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This paper presents a novel algorithm and architecture for digital frequency synthesis (DFS). It is
based on a simple difference equation. Simulation results show that the proposed DFS algorithm
is preferable to the conventional phase-locked-loop frequency synthesizer and the direct digital
frequency synthesizer in terms of the spurious-free dynamic range (SFDR) and the peak-signal-
to-noise ratio (PSNR). Specifically, the results of SFDR and PSNR are more than 186.91 dBc and
127.74 dB, respectively. Moreover, an efficient DFS architecture for VLSI implementation is also
proposed, which has the advantage of saving hardware cost and power consumption.

1. Introduction

Many modern devices, for example, radio receivers, ADSL (Asymmetric Digital Subscriber
Line), XDSL (X Digital Subscriber Line), 3G/4G mobile phones, walkie-talkies, CB radios,
satellite receivers, and GPS systems, require frequency synthesizers with fine resolutions,
fast channel switching, and large bandwidths. There are two types of frequency synthesizer
available: phase-locked loop (PLL) and direct digital frequency synthesis (DDFS).

PLL is a control system, which generates an output signal with phase matched that
of the input reference signal. Figure 1 shows the conventional PLL frequency synthesizer
consisting of a phase detector, a charge bump, a lowpass filter, a voltage control oscillator, and
a frequency divider [1–8]. The lower frequency signal, Fdiv, obtained by dividing the output
signal via the frequency divider, is compared with the reference signal, Fref, in the phase
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Figure 2: Block diagram of the conventional DDFS architecture.

detector to generate an error signal, which is proportional to the phase difference. The charge
bump converts the error signal pulse into analog current pulses, which are then integrated
by using the lowpass filter, and drives the voltage-controlled oscillator to obtain the desired
frequency.

The commonly used architecture of DDFS [9] shown in Figure 2 consists of a phase
accumulator, a sine/cosine generator, a digital-to-analog converter (DAC), and a lowpass
filter (LPF). It takes two inputs: a reference clock and a v-bit frequency control word (FCW).
In each clock cycle, the phase accumulator integrates FCW with periodical overflow to
produce an angle in the range of [0, 2π), the sine/cosine generator computes its sinusoidal
value, which in practice is implemented digitally and, therefore, follows by DAC and LPF
[10–23]. Various fractional-order ideal filters and fractional oscillators were proposed in [24–
29].

Instead of using the conventional methods above, we propose a novel digital
frequency synthesis (DFS) algorithm based on a simple difference equation. The rest of the
paper is organized as follows. In Section 2, a novel DFS algorithm is proposed. In Section 3,
the VLSI (very large-scale integration) digital frequency synthesizer is presented. In Section 4,
the FPGA implementation and the performance evaluation are given. Conclusion can be
found in Section 5.

2. The Proposed DFS Algorithm

The difference equation of DFS is as follows:

y[n − 2] − 2a1y[n − 1] + a2y[n] = x[n]. (2.1)
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Thus, we have the following characteristic equation:

z−2 − 2a1z
−1 + a2 = 0. (2.2)

The eigen-functions of (2.2) are represented as

z1,2 = re±jθ. (2.3)

The ZIR (zero-input response) of DFS can be written as

ZIR = rn(B1 cos(nθ) + B2 sin(nθ)), (2.4)

where B1 and B2 are determined by initial conditions, and n = 0, 1, 2, . . . .
For DFS with sine wave generator, we have

r = 1, B1 = 0, B2 = 1, ZIR = sin(nθ). (2.5)

The eigen-functions of DFS are therefore as follows:

z1,2 = e±jθ = cos θ ± j sin θ = c ± jd. (2.6)

Thus, the characteristic equation can be expressed as

z−2 − 2cz−1 + c2 + d2 = 0, (2.7)

where c2 + d2 = 1.
Equation (2.7) could be rewritten as

z−2 − 2cz−1 + 1 = 0, (2.8)

and the transfer function of DFS can be derived as

H(z) =
1

z−2 − 2cz−1 + 1
. (2.9)

According to (2.9), the corresponding difference equation could be derived as

y[n] = x[n] − y[n − 2] + 2c · y[n − 1], (2.10)

where

y[0] = B1 = 0,

y[1] = −B1 cos θ + B2 sin θ = d.
(2.11)
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As one can see, a rotation of angle φ in the circular coordinate system can be obtained
by performing a sequence of microrotations in an iterative manner. In particular, a vector
can be successively rotated through the use of a sequence of predetermined step angles:
α(i) = tan−1(2−i). This technique can be applied to generate many elementary functions,
in which only simple adders and shifters are required. Thus, the well-known coordinate
rotation digital computer (CORDIC) algorithm can be used for the DFS applications. The
conventional CORDIC in the circular coordinate system is as follows [36–39]:

u(i + 1) = u(i) − σ(i)2−iv(i),

v(i + 1) = v(i) + σ(i)2−iu(i),

w(i + 1) = w(i) − σ(i)α(i),

α(i) = tan−12−i,

(2.12)

where σ(i) ∈ {−1,+1} denotes the direction of the ith microrotation, σi = sign(w(i)) with
w(i) → 0 in the vector rotation mode, σi = − sign(u(i)) · sign(v(i)) with v(i) → 0 in the
angle accumulated mode, the corresponding scale factor k(i) is equal to

√
1 + σ2(i)2−2i, and

i = 0, 1, . . . , l − 1. The product of all scale factors after l microrotations is given by

K1 =
n−1∏

i=0

k(i) =
n−1∏

i=0

√
1 + 2−2i. (2.13)

In the vector rotation mode, sinφ and cosφ can be obtained, where the initial value (u(0),
v(0)) = (1/K1, 0). In principle, uout and vout can be computed from the initial value (uin,vin) =
(u(0), v(0)) by using the following equation:

[
uout

vout

]

= K1

[
cosφ − sinφ

sinφ cosφ

][
uin

vin

]

. (2.14)

In order to evaluate the sinusoidal parameters: c and d for the proposed digital fre-
quency synthesizer, the inputs of the CORDIC processor are uin = 1/K1, vin = 0, and win = θ
as shown in Figure 3.

3. Proposed Architecture for Digital Frequency Synthesizer

In this section, the architecture and the terminology associated with the proposed digital
frequency synthesizer are presented. Our scheme is based on the proposed DFS algorithm
combined with a CORDIC processor. It consists mainly of the radian converter, the CORDIC
processor, and the sine generator as shown in Figure 4.

Figure 5 shows the radian converter. It is a constant multiplier, which converts the
input signal into radians. Figure 6 shows the CORDIC processor, which evaluates the sinus-
oidal value and consists of three adders and two shifters.

Figure 7 shows the architecture of sine generator, which is the core of the proposed
digital frequency synthesizer. It consists of one multiplier, one adder, and two latches only.
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The key terminologies associated with the proposed digital frequency synthesizer are
as follows.

3.1. Output Frequency

The output frequency of the proposed digital frequency synthesizer is determined by the
coefficients d and c, since

θ = ωTs = tan−1
(
d

c

)
,

Fo =
1

2π
· tan−1

(
d

c

)
· Fs.

(3.1)

3.2. Frequency Resolution

For m-bit digital frequency synthesizer, the minimum change of the output frequency ΔFo,min

is expressed as

ΔFo,min =
1

2π
· tan−1

(
2−(m−1)

)
· Fs. (3.2)
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Figure 5: The radian converter.

3.3. Bandwidth

The bandwidth of digital frequency synthesizer is defined as the difference between the
highest and lowest attainable output frequencies, which are expressed as follows:

Fo,max =
1

2π
· tan−1(1) · Fs,

Fo,min =
1

2π
· tan−1

(
2−(m−1)

)
· Fs.

(3.3)

3.4. Peak Signal-to-Noise Ratio (PSNR)

A good direct digital frequency synthesizer should have an output signal with low noise,
which can be evaluated by using the following signal-to-noise-ratio (PSNR) measured in dB:

PSNR = 20 log
(

255√
MSE

)
, (3.4)

where MSE is the mean square error.

3.5. Spurious-Free Dynamic Range (SFDR)

The spurious-free dynamic range (SFDR) is defined as the ratio of the amplitude of the
desired frequency component to that of the largest undesired frequency component at the
output of a DDFS. It is expressed in decibels (dBc) as follows:

SFDR = 20 log
(
Ap

As

)
= 20 log

(
Ap

) − 20 log(As), (3.5)
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where Ap is the amplitude of the desired frequency component, As is the amplitude of the
largest undesired frequency component, and the higher the better.

4. FPGA Implementation of Digital Frequency Synthesizer

In this section, the proposed high-performance architecture of digital frequency synthesizer
is presented. Figure 8 depicts the system block diagram. The PSNR and SFDR of the proposed
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Figure 8: The proposed digital frequency synthesizer.
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Figure 9: The PSNR of the proposed digital frequency synthesizer at various word lengths (100 MHz
sampling rate and the maximum output frequency 12.5 MHz).

digital frequency synthesizer at various word lengths at 100 MHz sampling rate and the
maximum output frequency 12.5 MHz are shown in Figures 9 and 10, respectively.

The platform for architecture development and verification has also been designed
and implemented to evaluate the development cost. The proposed architecture of digital
frequency synthesizer has been implemented on the field programmable gate array (FPGA)
emulation board [40]. The FPGA has been integrated with the microcontroller (MCU)
and I/O interface circuit (USB 2.0) to form the architecture development and verification
platform.

Figure 11 depicts the block diagram and circuit board of the architecture development
and evaluation platform. In which, the microcontroller reads data and commands from PC
and writes the results back to PC via USB 2.0 bus; the FPGA implements the proposed
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Figure 10: The SFDR of the proposed digital frequency synthesizer at various word lengths (100 MHz
sampling rate and the maximum output frequency 12.5 MHz).
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Figure 11: Block diagram and circuit board of the architecture development and verification platform.

architecture of digital frequency synthesizer. The hardware code in portable hardware
description language runs on PC with the logic circuit simulator [41] and FPGA compiler
[42]. It is noted that the throughput can be improved by using the proposed pipelined
architecture while the computation accuracy is the same as that obtained by using the
conventional architecture with the same word length. Thus, the proposed digital frequency
synthesizer improves the power consumption and performance significantly. Moreover,
all the control signals are internally generated onchip. The proposed digital frequency
synthesizer provides a high-performance sinusoid waveform.

5. Conclusion

In this paper, we present a novel digital frequency synthesizer based on a simple difference
equation with pipelined data path. Circuit emulation shows that the proposed high-
performance architecture has the advantages of high precision, high data rate, and simple
hardware. For 16-bit digital frequency synthesizer, the PSNR and SFDR obtained by using
the proposed architecture at the maximum output frequency are 127.74 dB and 186.91 dBc,
respectively. As shown in Table 1, the proposed digital frequency synthesizer is superior to
the previous works in terms of SFDR, PSNR, and hardware [18, 30–35]. The proposed digital
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Table 1: Comparisons between the proposed DFS and other related works.

Authors
Items

Output
resolution (bits) SFDR (dBc) PSNR (dB) ROM

(words) Adders Multipliers

Strollo et al. [18] 13 90.2 — 1344 8 0
Song and Kim [30] 16 100 — 270 6 6
Langlois and Al-Khalili
[31] 14 96.2 — 1152 8 0

De Caro et al. [32] 12 80 — 0 2 2
De Caro and Strollo [33] 12 83.6 — 896 2 2
Yang et al. [34] 12 80 — 2176 6 0
Curticapean and
Niittylahti [35] 14 85 — 832 2 2

Ko et al. (This work) 14 133 113 14 8 1
16 187 128 16 8 1

frequency synthesizer designed by portable hardware description language is a reusable IP,
which can be implemented in various VLSI processes with trade-offs of performance, area
and power consumption.
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