (4, 8, and 15), (e) reactive powers generated by the PV buses, (f) voltage
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because there is often a coincidence of noses. The same can be said about the variables V5

and V44 shown in Figure 2(a). The angle variables can have singularities not only at the
maximum loading point, but also at the top of the curve, see point U in the λ-θ9 curve shown
in Figure 3(c).

Considering all the problems aforementioned, it can become very difficult to choose
among all possible parameters that would allow the complete tracing of P-V curve. In
general, an approach to define the parameter changes during the computation process will
be needed. Furthermore, it may be also necessary to switch the parameter a few times
during the P-V curve tracing process. Despite all such care, quite often the singularity is
not removed. Several global parameterization techniques have been proposed to overcome
these difficulties and provide algorithms which have good convergence characteristics and
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computational efficiency [8, 10, 12, 13, 21]. The techniques that use the arc length [8],
reactive power of a PV bus [12], and total real power losses [10] as a parameter are some
examples of global parameterization techniques. The use of these techniques is interesting
when the curvature of the solution trajectory in all the analyzed systems is similar, because
this characteristic will simplify the steps needed for success of the method. However, not all
resulting trajectories will be similar for all systems. For example, once the reactive power
equation of a PV bus is already included in a conventional power flow program, it is
advantageous to use it as parameter because it only requires a simple modification, which is
the substitution of a column corresponding to the new variable (λ). To obtain a new operating
point, it is only necessary to specify the reactive power value (Q) of any PV bus that is within
its generated reactive power bounds. Nevertheless, the use of this parameter for obtaining the
MLP was only possible for few buses of some systems. In general, the PV buses reach their
limits before or very close to the MLP, as shown in Figure 2(e). Initially, both reactive powers
are within their bounds and so any one of them can be used as the parameter. However,
as the system approaches the MLP, but before this, both the generators hit their generated
reactive power limits. So, an automatic procedure for choosing that one that is within its
boundswill be needed. For some systems, this never happens; all the buses hit their generated
reactive power limits before or at the MLP. Also note for these two PV buses that the resulting
trajectories are not similar. Therefore, the reactive power generated at PV bus may not be the
most appropriate parameter for obtaining the MLP.

As it can be seen from Figures 1(b), 1(d), 2(b), and 3(b), the total real power losses
curve presents the similar and so desired curvature for all operating conditions and therefore
it is a strong candidate to be used as alternative parameter. Consequently, to avoid the
exchange of parameter along the P-V curve tracing, in the parameterization technique
proposed in [10], the following equation is added to (2.1):

W
(
θ,V, λ, μ

)
= μF1 − F(θ,V) = 0, (2.3)

where F(θ,V) and F1 correspond to the total real power losses (Pa) equation and its
respective value calculated at base case. The total real power losses equation is given by

Pa(θ ,V) =
∑

k andm∈Ω
gkm

(
V 2
k + V 2

m − 2VkVm cos θkm
)
, (2.4)

where Ω is the set of all network buses. As one new equation is added to the problem,
λ can now be treated as a dependent variable, while the new variable (μ) is considered
as a parameter. As a consequence, to obtain a new operating point, including the λ, it is
sufficient to specify the desired amount of Pa by presetting a value for μ. For example, to
μ = 1, the converged solution should result in λ = 1. The other points on the P-V curve
can be determined through successive solutions of the system formed by (2.1) and (2.3)
and adopting a fixed step size for the value of parameter μ. Remember that the modified
zero-order polynomial (or trivial predictor) predictor technique uses a fixed step size for the
parameter and the current solution as an estimate for the next solution [9]. However, this
method has only succeeded in obtaining the MLP of small systems because often, for real
larger systems, the Jacobian matrices have singularities close to the MLP. Therefore, it is not
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Table 1: Comparison between total number of elements added by the methods.

System Size of matrix Number of elements added to the matrix

Proposed method Method proposed in [13]

300 551 × 551 3 519

638 1190 × 1190 3 1036

787 1477 × 1477 3 1168

904 1701 × 1701 19 1055

possible to obtain MLP by increasing any of these parameters (λ or μ). Once the numerical
problems still prevail in the region of the MLP, in [13] has been proposed the addition of a
line equation (2.5) that passes through a chosen point (λ0, Pa0) in the plane determined by λ
and Pa:

W(θ,V, λ, α) = α
(
λ − λ0

)
−
(
Pa(θ,V, λ) − P 0

a

)
= 0, (2.5)

where α is the new parameter added to the problem. So, after computing the initial angular
coefficient value (α) from the coordinates of solved PF base case and a chosen point, the P-
V curve is traced by successive increments in α. When the method fails to converge, reduce
the step size. When it fails again, the coordinates of the set of lines are switched to new
coordinates located at abscissa axis and that corresponds to a midpoint between the base case
loading and the last loading point before the divergence. This step is essential to overcome the
singularity of the modified Jacobian matrix at MLP. During this procedure, it is not necessary
to switch the parameter, but only change the coordinates of the set of lines. Despite the
addition of the equation has allowed the determination of the MLP of various test systems,
themethod has failed to determine theMLP of some large realistic systems, particularly when
they have local voltage instability problems.

In this work, some modifications are proposed to the method presented in [13], which
enables the P-V curves to trace any electric power system. The first modification is to rewrite
the total real power losses (Pa) as a function of real power generated by the slack bus (Pgs).
Here the goal is to avoid the degradation of the Jacobian matrix sparsity. The derivatives of
(2.5) introduce a row of nonzero elements into the augmented Jacobian matrix. On the other
hand, the use of the real power at a slack bus does not affect the Jacobian matrix sparsity.
Table 1 shows the size of the augmented Jacobian matrix and the total number of elements
added by the proposed method and the one proposed in [13]. Note that the number of
elements added by the proposed method is always much less than which is added by the
proposed in [13]. Also note that these elements must be updated at each iteration need to
compute each point of P-V curve.

The total real power losses (Pa) can be computed by the summation in the right hand
side of (2.4), or it can be rewritten as a function of Pgs. The slack bus voltage angle is used as
the reference for all systems buses. The slack bus is also used to balance the real and reactive
power (i.e., the summation of generation and demand powers over all buses should be equal
the summation of the summation of power loss over all the transmission lines) in the electric
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power systems [22]. Therefore, one may write the total real power generated by the slack bus
s as

Pgs(θ,V, λ) = λ
NC∑

j=1

kPcj Pcj
sp − λ

NG∑

i=1
i /= s

kPgi
Pgj

sp +
∑

k andm∈Ω

gkm
(
V 2
k + V 2

m − 2VkVm cos θkm
)

or Pgs(θ,V, λ) = λ
NC∑

j=1

kPcj Pcj
sp − λ

NG∑

i=1
i /= s

kPgi
Pgj

sp + Pa(θ,V),

(2.6)

where NC and NG are the numbers of load and generation buses, respectively. Solving the
last equation for Pa yields

Pa(θ,V, λ) = λ
NG∑

i=1
i /= s

kPgi
Pgj

sp − λ
NC∑

j=1

kPcj Pcj
sp + Pgs(θ,V, λ), (2.7)

which now is also function of λ. Using (2.1), Pgs may also be written as

Pgs(θ,V, λ) = λkPcsPcs
sp + Pgcal

s (θ,V), (2.8)

where Pcssp is the real power consumed at the slack bus and Pgcal
s (θ,V) is calculated by

Pgcal
s (θ,V) = Vs

NB∑

m=1

Vm(Gsm cos(θs − θm) + Bsm sin(θs − θm)), (2.9)

which may be rewritten as

Pa(θ,V, λ) = λ
NB∑

j=1
j /= s

(
kPgj

Pgj
sp − kPcj Pcj

sp
)
− λkPcsPcs

sp + Pgs(θ,V, λ). (2.10)

Substitution of (2.8) into (2.10) yields

Pa(θ,V, λ) = λ
NB∑

j=1
j /= s

(
kPgj

Pgj
sp − kPcj Pcj

sp
)
− λkPcsPcs

sp + λkPcsPcs
sp + Pgcal

s (θ,V). (2.11)

Finally, the equation of the total real power losses becomes

Pa(θ,V, λ) = λ
NB∑

j=1
j /= s

(
kPgj

Pgj
sp − kPcj Pcj

sp
)
+ Pgcal

s (θ,V). (2.12)
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In [23], it is recommended that before the notions of continuationmethods are applied,
the two axes must have the same scale. This recommendation is important not only to avoid
curves with poor scaling which could lead to the development of inefficient techniques in
consequence of a misinterpretation of their curvatures, but also to facilitate and simplify
the definition of an efficient procedure of control of step size. Despite being in per-unit, the
numerical values of Pa are very different from those of loading factor. Besides, the numerical
values of Pa can also present a large variation for different electric power systems. For this
reason, it is proposed to normalize the total real power losses values by their base case values.
Using the normalization, the values of variables λ and Pa remain within the same range of
numerical values and the axes have the same scales, see Figure 4. Thus, one can use the same
step size for tracing the P-V curves for all operating conditions of any electric power systems.
Consequently, we divide (2.12) by its value of the base case, before substituting it in (2.5).
The resulting system of equations is given by

ΔP(θ,V, λ) = Psp(λ) − Pcal(θ,V) = λ(Pgsp − Pcsp) − Pcal(θ,V) = 0

ΔQ(θ,V, λ) = Qsp(λ) −Qcal(θ,V) = λQcsp −Qcal(θ,V) = 0

ΔR(θ,V, λ, α) = α
(
λ − λ0

)
−
[
Pa(θ,V, λ) − Pa0

Pa1

]
= 0,

(2.13)

where the parameter α is the angular coefficient of the line and Pa1 is the value of the total
real power losses calculated in the base case. With the addition of this new equation, λ can
be treated as a dependent variable and α is considered as an independent variable, that is,
it is chosen as the continuation parameter (its value is prefixed). The necessary condition to
solve the above equation will remain satisfied, while the number of unknown variables and
equations remains the same, that is, while the augmented Jacobian matrix has full rank and
is not singular.
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2.2. The Predictor Step and the Step Size Control

From the solution of the base case (point P(θ1, V1, Pa1, λ1) in Figure 4) obtained by using a
conventional PF, the value for α is computed by

α1 =

(
Pa1 − Pa0

)
/Pa1

(
λ1 − λ0

) , (2.14)

where pointO(λ0, Pa0) is an initial chosen point. Next, the PCPF is used to compute the other
solutions through successive increments (Δα) in the value of α. For α = α1+Δα, the solution of
(2.13)will provide the new operating point (θ2,V2, Pa2, λ2) corresponding to the intersection
of the solution trajectory (curve λ-Pa) with the line whose new angular coefficient value
(α1 + Δα) was specified. For α = α1, the converged solution should provide λ = 1. After
calculating an initial value for α, a predictor step is carried out in order to find an estimate for
the next solution point of P-V curve. The tangent and the secant are the most used predictors.
The tangent predictor finds the estimate by taking an appropriate step size in the direction of
the tangent to the P -V curve at the current solution [7–9]. In the PCPF, the tangent vector is
computed by taking the derivative of (2.13):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ΔP(θ,V, λ)
∂θ

∂ΔP(θ,V, λ)
∂V

∂ΔP(θ,V, λ)
∂λ

∂ΔP(θ,V, λ)
∂α

∂ΔQ(θ,V, λ)
∂θ

∂ΔQ(θ,V, λ)
∂V

∂ΔQ(θ,V, λ)
∂λ

∂ΔQ(θ,V, λ)
∂α

∂ΔR(θ,V, λ, α)
∂θ

∂ΔR(θ,V, λ, α)
∂V

∂ΔR(θ,V, λ, α)
∂λ

∂ΔR(θ,V, λ, α)
∂α

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

dθ
dV
dλ
dα

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0
0
0
±1

⎤
⎥⎥⎦,

(2.15)

which may also be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂P(θ,V)
∂θ

−∂P(θ,V)
∂V

J

−∂Q(θ,V)
∂θ

−∂Q(θ,V)
∂V

Psp

Qsp

0

0

∂ΔR(θ,V, λ, α)
∂θ

∂ΔR(θ,V, λ, α)
∂V

α −

⎡
⎢⎢⎣

NB∑
j=1
j /= s

(
Pgj

sp − Pcj
sp)

⎤
⎥⎥⎦

Pa1
(λ − λ0)

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

dθ
dV
dλ
dα

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
±1

⎤
⎥⎥⎦,

(2.16)
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where J is the Jacobian matrix of the conventional power flow and t = [dθTdVTdλ dα]
T
is the

tangent vector. An estimate for θe, Ve, λe, and αe for the next solution is obtained by:

⎡
⎢⎢⎣

θe

Ve

λe

αe

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

θj

Vj

λj
αj

⎤
⎥⎥⎦ + σ

⎡
⎢⎢⎣

dθ
dV
dλ
dα

⎤
⎥⎥⎦, (2.17)

where σ is a scalar that defines the predictor step size and the subscript “j” means current
solution.

The two secant methods most widely used have been introduced in [8, 9]: the first-
order polynomial predictor that uses the current and previous solutions to estimate the next
one, and the modified zero-order polynomial predictor or trivial predictor, which uses the
current solution and a fixed increment in the parameter (θk, Vk, λ or α in the case of proposed
method) as an estimate for the next solution. In this work, the performance of PCPF will be
compared considering the tangent and the trivial predictors.

Another issue considered as the most critical for the success of a continuation power
flow is related to the choice and control of the step size. As discussed in [23], the selection of
a single step size does not guarantee that it will always work, regardless of the characteristics
of the electric system under study, as well as its operating condition. Moreover, a single step
size may not be adequate even for the analysis of a single operating condition. In general,
a large step-size can be used on light load condition, but on heavy load condition, it should
be smaller. The step size control should be flexible to adapt to the behavior of the power
system in order to obtain good global convergence. In this sense in the PCPF is proposed
another important modification, which is the change of the coordinates in the set of lines
to the coordinates of a midpoint (MP) located between the two last points obtained. This
change is only used in case of divergence. This procedure has been shown to be sufficient
for the success of the method. The changes always take place near the MLP. Although the
proposed method uses a single step size to whole λ-Pa curve, the change of the coordinates
of initial point to the MP introduces an automatic step size control around the MLP. This
occurs because of the proximity of its coordinates with those of the MLP.

2.3. The Corrector Step

Since the estimate is only an approximate solution, after the predictor step, it is necessary to
perform the corrector step to avoid error accumulation. In most cases, the estimate is close to
the correct solution, and therefore a few iterations are needed in the corrector step to obtain
a solution within a required precision. Usually the Newton method is used in the corrector
step. The following equation is added to (2.13):

y − ye = 0, (2.18)

where y and ye correspond to the variable selected as the continuation parameter and its
estimated value, obtained by the predictor step. In case of zero-order predictor (or trivial
predictor), the value of the parameter can be simply fixed at ye. The expansion of the system
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(2.13) in Taylor series, including only terms of first order, considering the parameter value α
calculated for the base case, resulting in

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂P(θ,V)
∂θ

−∂P(θ,V)
∂V

Psp

−∂Q(θ,V)
∂θ

−∂Q(θ,V)
∂V

Qsp

∂ΔR(θ,V, λ, α)
∂θ

∂ΔR(θ,V, λ, α)
∂V

α −

⎡
⎢⎢⎣

NB∑
j=1
j /= s

(
Pgj

sp − Pcj
sp)

⎤
⎥⎥⎦

Pa1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
Δθ
ΔV
Δλ

⎤

⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J
Psp

Qsp
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∂θ

∂ΔR(θ,V, λ, α)
∂V

α −

⎡
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j /= s

(
Pgj

sp − Pcj
sp)

⎤
⎥⎥⎦

Pa1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
Δθ
ΔV
Δλ

⎤

⎦

= −Jm
⎡

⎣
Δθ
ΔV
Δλ

⎤

⎦ =

⎡

⎣
ΔP
ΔQ
ΔR

⎤

⎦,

(2.19)

where J and Jm are Jacobian matrices of the PF and the PCPF, respectively. The symbols
ΔP, ΔQ, and ΔR represent the correction factors (mismatches) of respective functions in the
system of (2.13). For a solved PF base case, the mismatches should be equal to zero (or at least
close to zero, that is, less than the adopted tolerance). In this case, only ΔR will be different
from zero due to the change in α, that is, due to the increment Δα.

2.4. General Procedure for Tracing the P-V Curve of Bus k

The tracing of any desired P-V curve is carried out with the corresponding desired values of
voltagemagnitude and loading factor, which are stored during the procedure used for tracing
the λ-Pa curve. The following steps are needed to trace the λ-Pa curve.

Step 1. After solving the base case operating point “P”(λ1, Pa1) using a conventional PF,
compute, by using (2.14), the angular coefficient value (α1) of the first line that passes through
the initial chosen point “O”(λ0, Pa0) and point “P” (see Figure 4).

Step 2. The other points of the λ-Pa curve are obtained by using the PCPF and applying
a gradual increment (Δα) to the continuation parameter α (angular coefficient of the line),
αi+1 = αi + Δα.

Step 3. When the PCPF fails to find a solution, it changes the coordinates of the set of lines to
the midpoint MP((λa + λb)/2, (Paa + Pab)/2) located between the last two points obtained,
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points “a” and “b” (see detail in Figure 4(b)). Then, it computes the remaining points of the
curve using the line equation that passes through the MP and the last point “b” obtained.

Step 4. When the value of Pa (point “d” in Figure 4(b)) is less than the value of the previous
point (point “c”), the coordinates of the set of lines are changed to the point “D.” Then, it
completes the tracing of the upper part of the λ-Pa curve considering Δα = −Δα and the
line that passes through the initial point and the last point obtained in the previous step
(Figure 4(a)).

Aiming to increase the efficiency of the method, only a few points of the curve are
computed with the set of lines that pass through the MP point, whereas all others are com-
puted by using the set of line through the pointD. The set of lines passing through MP point
is essential for the robustness of the method, once it is needed to overcome the singularity
of augmented Jacobian matrix. Additionally, its use provides an automatic step size control
around the MLP, see Figure 4(b).

An advantage of the PCPF is that all the systems present a similar curvature for the
solution trajectory, that is, the λ-Pa curvature and the next parameter are known a priori.
Since the same parameter is used for all the P-V curve, the changing of one set of lines to
another requires alterations only on the value of parameter α but not in matrix structure (see
(2.16)), that is, the changes do not introduce new nonzero elements in the matrix.

3. Test Results

For all tests, the tolerance adopted for mismatches was 10−4 p.u. The initial coordinates of
the set of lines, point “O,” were λ0 = 0.0 and Pa0 = 0.0 p.u., that is, the origin. For the
trivial predictor, a fixed step size (Δα) of 0.05 is adopted to obtain all points on the λ-Pa
curve. A fixed value of 0.05 was also adopted for σ in the tangent predictor. So a step size
reduction or control is not used in case the singularities associated to all parameters coincide,
but only a change to the coordinates of MP. The first point of each curve is computed by
a conventional PF. The reactive power limits (Q) in PV ’s buses are the same used in the
conventional PF. In each iteration, the reactive generations for all PV buses are compared to
their respective limits. The PV bus is switched to type PQwhen its generated reactive power
hits its upper or lower limit. It can also be switched back to PV in future iterations. During the
iterations, if its voltage magnitude value is equal or greater than the specified value, its type is
switched back to PV and its voltage magnitude is fixed in the specified value. The generated
reactive power is changed, and while the generated reactive power remains within its upper
and lower limits, its voltage magnitude is maintained constant. The loads are modeled as
constant power and the parameter λ is used to simulate real and reactive increments of load,
considering constant power factor. Each load increase is followed by an equivalent increase
of generation by using λ. The purpose of the tests is to highlight the efficiency and robustness
of the proposed methods to trace the P-V curve of real large and heavy load electrical power
systems.

Figure 5 shows the results from the PCPF for the IEEE-300 bus system considering the
trivial and tangent predictors. Figure 5(a) shows the λ-Pa curve and lines used during the
tracing process. Figure 5(b) shows the details of the tracing process of the MLP region. Note
that the loading factor (λ) and the total real power losses (Pa) show a simultaneous reversal
in its variation tendency, where the noses are coincident. This characteristic is commonly
found in curves of the real large electric power systems. Consequently, these variables cannot
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Figure 5: Performance of the PCPF for the IEEE-300: (a) λ-Pa curve, (b) detail of the convergence process,
(c) P-V curve of the critical bus, (d) number of iterations for the trivial and tangent predictors, (e)
convergence pattern for point “b,” and (f) convergence pattern for the next point (dashed line “S”) for
which the iterative process does not converge.

be used as parameters to obtain the MLP because the PF method will present numerical
difficulties in their vicinity. It can be seen from this figure that, despite the sharp nose
presented by the λ-Pa curve, the change for the coordinates of midpoint allows overcoming
the singularity of the Jacobian matrix at the MLP.

At the MLP, the values of λ and Pa found by the proposed method were 1.0553 p.u.
and 1.1624 p.u, respectively. Figure 5(c) shows the P-V curve of critical bus (V526), whose
corresponding voltage magnitudes values were stored while obtaining the λ-Pa curve. The
values of the λ and V526 at the MLP were 1.0553 and 0.7302, respectively. Figure 5(d) presents
a comparison of the number of iterations for convergence of each point of λ-Pa curve for
the trivial and tangent predictors. As it can be seen from Figure 5(d), the proposed method
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Table 2: Number of iterations needed to change the coordinates in the set of lines to MP through total
mismatch criterion.

Predictor System P1 P2

Trivial

300 4 4
638 5 4
787 5 5
904 7 6
300(1) 4 7

Tangent

300 5 4
638 4 4
787 5 5
904 6 7

(1)Without reactive limits.

succeeds in finding each point of the curve, including the MLP, with a small number of
iterations. Also note that, even using a fixed step size (Δα), an automatic step size control
occurs around the MLP as a consequence of the proximity between the midpoint coordinates
and the curvature of the solution trajectory (λ-Pa curve).

3.1. Analysis of the Total Mismatch

Among several possible candidates for convergence criterion of an iterative procedure, the
simplest is the one that uses a predefined number of iterations. Despite the simplicity of
programming, it is unknown how close the solution is. Moreover, the analysis of the total
mismatch behavior is a good indicator of the possibility of ill-conditioning of the Jacobian
matrix. The total mismatch is defined as the sum of the absolute values of the real and reactive
power mismatches. Therefore, the analysis of the total mismatch behavior associated with a
predefined number of iterations is the criterion used to change the coordinates of the set of
lines to the MP. This criterion prevents the process spending too much time on cases that
do not converge or diverge. Figures 5(e) and 5(f) present the evolution of the mismatches
for two points (see Figures 5(a) and 5(b)), the point “b” and the next point (dashed line
“S”) corresponding with the last point before the divergence happens. Figure 5(e) depicts the
evolution of the mismatch for the last point “b” obtained using the first set of line. Note from
it that the convergence occurs in only four iterations using a tolerance of 10−4 p.u. However,
for dashed line “S,” the process shows an oscillatory behavior and slow divergence, as shown
in Figure 5(f). This occurs because, as it can be seen from Figure 5(a), there is no intersection
of the dashed line (S) and the λ-Pa curve, and therefore the problem actually has no solution.
It can be seen that, after the third iteration, it is already possible to verify this behavior. Thus,
it is proposed to compare the magnitudes of the last two mismatches after the third iteration.
If the last value is higher than the previous one, then the iterative process is interrupted
and the λ-Pa curve tracing is resumed from the previous point. In this case, it changes the
coordinates of the set of lines to the midpoint (MP), see Figure 5(b). Otherwise, if the last
value is smaller than the previous one, then the iterative process continues. Table 2 shows the
number of iterations needed to carry out the change of coordinates of the set of lines to the
MP. It can be seen that the number of iterations is always less than ten.

Figure 6 shows the performance of the PCPF for the real large systems: 638 and 787-
bus systems corresponding to part of South-Southeast Brazilian system. Figure 6(a) shows
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Figure 6: Performance of the PCPF for the South-Southeast Brazilian systems: (a) λ-Pa curves, (b) voltage
magnitudes at the critical buses (150 and 576) as function of λ, (c) number of iterations for tangent and
trivial predictors.

the λ-Pa curve for both systems, and Figure 6(b) presents the P-V curves of critical bus
(V150 and V576) of each system obtained by storing, during the tracing of the curve λ-Pa,
the corresponding values of voltage magnitudes. In Figure 6(c), a comparison of the number
of iterations needed for each point of λ-Pa curve by using the trivial and tangent predictors.
In general, the number of iterations for tangent predictor is less than the trivial predictor is
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Figure 7: Performance of the PCPF for the 904-bus Southwestern American system: (a) P-V curves, (b)
λ-Pa curve, (c) voltage magnitude at the critical bus (138) as function of λ, (d) number of iterations.

shown. The proposed method showed a good overall performance, as it can be confirmed
from the low number of iterations needed for most points.

Figure 7 shows the results of the PCPF for the 904-bus Southwestern American system.
It is a large, heavy load, with 904 buses and 1283 branches. From Figure 7(a), which illustrates
the P-V curves of all buses of the system, one can see that this is a system with voltage
instability problems that have the strong local characteristic. Note that, except the P-V curve
of critical bus (V138), all the others present a sharp nose, or a straight line, that is, their voltage
magnitudes remain fixed at the specified values. Figure 7(b) shows the λ-Pa curve, while
Figure 7(c) presents the P-V curve of critical bus. In Figure 7(c), the numbers of iterations
needed to obtain the curve λ-Pa by trivial predictor are shown.

4. Performance of the PCPF by Using Constant Jacobian

The robustness and effectiveness are some of the main features required for a CPF that is used
in the steady-state voltage stability analysis. In these cases, the Newton-Raphson algorithm
is the most appropriate one. From the analysis presented at the previous section, it is verified
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that the PCPF method is robust and effective for determining the MLP and the complete P-
V curve. On the other hand, in these analyses, it is often necessary to evaluate the loading
margin of the system for a large number of configurations and of operating conditions, and
consequently it is also necessary to have computational efficiency.

Usually, the CPF needs a few iterations to obtain each point on the P-V because the
iterative process begins with a good initial estimate of the solution. For the tangent and first-
order polynomial secant predictors, the next operation point is obtained from an estimate
and from a previous point for the modified zero-order polynomial predictor. For each point
on the curve, successive updates and inversions of the Jacobian matrix are required. Besides,
the convergence of the power flow methods is also affected by adjustment of solutions due
to, for example, reactive limit violations. Therefore, the CPU time required to get all points
of the curve may be very high. For planning applications, this computing demand can be
acceptable, but not for system control applications where, for example, the effects of several
outages on the system loading margin must be available in real time [24].

In order to reduce the computational burden, several updating procedures have
been proposed [22, 24–27]. A procedure known as the “dishonest Newton method” is
commonly used. In this procedure, the Jacobian matrix is not updated at each iteration,
but only occasionally. Sometimes, it is proposed to make its update only once, that is, at
the first iteration. From several studies conducted, it is concluded that the Jacobian matrix
is important for the convergence of the process but does not influence the final solution,
because at each iteration the function value is accurately calculated, despite the corrections
are approximated. Generally, a relatively small increase in the number of iterations is the
only effect observed. Therefore, it is possible to use approximated values for Jacobian matrix
without losing the global convergence.

It has been proposed to update the Jacobian matrix only when the system undergoes
a significant change, for example, when a voltage controlled bus (PV) is converted to a load
bus (PQ) as a consequence of a violation of one of their reactive limits, or when the number
of iterations exceeds a predefined threshold value. So, in the first procedure (P1), updating
the whole Jacobian matrix is performed at every iteration and, in the second one (P2), only
when the system undergoes a significant change. When the limits of reactive powers are not
taken into account, the Jacobian matrix updating is performed at every iteration in procedure
P1, and P2 only when the number of iterations exceeds the seventh one.

Table 3 shows for the two procedures the loading factor at the MLP (λmax, at 3th and
5th columns) and the corresponding voltage magnitude of the critical bus (at 4th and 6th
columns), computed by the trivial and tangent predictors. Note that the values obtained by
each of the procedures are practically the same. For the IEEE-300, the table also shows that
the reactive power limits have significant influence on the value of λmax.

The results presented in Tables 4 and 5 allow us to compare the performance of PCPF
for both procedures, considering the trivial and the tangent predictors. Table 4 shows for both
procedures the total number of iterations (IC) to trace the complete P-V curve, and, for P2,
the total number of iterations (ACo) for which there is a matrix updating. The computational
times (CPU time) required for procedures P1 and P2 are shown at the fourth and seventh
columns, respectively. Their values were normalized by the respective CPU times of the
procedure P1. Although the procedure P2 requires a larger total number of iterations than
the P1, it requires less computational time, as shown at the seventh column. As it can be
confirmed at the eighth column, the procedure P2 presents a better performance than the
P1 for both predictors. Therefore, it is possible to obtain an overall CPU time reduction
without losing robustness. The efficiency improvement is achieved by a simple change in
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Table 3: Maximum loading point (λmax) and critical voltage of the analyzed systems.

Predictor System P1 P2
λmax Critical voltage (p.u.) λmax Critical voltage (p.u.)

Trivial

300 1.0553 0.7302 1.0553 0.7305
638 1.0080 0.8086 1.0080 0.8086
787 1.1273 0.7465 1.1273 0.7465
904 1.1993 0.6508 1.1993 0.6508
300(1) 1.4124 0.4643 1.4125 0.4663

Tangent

300 1.0553 0.7302 1.0553 0.7304
638 1.0080 0.8086 1.0080 0.8086
787 1.1273 0.7464 1.1273 0.7466
904 1.1993 0.6507 1.1993 0.6507

(1)without reactive limits.

Table 4: Performance of the PCPF for procedures P1 and P2.

Predictor System P1 P2 CPU ratio [%]
IC CPU time (p.u.) IC ACo CPU time (p.u.)

Trivial

300 50 1.000 59 23 0.435 56.45
638 86 1.000 147 18 0.509 49.13
787 72 1.000 106 22 0.494 50.61
904 115 1.000 126 46 0.413 58.73
300(1) 151 1.000 378 23 0.326 67.38

Tangent

300 40 1.000 47 18 0.421 57.87
638 46 1.000 103 18 0.572 42.78
787 53 1.000 93 16 0.485 51.46
904 93 1.000 114 53 0.416 58.40

(1)without reactive limits, IC: iteration count, ACo: actualization count.

the procedure, which is to update the Jacobian matrix only when the system undergoes a
significant change.

Table 5 compares the overall CPU times needed for the tangent and trivial predictors.
As it can be seen in the last column, the overall CPU time of tangent predictor is higher than
the trivial predictor.

5. Conclusion

This paper shows the most relevant difficulties that are present during the choice of
continuation parameter to trace the P-V curve in steady-state voltage stability analysis. It also
presents significant modifications for the continuation method proposed by Garbelini et al. in
[13], which was developed from the geometrical behavior of the solutions trajectories of the
power flow equations. The proposed modifications not only allow obtaining the maximum
loading point (MLP) and, subsequently, assessment of voltage stability margin, but also
make possible the complete tracing of P-V curve of any power systems with a low number
of iterations, including those which have problems with local voltage instability. The PCPF
combines robustness with simplicity and ease of interpretation. It also shows a very attractive
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Table 5: Comparison between PCPF considering the trivial predictor and tangent predictor.

Procedure System Tangent predictor Trivial predictor CPU ratio [%]
CPU time (p.u.) CPU time (p.u.)

P1

300 1.000 0.857 14.22
638 1.000 0.862 13.84
787 1.000 0.864 13.54
904 1.000 0.866 13.35

P2

300 1.000 0.886 11.32
638 1.000 0.766 23.39
787 1.000 0.879 12.02
904 1.000 0.859 14.03

option and easy computational implementation, since it only requires few changes on power
flow program currently in use.

The λ-Pa curve has been chosen because it has a behavior (curvature) similar to all
the systems, which greatly facilitates defining an overall procedure able to trace the P-V
curves of any systems. Consequently, the parameterization technique proposes the addition
of a line equation which passes through a point in the plane determined by the variables
loading factor (λ) and the total real power losses (Pa). The angular coefficient of the line
(α) is used as parameter for tracing the whole P-V curve. So it is not necessary to switch
the parameter, but only change the coordinates of the set of lines. The changing of one set
of lines to another requires only alterations on the value of parameter α but not in matrix
structure. The degradation of the Jacobian matrix sparsity is avoided by rewriting the total
real power losses (Pa) equation as a function of real power generated by the slack bus.
This modification provides a smaller number of elements than the method proposed in [13].
Another proposed modification is the normalization of the total real power losses values
by its base case value, which makes possible to use the same step size for tracing the P-V
curves for all operating conditions of all electric power systems. The proposal of using the
coordinates of the midpoint located close to the MLP is essential for the robustness of the
method, once it is needed to overcome the singularity of augmented Jacobian matrix and all
the consequent problems of ill-conditioning. Furthermore, it provides the advantage of an
automatic step size control around the MLP, despite of using a single step size for tracing the
whole P-V curve. The changing of coordinates is based on the analysis of the total mismatch
behavior. This criterion leads to a low overall number of iterations.

To reduce the computational burden, it is also investigated to update the Jacobian
matrix only when the system undergoes a significant change (changes in the system’s
topology). This simple change of procedure increases the efficiency of the proposed
technique and proves that it is possible to obtain a reduction in computational time without
losing robustness. The results confirm the efficiency of the proposed method, including its
application feasibility in studies related with the assessment of static voltage stability.
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