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This paper studies the problem of observer-based stabilization of stochastic nonlinear systems
with limited communication. A communication channel exists between the output of the plant
and the input of the dynamic controller, which is considered network-induced delays, data packet
dropouts, and measurement quantization. A new stability criterion is derived for the stochastic
nonlinear system by using the Lyapunov functional approach. Based on this, the design procedure
of observer-based controller is presented, which ensures asymptotic stability in the meansquare of
the closed-loop system. Finally, an illustrative example is given to illustrate the effectiveness of the
proposed design techniques.

1. Introduction

Stochastic variables frequently exist in practical systems such as aircraft systems, biology
systems, and electronic circuits. Without taking them into account in the system design, the
stochastic variables can bring negative effects on the performance of control systems and
even make the systems unstable. According to the way stochastic variable occurs, stochastic
system mode can be classified as Itô stochastic differential equation [1, 2], Markov switched
systems [3–5], and other systems with stochastic variables [6–9]. Since the introduction of
the concept of stochastic differential equation by Itô [10] in 1951, Itô stochastic system model
has been used successfully in numerous applications, such as the analysis of stock systems
and prediction for ecosystem. In automatic control of stochastic systems, a great number of
important results have been reported in the literature [11, 12].

In the past two decades, network-based control technology has been developed to
combine a communication network with conventional control systems to form the Network
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Control Systems (NCSs), which have wide applications due to their advantages, such as
reduced weight, power requirements, low installation cost, and easy maintenance [13]. Since
the capacity of the communication channel is limited [14–16], signal transmission delay and
data packet dropout are two fundamental problems in NCSs. To deal with these issues,
considerable research results on this topic have been reported, see for example [17–20] and
the references therein. In [21], the robust H∞ control problem was considered for a class of
networked systems with random communication packet losses.

Among the reported results, most NCSs are mainly based on deterministic physical
plant. However, stochastic systems models also have wide applications in the dynamical
systems. This has motivated the researches on networked control for stochastic systems and
many results have been reported in the literature. In [22], the problem of network-based
control for stochastic plants was studied, and a new model of stochastic time-delay systems
was presented including both network-induced delays and packet dropouts. In [23], the
problem of sampled-data control for networked control systems was considered. In recent
years, much attention is paid to the problem of the observer-based controller design for
NCSs [24–27]. In [28], the problem of the NCS design for continuous-time systems with
random measurement was investigated, where the measurement channel is assumed to be
subjected to random sensor delay. To the authors’ knowledge, the problem of observer-based
controller design for stochastic nonlinear systems with limited communication has not been
fully investigated and still remains challenging, which motivates us for the present study.

In this paper, we investigate the problem of observer-based stabilization of stochastic
nonlinear systems with limited communication. A new model is proposed to describe the
stochastic nonlinear systemswith a communication channel, which exists between the output
of the stochastic plant and the input of the observer-based controller. Based on this, the design
procedure of observer-based controller is proposed, which ensures the asymptotic stability of
the resulting closed-loop system. Finally, a mechanical system example consisted of two cars,
a spring and a damper, is given to illustrate the effectiveness of the proposed controller design
method.

Notation. The notation used throughout the paper is fairly standard. R
n denotes the n-

dimensional Euclidean space and the notation P > 0 (≥0)means that P is real symmetric and
positive definite (semidefinite). In symmetric block matrices or complex matrix expressions,
we use an asterisk (∗) to represent a term that is induced by symmetry and diag{· · · } standing
for a block-diagonal matrix. sym(A) is defined as A + AT . Matrices, if their dimensions are
not explicitly stated, are assumed to be compatible for algebraic operations. E{x} means the
expectation of x. The space of square-integrable vector functions over [0,∞) is denoted by

L2[0,∞), and for w = {w(t)} ∈ L2[0,∞), its norm is given by: ‖w‖2 =
√∫∞

t=0 |w(t)|2dt.

2. Problem Formulation

Consider the following stochastic nonlinear system:

dx(t) =
[
Ax(t) + Bu(t) + g(x(t))

]
dt + Ex(t)dω(t),

y(t) = Cx(t),

x(t) = φ(t), t ∈ [−2κ, 0],
(2.1)
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Figure 1: The stochastic systems with limited communication.

where x(t) ∈ R
n is the state vector; u(t) ∈ R

m is the control input; y(t) ∈ R
p is the control

output; g(·) : R
n → R

nf is unknown nonlinear function; C and E are constant matrices with
an appropriate dimension; κ is the maximum delay; ω(t) is a zero-mean real scalar Wiener
process, which satisfies E{dω(t)} = 0 and E{dω(t)2} = dt.

For system (2.1), it is assumed that the states are not fully measured. Thus, we consider
the following observer-based controller:

dx̂(t) =
[
Ax̂(t) + Bu(t) + g(x̂(t)) + L

(
ŷ(t) − Cx̂(t)

)]
dt,

u(t) = Kx̂(t),
(2.2)

where x̂(t) ∈ R
n is the estimation of the state vector x(t); ŷ(t) ∈ R

p denotes the output of the
zero-order hold (ZOH); K and L are the controller and observer gains.

Under control law (2.2), the closed-loop system in (2.1) is given by

dx(t) =
[
Ax(t) + BKx̂(t) + g(x(t))

]
dt + Ex(t)dω(t). (2.3)

The structure of the stochastic systems with limited communication is shown in
Figure 1. In this system, for convenience of analysis, it is assumed that communication delay
occurs only in the sampler-to-controller side. The stochastic plant continuously sends the
output signal y(t) to the controller by a network. y(t) is firstly sampled by the sampler,
which is assumed to be clock-driven. Then, y(tk), where tk denotes the sampling instant for
k = 0, 1, 2, . . ., is encoded and decoded by the quantizer and sent to ZOH, which are assumed
to be event-driven. ŷ(t) and u(t) are the input of the observer-based controller and x̂(t) is the
output of the observer-based controller.

In this paper, the quantizer is chosen as the logarithmic quantizer. The set of quantized
levels is described by:

Ui =
{
±u(j)

i , u
(j)
i = ρiju

(j)
0 , i = ±1,±2, . . .

}
∪
{
±u(j)

0

}
∪ {0}, 0 < ρj < 1, u(j)

0 > 0. (2.4)
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Each of the quantization level u(j)
i corresponds to a segment such that the quantizer maps the

whole segment to this quantization level. In addition, these segments form a partition of R,
that is, they are disjoint and their union for i equals to R. For the logarithmic quantizer, the
associated quantizer fi(·) is defined as

fi(v) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u
(j)
i if

1
1 + σj

u
(j)
i < v ≤ 1

1 − σj
u
(j)
i , v > 0,

0 if v = 0,
−fj(−v) if v < 0,

(2.5)

where σj = (1 − ρj)/(1 + ρj ).
When taking into account signal transmission delays ηk from sampler to ZOH, the

quantized output signal takes the following form:

ŷ(tk) = f
(
y
(
tk − ηk

))
=
[
f1
(
y1
(
tk − ηk

))
f2
(
y2
(
tk − ηk

)) · · · fn
(
yn

(
tk − ηk

))]T
. (2.6)

Considering the behavior of the ZOH, we have

ŷ(t) = f
(
y
(
tk − ηk

))
, tk ≤ t < tk+1, (2.7)

with tk+1 being the next updating instant of the ZOH after tk.
A natural assumption on the network induced delays ηk can be made as

0 ≤ ηk ≤ η, (2.8)

where η denotes the maximum delay. In addition, at the updating instant tk+1 the number of
accumulated data packet dropouts since the last updating instant tk is denoted as δk+1. We
assume that the maximum number of data packet dropouts is δ, that is,

δk+1 ≤ δ. (2.9)

Then, it can be seen from (2.8) and (2.9) that

tk+1 − tk = (δk+1 + 1)h + ηk+1 − ηk, (2.10)

where h denotes the sampling period.
As the time sequence tk depends on both the network-induced delays and data packet

dropouts, the period tk+1 − tk for the sampled-data system in (2.3) is variable and uncertain.
Now let us represent tk − ηk in (2.7) as

tk − ηk = t − η(t), (2.11)

where

η(t) = t − tk + ηk. (2.12)
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Then, from (2.10) we have

0 ≤ η(t) ≤ κ, (2.13)

where

κ = η +
(
δ + 1

)
h. (2.14)

Considering the quantization shown in (2.5) and by substituting (2.11) into (2.7), (2.2)
can be expressed as

dx̂(t) =
[
Ax̂(t) + Bu(t) + g(x̂(t)) + L

(
(I + Λ(t))y

(
t − η(t)

) − Cx̂(t)
)]
dt,

u(t) = Kx̂(t),
(2.15)

where

Λ(t) = diag{Λ1(t),Λ2(t), . . . ,Λn(t)}, (2.16)

with

Λj(t) ∈
[−σj , σj

]
, j = 1, . . . , n. (2.17)

Defining the estimation error e(t) = x(t) − x̂(t), we obtain

dx(t) =
[
(A + BK)x(t) − BKe(t) + g(x(t))

]
dt + Ex(t)dω(t),

de(t) =
[
LCx(t) + (A − LC)e(t) + g(x(t)) − g(x(t) − e(t))

−L(I + Λ(t))Cx
(
t − η(t)

)]
dt + Ex(t)dω(t).

(2.18)

Before proceeding further, we introduce the following assumption and lemma, which
will be used in subsequent developments.

Assumption 2.1. For a stochastic system mode, there exists known real constant matrices
G ∈ R

n×n, such that the unknown nonlinear vector function g(·) satisfies the following
boundedness condition:

∣∣g(x(t))∣∣ ≤ |Gx(t)|, ∀x(t) ∈ R
n. (2.19)

Lemma 2.2 (see [29]). Given appropriately dimensioned matrices Σ1,Σ2 and Σ3, with ΣT
1 = Σ1,

then,

Σ1 + Σ3H(t)Σ2 + ΣT
2H

T (t)ΣT
3 < 0 (2.20)
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holds for all H(t) satisfying HT (t)H(t) ≤ I if and only if for some ε > 0,

Σ1 + ε−1Σ3ΣT
3 + εΣT

2Σ2 < 0. (2.21)

3. Main Results

In this section, the problem of asymptotical stabilization of stochastic system with limited
communication is studied. We are first concerned with the asymptotical stability analysis
problem. The following theorem develops a sufficient condition for system (2.18) to be
asymptotically stable in the meansquare.

Theorem 3.1. The nominal stochastic system (2.18) is asymptotically stable in the mean square if
there exist scalars εi > 0, (i = 1, 2, 3) and matrices Pj > 0, Rj > 0, Sj , Uj , (j = 1, 2) satisfying

⎡
⎢⎢⎢⎢⎢⎣

Π1 + ε3ΠT
4Π4

√
κ + 1V ΠT

2 ΠT
3 ΠT

5
∗ Π6 0 0 0
∗ ∗ −R−1

1 0 0
∗ ∗ ∗ −R−1

2 −L
∗ ∗ ∗ ∗ −ε3I

⎤
⎥⎥⎥⎥⎥⎦

< 0, (3.1)

where

Π1 = sym
(
WT

x P1Wr1 +WT
e P2Wr2 + VWv −WT

x

(
ε2G

TG
)
We

)
+WT

gΨ1Wg

+WT
x E

T (P1 + κR1 + P2 + κR2)Wx,

Wx =
[
In 0n,5n

]
, We =

[
0n,2n In 0n,3n

]
, V =

[
S̃ Ũ

]
,

Ψ1 = diag
{
(ε1 + ε2)GTG, ε2G

TG,−ε1I,−ε2I
}
,

S̃ =
[
ST
1 ST

2 0n 0n 0n 0n
]T
, Ũ =

[
0n 0n UT

1 UT
2 0n 0n

]T
,

Wv =

[
In −In 0n,4n

0n,2n In −In 0n,2n

]
, Wg =

⎡
⎢⎢⎢⎢⎢⎣

In 0n,5n

0n,2n In 0n,3n

0n,4n In 0n

0n,5n In

⎤
⎥⎥⎥⎥⎥⎦
,

Π2 =
√
κWr1 , Wr1 =

[
A + BK 0n −BK 0n In 0n

]
,

Π3 =
√
κWr2 , Wr2 =

[
LC −LC A − LC 0n In −In

]
,

Π4 =
[
0n ΛC 0n 0n 0n 0n

]
, Λ = diag{Λ1,Λ2, . . . ,Λn},

Π5 =
[
0n,p 0n,p −LTP2 0n,p 0n,p 0n,p

]
, Π6 = diag{−R1,−R2}.

(3.2)



Mathematical Problems in Engineering 7

Proof. For technical convenience, we rewrite (2.18) as

dx(t) = r1(t)dt + Ex(t)dω(t),

de(t) = r2(t)dt + Ex(t)dω(t),
(3.3)

where

r1(t) = (A + BK)x(t) − BKe(t) + g(x(t)),

r2(t) = LCx(t) + (A − LC)e(t) + g(x(t))

− g(x(t) − e(t)) − L(I + Λ(t))Cx
(
t − η(t)

)
.

(3.4)

Now, choose the following Lyapunov-Krasovskii functional:

V (t) = xT (t)P1x(t) +
∫ t

t−κ

∫ t

s

rT1 (θ)R1r1(θ)dθds +
∫ t

t−κ

∫ t

s

xT (θ)ETR1Ex(θ)dθds

+ eT(t)P2e(t) +
∫ t

t−κ

∫ t

s

rT2 (θ)R2r2(θ)dθds +
∫ t

t−κ

∫ t

s

xT (θ)ETR2Ex(θ)dθds,

(3.5)

where Pj > 0, Rj > 0, (j = 1, 2) are matrices to be determined. Then, by Itô’s formula and from
(3.5), we obtain the stochastic differential as

dV (t) = LV (t)dt + 2
(
xT (t)P1Ex(t) + eT(t)P2Ex(t)

)
dω(t) (3.6)

and

LV (t) = 2xT (t)P1r1(t) + rT1 (t)κR1r1(t)

−
∫ t

t−κ
rT1 (s)R1r1(s)ds + xT (t)ET (P1 + κR1)Ex(t)

−
∫ t

t−κ
xT (s)ETR1Ex(s)ds + 2eT (t)P2r2(t) + rT2 (t)κR2r2(t) −

∫ t

t−κ
rT2 (s)R2r2(s)ds

+ x(t)TE
T
(P2 + κR2)Ex(t) −

∫ t

t−κ
xT (s)ETR2Ex(s)ds

≤ 2xT (t)P1r1(t) + rT1 (t)κR1r1(t) + x(t)TET (P1 + κR1 + P2 + κR2)Ex(t)

−
∫ t

t−η(t)
rT1 (s)R1r1(s)ds −

∫ t

t−η(t)
xT (s)ETR1Ex(s)ds

+ 2eT (t)P2r2(t) + rT2 (t)κR2r2(t)

−
∫ t

t−η(t)
rT2 (s)R2r2(s)ds −

∫ t

t−η(t)
xT (s)ETR2Ex(s)ds + 2X1(t) + 2X2(t),

(3.7)
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where

X1(t) = ξT1 (t)S

(
x(t) − x

(
t − η(t)

) −
∫ t

t−η(t)
r1(s)ds −

∫ t

t−η(t)
Ex(s)dω(s)

)
= 0,

X2(t) = ξT2 (t)U

(
e(t) − e

(
t − η(t)

) −
∫ t

t−η(t)
r2(s)ds −

∫ t

t−η(t)
Ex(s)dω(s)

)
= 0,

ξT1 (t) =
[
xT (t) xT

(
t − η(t)

)]
, S =

[
ST
1 ST

2

]T
,

ξT2 (t) =
[
eT(t) eT

(
t − η(t)

)]
, U =

[
UT

1 UT
2

]T
.

(3.8)

From (2.19), we obtain

Y1(t) = ε1x
T (t)GTGx(t) − ε1g

T (x(t))g(x(t)) ≥ 0,

Y2(t) = ε2(x(t) − e(t))TGTG(x(t) − e(t))

− ε2g
T (x(t) − e(t))g(x(t) − e(t)) ≥ 0,

(3.9)

where ε1 and ε2 are positive constants. Then, taking expectation on both sides of (3.7), we
have

E{LV (t)} + Y1(t) + Y2(t) ≤ E

{
ξT (t)

[
Π6 + Σ4 + Σ5

]
ξ(t)

}
+ Σ6 + Σ7, (3.10)

where

Π1 = sym
(
WT

x P1Wr1 +WT
e P2Wr̃2 + VWv

)
+WT

x E
T (P1 + κR1 + P2 + κR2)Wx +WT

gΨ1Wg,

Σ4 = κWT
r1R1Wr1 + κWT

r̃2
R2Wr̃2 , Σ5 = (κ + 1)S̃R−1

1 S̃T + (κ + 1)ŨR−1
2 ŨT ,

Wr̃2 =
[
LC −L(I + Λ(t))C A − LC 0 I −I],

Σ6 = −
∫ t

t−η(t)

[
ξT1 (t)S + r1(s)R1

]
R−1

1

[
STξ1(t) + R1r1(s)

]
ds,

Σ7 = −
∫ t

t−η(t)

[
ξT2 (t)U + r2(s)R2

]
R−1

2

[
UTξ2(t) + R2r2(s)

]
ds,

ξT (t) =
[
ξT1 (t) ξT2 (t) gT (x(t)) gT (x(t) − e(t))

]
.

(3.11)

Note that R1 > 0 and R2 > 0, thus Σ6 and Σ7 are nonpositive. Therefore, from (3.10) we know
that E{LV (t)} + Y1(t) + Y2(t) < 0 if

Π1 + Σ4 + Σ5 < 0, (3.12)
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which by Schur complements, is equivalent to

⎡
⎢⎢⎢⎣

Π1
√
κ + 1V ΠT

2 Π
T

7
∗ Π6 0 0
∗ ∗ −R−1

1 0
∗ ∗ ∗ −R−1

2

⎤
⎥⎥⎥⎦ < 0, (3.13)

where Π7 =
√
κWr̃2 . Now, rewrite (3.13) in the form (2.20) with

Σ1 =

⎡
⎢⎢⎣

Π1
√
κ + 1V ΠT

2 ΠT
3

∗ Π6 0 0
∗ ∗ −R−1

1 0
∗ ∗ ∗ −R−1

2

⎤
⎥⎥⎦,

Σ2 =
[
Π4 0 0 0

]
, Σ3 =

[
Π5 0 0 −LT

]T
, H(t) = Λ(t)Λ−1.

(3.14)

By Lemma 2.2 together with a Schur complement operation, (3.13) holds if for some ε > 0,
(3.1) holds. Thus, we have

E{LV (t)} < 0, (3.15)

which ensures that the closed-loop system in (2.18) is asymptotically stable by [30].
Theorem 3.1 is proved.

Since our main objective is to design K and L to stabilize the system (2.18), (3.1) is
actually a nonlinear matrix inequality. We will transform them into tractable conditions to
solve the control synthesis problem.

Theorem 3.2. There exists an observer-based controller such that the closed-loop system in (2.18) is
asymptotically stable in the mean square if there exist scalars εi > 0 (i = 1, 2, 3) and matrices P 1 > 0,
P2 ≥ 0, R1 > 0, R2 > 0, Zi > 0, Qi > 0 and S, U, K, L, satisfying

[
Ξ1 Ξ2

∗ Ξ3

]
< 0, (3.16)

[
Φ1 Φ2

∗ Φ3

]
< 0, (3.17)

[
Z1 I
∗ Q1

]
> 0,

[
Z3 I
∗ Q2

]
> 0,

[
R1 I
∗ Q3

]
> 0, (3.18)
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where

Ξ1 = sym
(
WT

e P2Wr2 + VWv −WT
x̂

(
ε2G

TG
)
We

)
+WT

gΨ1Wg +WT
z ZWz,

Ξ2 =
[√

κΥT
1

√
κ + 1 V ΥT

2 ΥT
3

]
, Z = diag{−Z1, Z2, Z3},

Ξ3 = diag{R2 − 2P2,−R1,−R2,−P2,−R2,−ε3I},

Φ1 = sym
(
WT

xWr1

)
−WT

yZWy, Z = diag
{
Z2, 2P 1 −Q2

}
,

Φ2 =

⎡
⎢⎢⎣

√
κ
(
P 1A

T +K
T
BT

)
P 1E

T
√
κP 1E

T
P 1√

κI 0 0 0

−√κK
T
B
T

0 0 0

⎤
⎥⎥⎦,

Φ3 = diag
{
−Q3,−P 1,−Q3,−Q1

}
, V =

[
S U

]
, Wx̂ =

[
0n,3n In 0n,2n

]
,

S =
[
0n ST

2 0n ST
1 0n 0n

]T
, U =

[
UT

2 0n,4n UT
1

]T
,

Wx =
[
In 0n,2n

]
, Wr1 =

[
AP + BK In −BK

]
,

We =
[
0n,5n In

]
, Wr2 =

[
0n −LC −In LC In A − LC

]
,

Υ1 =
[
0n −LC −P2 LC P2 P2A − LC

]
,

Υ2 =
[
0 0 0 P2E 0 0
0 0 0

√
κR2E 0 0

]
,

Υ3 =
[
0 0 0 0 0 −LT

]
,

Wv =

[
0n −In 0n In 0n,2n

−In −0n,4n In

]
, Wy =

[
0n In 0n

0n,2n In

]
,

Wg =

⎡
⎢⎢⎢⎢⎢⎣

0n,3n In 0n,2n

0n,5n In

0n,4n In 0n

0n,2n In 0n,3n

⎤
⎥⎥⎥⎥⎥⎦
, Wz =

⎡
⎢⎢⎣

0n,3n In 0n,2n

0n,4n In 0n

0n,5n In

⎤
⎥⎥⎦.

(3.19)

Moreover, if the above conditions are satisfied, a desired controller gain and observer gain are
given as follows:

K = KP 1
−1
, L = P 2

−1
L. (3.20)
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Proof. Define the following matrix:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0n,3n In 0n,2n

0n In 0n,4n

0n,5n In

In 0n,5n

0n,4n In 0n

0n,2n In 0n,3n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.21)

Perform a congruence transformation to (3.1) by W1 = diag{W, I, I, I, I, I}, which are to
exchange the first row and the forth row with the third row and the sixth row, then exchange
the first column and the forth column with the third column and the sixth column.

Then, by using Lemma 1 in [25] and Theorem 3.2, we have

[
Ξ1 Ξ2

∗ Ξ3

]
< 0, (3.22)

[
Φ1 Φ2

∗ Φ3

]
< 0, (3.23)

where

Ξ1 = sym
(
WT

e P2Wr2 + VWv −WT
x̂

(
ε2G

TG
)
We

)
+WT

gΨ1Wg +WT
z ZWz,

Ξ2 =
[
Υ
T

1

√
κ + 1V Υ

T

2 Υ
T

3

]
,

Ξ3 = diag
{
−R−1

2 ,−R1,−R2,−P−1
2 ,−R−1

2 ,−ε3I
}
,

Υ1 =
√
κWr2 , Wr2 =

[
0n −LC −In LC In A − LC

]
,

Υ2 =
[
0 0 0 E 0 0
0 0 0

√
κE 0 0

]
, Υ3 =

[
0 0 0 0 0 −LTP2

]
,

Φ1 = sym
(
WT

x P1Wr1

)
−WT

yZWy, Wr1 =
[
A + BK In −BK]

,

Φ2 =

⎡
⎣
√
κ
(
AT +KTBT

)
ET

√
κET

√
κI 0 0

−√κKTBT 0 0

⎤
⎦, Wy =

⎡
⎢⎢⎣

In 0n,2n

0n In 0n

0n,2n In

⎤
⎥⎥⎦,

Φ3 = diag
{
−R−1

1 ,−P−1
1 ,−R−1

1

}
.

(3.24)

Perform a congruence transformation to (3.22) by J2 = diag{I6n, J1} with J1 =
diag{P2, I2n, P2, R2, In}. Defining L = P2L, we have (3.16). Performing a congruence
transformation to (3.23) by J4 = diag{J3, I3n} with J3 = diag{P−1

1 , I, P−1
1 } and defining

P 1 = P−1
1 , K = KP−1

1 , Q1 = Z−1
1 , Q2 = Z−1

3 , Q3 = R−1
1 , −P−1

1 Z3P
−1
1 ≤ Z−1

3 − 2P−1
1 and

−P2R
−1
2 P2 ≤ R2 − 2P2 we have (3.17). We can solve the inequalities (3.18) by using of the

cone complementarity linearization (CCL) algorithm in [31]. The proof is completed.
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k
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u

y1 y2

M1 M2

Figure 2: Mechanical system.

4. Illustrative Example

In this section, we use a mechanical example to illustrate the applicability of the theoretical
results developed in this paper.

The controlled plant is a mechanical system consisted of two cars, a spring, and a
damper, as shown in Figure 2. The objective is to design controllers such that the system
will maintain the zero position (y1 = 0 and y2 = 0) when the disturbance disappears. M1

and M2 denote the two car mass, respectively; k is the elastic coefficient of the spring; b is
the viscous damping coefficient of the damper; u denotes control input; y1 and y2 are the
displacements of the two cars, respectively. The right is the positive direction of the force and
the displacement. When u = 0, the balance positions are the zero place of the two cars y1 and
y2.

Choose the following set of state variables:

x =
[
x1 x2 x3 x4

]
=
[
y1 y2 ẏ1 ẏ2

]
. (4.1)

The equations of the mechanical system are in the following:

dx1 = x3dt,

dx2 = x4dt,

dx3 =
(
− k

m1
(x1 − x2) − b

m1
(x3 − x4) + u(t) + 0.001 sin(0.5t)

)
dt

+ 0.01x1dω(t),

dx4 =
(

k

m2
(x1 − x2) +

b

m2
(x3 − x4) + 0.001 sin(0.2t)

)
dt.

(4.2)

The parameters of the mechanical system are m1 = 1 kg, m2 = 2 kg, k = 36N/m, and b =
0.06Ns/m. Then the state-space matrices are given by

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−36 36 −0.6 0.6
18 −18 0.3 −0.3

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦, C =

[
1 0 0 0
0 1 0 0

]
,

E =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0.01 0 0 0
0 0 0 0

⎤
⎥⎥⎦, G =

⎡
⎢⎢⎣

0.05 0 0 0
0 0.05 0 0
0 0 0.05 0
0 0 0 0.05

⎤
⎥⎥⎦.

(4.3)
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Figure 3: State responses of closed-loop system.

The eigenvalues ofA are −0.4500±7.3347i, 0, 0, and thus this system is unstable. Our objective
is to design an observer-based controller in the form of (2.2) such that the closed-loop system
(2.1) is asymptotically stable in mean square. The network-related parameters are assumed:
the sampling period h = 2ms, the maximum delay η = 4ms, the maximum number of data
packet dropouts δ = 1, the quantizer parameters ρ = 0.9, and u0 = 2. By Theorem 3.2, we
obtain the following matrices (other associated matrices are omitted here):

P 1 =

⎡
⎢⎢⎣

0.5130 0.4367 −0.1801 −0.1547
0.4367 0.4903 −0.1504 −0.1654
−0.1801 −0.1504 3.4095 −1.2803
−0.1547 −0.1654 −1.2803 1.0595

⎤
⎥⎥⎦, K

T
=

⎡
⎢⎢⎣

−0.4605
−0.4650
−1.6411
0.0173

⎤
⎥⎥⎦,

P2 =

⎡
⎢⎢⎣

2.7987 −0.4600 −0.7901 −1.4199
−0.4600 5.3953 −1.2876 −2.5287
−0.7901 −1.2876 0.7402 1.3478
−1.4199 −2.5287 1.3478 2.7867

⎤
⎥⎥⎦, L =

⎡
⎢⎢⎣

9.2859 −4.2200
−6.3928 7.7879
0.5443 0.8766
1.2269 1.3828

⎤
⎥⎥⎦.

(4.4)



14 Mathematical Problems in Engineering

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

N
et

w
or

k-
in

du
ce

d 
de

la
y

×10−3

Figure 4: Network-induced delays.

According to (3.20), the gain matrices for the observer-based controller is given by:

KT =

⎡
⎢⎢⎣

−0.9531
−1.1033
−1.2654
−1.8243

⎤
⎥⎥⎦, L =

⎡
⎢⎢⎣

7.7216 2.5661
2.8715 4.5438
10.5690 8.6714
1.8687 1.7328

⎤
⎥⎥⎦. (4.5)

In the following, we provide simulation results. The initial condition is assumed to be
[−0.3, 0.7, 0.1,−0.5]. The state responses are depicted in Figure 3, from which we can
see that all the four state components of the closed-loop system converge to zero. In
the simulation, the network-induced delays and the data packet dropouts are generated
randomly (uniformly distributed within their ranges) according to the above assumptions,
and shown in Figures 4 and 5. The output signals y(t) and the successfully transmitted signal
arriving at the ZOH ŷ(t) (denotes as yZOH in figure) are shown in Figure 6, where we can see
the discontinuous behavior of the transmitted measurements.

5. Conclusion

In this paper, the problem of observer-based stabilization of the stochastic nonlinear systems
with limited communication has been studied. A new model has been proposed to describe
the stochastic nonlinear systems with a communication channel, which exists between the
output of the physical plant and the input of the dynamic controller. Based on this, the design
procedure of observer-based controller has been proposed, which guarantees the asymptotic
stability of the closed-loop systems. Finally, a mechanical system example is given to show
the effectiveness of the proposed controller design method.
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