
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 786923, 24 pages
doi:10.1155/2012/786923

Research Article
A Hybrid Multiobjective Genetic Algorithm for
Robust Resource-Constrained Project Scheduling
with Stochastic Durations

Jian Xiong,1, 2 Ying-wu Chen,1 Ke-wei Yang,1, 3

Qing-song Zhao,1 and Li-ning Xing1

1 Department of Management Science and Engineering, College of Information System and Management,
National University of Defense Technology, Hunan, Changsha 410073, China

2 School of Engineering and Information Technology, University of New South Wales at the Australian
Defence Force Academy, Canberra ACT 2600, Australia

3 Department of Computer Science, The University of York, York YO10 5GH, UK

Correspondence should be addressed to Jian Xiong, xiongjian1984@hotmail.com

Received 22 September 2011; Revised 23 November 2011; Accepted 7 December 2011

Academic Editor: Sri Sridharan

Copyright q 2012 Jian Xiong et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study resource-constrained project scheduling problems with perturbation on activity dura-
tions. With the consideration of robustness and stability of a schedule, we model the problem
as a multiobjective optimization problem. Three objectives—makespan minimization, robustness
maximization, and stability maximization—are simultaneously considered. We propose a hybrid
multiobjective evolutionary algorithm (H-MOEA) to solve this problem. In the process of the
H-MOEA, the heuristic information is extracted periodically from the obtained nondominated
solutions, and a local search procedure based on the accumulated information is incorporated. The
results obtained from the computational study show that the proposed approach is feasible and
effective for the resource-constrained project scheduling problems with stochastic durations.

1. Introduction

As for its practical importance in a wide range of real-world application areas, project
scheduling problems (PSPs) have received considerable attention in the operation research
field. PSPs usually address two matters: resource and time [1]. Given scarce resources, the
problem is modelled as a resource-constrained project scheduling problem (RCPSP), which is
a general type of PSPs that contains job-shop, flow-shop, and open-shop problems as special
cases [2]. As RCPSP is an NP-hard problem [1], heuristics or metaheuristics are preferred
to solve it. For details about the models and methods of the RCPSP, readers are referred to
several comprehensive surveys [3–7].
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It is very common that the execution of a schedule will be in the presence of uncertain
factors. With the consideration of uncertainty, the problem can be modelled as stochastic
RCPSP. One of the main avenues to solve the stochastic project scheduling problems is to
develop robust schedules that can deal with uncertain circumstances. Robustness maximiza-
tion is often taken as an objective in stochastic project scheduling problems. This methodo-
logy is referred to as robust scheduling. Van de Vonder et al. [8] presented concepts of quality
robustness and solution robustness and addressed the issue of achieving a tradeoff between
these two robustness measures.

For stochastic RCPSP, the conventional objective, makespan minimization, and the
new introduced objective, robustnessmaximization, are in conflict with each other to a certain
degree. In other words, stochastic RCPSP is inherently a multiobjective optimization prob-
lem. It is interesting to note that although stochastic project scheduling has considerable im-
portance in practical applications, the works on solving this problem by multiobjective
evolutionary approaches are rather scant [9]. Al-Fawzan and Haouari [10] proposed to
measure robustness of a given schedule via the total amount of free slack of all activities. The
free slack was also referred to as floating time by Abbasi et al. [11]. Chtourou and Haouari
[12] followed the approach of Al-Fawzan and Haouari but assigned weights to the free slack
of an activity according to the number of its successors and/or the sum of its required
resources. Lambrechts et al. [13] studied the stochastic RCPSP with uncertainty resource
availability. The authors developed proactive strategies to build a robust schedule that meets
the project deadline and minimizes the schedule instability cost, indicated as the deviations
between the planned and the actually realized activity starting times during the execution.
Ballestı́n and Leus [14] investigated various objective functions related to timely project com-
pletion of RCPSP with stochastic activity durations. The authors developed a Greedy Ran-
domized Adaptive Search Procedure (GRASP) to produce high-quality solutions. Ashtiani
et al. [15] introduced a new class of scheduling policies for solving RCPSP with stochastic
activity durations. The authors underlined the value of preprocessing in stochastic schedu-
ling. In the process, a subset of sequencing choices at the beginning of the planning horizon
was made and the rest of the scheduling decisions to future points were relegated in time.

In the present paper, we focus on the RCPSP with stochastic activity durations. The
term “robustness” used in the remainder of this paper refers to quality robustness, which rep-
resents the schedule’s ability to cope with the perturbation on activity durations. Wemeasure
the robustness as the difference between the planned makespan and the expectation of the
makespan in the real execution under stochastic environment. By considering a schedule’s
stability, the problem is modelled as a three-objective optimization problem, wheremakespan
minimization, robustnessmaximization, and stabilitymaximization are simultaneously taken
into account. A hybrid multiobjective genetic algorithm incorporating a local search proced-
ure is proposed to solve the problem.

2. Problem Description

2.1. Deterministic Resource-Constrained Project Scheduling

RCPSP is the optimization problem to schedule the interrelated activities (tasks, operations)
of a project with consideration of minimizing the makespan while given precedence con-
straints among activities and resource constraints are satisfied.

RCPSP can be formally described as follows: a project consists of a set of activitiesN =
N0,N1, . . . ,Nn,Nn+1, where each activity has to be executed without interruption. N0 and
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Nn+1 are dummy activities which, respectively, represent the start and end activity. The
number of available resource types isK and the vector of resources availability is denoted as
R = (R1, R2, . . . , RK), where Rk (k = 1, . . . , K) represents the availability of each resource type
k in each time period. For each activityNi (i = 1, . . . , n), the duration is denoted as di, and the
requested resources vector over the entire duration is represented as ri = (ri1, . . . , riK). Note
that for dummy activities N0 and Nn+1, the durations and the required resources are both
0. An activity-on-node direct acyclic graph, denoted as G(N,A), is employed to represent
the precedence relations amongst the activities. The direct successors and predecessors of an
activityNi are denoted as Succi and Predi, respectively. The activities are interrelated by two
types of constraints: precedence constraint and resource constraint. The former constraint
indicates that each activity should be scheduled after all of its predecessor activities are
accomplished. The latter constraint ensures that for each type of resource, the amount of being
occupied cannot exceed the total availability at any time point. Each activity has start and
finish times, denoted as sti and fti, respectively. A schedule S consists of the vector of start
time of the nondummy activities, denoted as S = (st1, . . . , stn). The makespan of the schedule
S is denoted as M(S).

2.2. Resource-Constrained Project Scheduling with Stochastic Duration

However, in reality, it is quite common that execution of a schedule may be confronted with
uncertain factors. Although there might be multiple uncertain factors affecting a schedule’s
execution, we just consider the situation that the activity durations are subject to perturbation,
which is also a most common uncertainty addressed in the related literature. For example, in
an airlift task scheduling, the extreme bad weather will possibly have a negative impact on
the execution of the tasks.

Under the effect of perturbation, the durations of some activities will be delayed and,
finally, the perturbation might result in delay to the whole schedule. The delay amount is
corresponding to the magnitude of perturbation, which is depicted by the following two
elements: perturbation strength and perturbation period. The former element represents the
strength of a perturbation, which is denoted as St and is normalized in the interval [0, 1].
The closer St is to 1, the more strength the perturbation is and vice versa. The perturbation
period is used to indicate the duration of perturbation and is determined by the occurrence
time and the end time of the perturbation, denoted asOT andET , respectively. In the presence
of perturbation, actual start time and finish time of an activity are represented as stui and ftui ,
respectively. The actual duration is denoted as du

i and is calculated as follows:

du
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Round((1 + St)di) + 1,

di,

if stui ∈ [OT,ET]

or stui + di ∈ [OT,ET],

otherwise,

(2.1)

where Round(·) is the function of obtaining the integer part of a real value. We assume that if
any part of the execution of an activity is affected by the perturbation, then the whole activity
is considered to be affected.

In this paper, we assume that perturbation strength, perturbation occurrence time and
end time follow normal probability distribution, which is a most often used distribution in
real-world application. In a specific realization of the perturbation, denoted as µ, the actual
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makespan of a schedule S is denoted as Mµ(S). In the presence of perturbation, robust pre-
dictive schedules are preferred to cope with the impact on the durations. Here we indicate
the robustness of a schedule under a specific realization of uncertainty, denoted as Robµ(S),
by the difference between the deterministic makespan before disruption, and the actual mak-
espan after execution [13, 16]. The robustness under a specific realization of the uncertainty
is formally defined as follows:

Robµ(S) =
1

exp(Mµ(S) −M(S)/M(S))
. (2.2)

In themeasurement of robustness under uncertaintywith a probability distribution, an
analytical closed form of the effective fitness function is usually not available [17]. In order to
tackle this issue, we employ simulation method, Monte Carlo in concrete, to approximate the
effective function of the robustness, denoted as the expectation value with a sample size Nµ.
Then, the robustness value of a schedule in the presence of uncertainty, Rob(S), is calculated
as follows:

Rob(S) = E
[
Robµ(S)

]
=

1
Nµ

Nµ∑

m=1

Robµm(S), (2.3)

where µm is the mth realization of the uncertainty in the sample space.
In the robust design techniques, another important issue in need to be considered is the

stability of the solutions. We employ the standard deviation to indicate the stability measure
of the solutions, denoted as Std[Robµ(S)] and calculated as follows:

Std
[
Robµ(S)

]
=

√
√
√
√ 1

Nµ

Nµ∑

m=1

(
Robµm(S) − E[Robµ(S)]

)2
. (2.4)

With the consideration of both magnitudes of robustness measure and stability of the
solution, the problem can bemodelled as an uncertainty-basedmultiobjective design problem
[18], instead of combining these two measures by a linear weighted sum method, such as
in [16]. What should be noted is that the difference between predesigned and actual mak-
espan by itself has little relevance since a lower level of difference can be easily achieved by
predesigning a schedule with a longer makespan. In [16], the authors defined the robustness
of a schedule as the linear combination of the expected delay and the expected makespan via
weighted sum method. Lambrechts et al. [13] just measured the robustness as a weighted
deviation of the starting times. However, the weight coefficient or weight vector varies in dif-
ferent decision makers. A final solution is much dependent on the decision makers’ prefer-
ences. Thus, we model the RCPSP with uncertain durations as a multiobjective optimization
problem where the concurrently considered three objectives are makespan minimization,
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robustnessmaximization, and stabilitymaximization (standard deviationminimization). The
optimization model is formally given as follows:

obj. : (1)min f1 = M(S),

(2)max f2 = E
[
Robµ(S)

]
,

(3)min f3 = Std
[
Robµ(S)

]

s.t. : (1)max
{
stj + dj | Nj ∈ Predi

} ≤ sti, ∀i,

(2)max
{
stuj + du

j | Nj ∈ Predi

}
≤ stui , ∀i,

(3)
n∑

i=1

rik(t) ≤ Rk, ∀t and k = 1, 2, . . . , K.

(2.5)

In the above optimization model, objective (1) represents the minimization of makespan,
objectives (2) and (3), respectively, indicate the maximization of robustness and stability.
Constraints (1) and (2) are precedence constraints which ensure the precedence feasibility
in both deterministic and uncertain environment, that is, the activity Ni cannot be started
until all of its predecessors are completed. Constraint (3) is a resource constraint, indicating
that the total amount of the resources occupied at any time point cannot exceed the resource
availability.

Within the framework of multiobjective optimization, the concept of dominance is
defined as follows: an individual I1 dominates individual I2 if I1 does at least as well as
I2 on all objectives, and strictly better on at least one. Thus, in this paper, we formally define
the schedule dominance as follows.

Definition 2.1. A schedule S1 dominates schedule S2 if M(S1) ≤ M(S2) ∧ E[Robµ(S1) ≥
E[Robµ(S2)] ∧ Std[Robµ(S1)] ≤ Std[Robµ(S2)], with strict inequality holding for at least one
objective measure.

The nondominance concept can be defined as follows.

Definition 2.2. A schedule S∗ is an individual in the population. It is said to be a nondominated
schedule if it is not dominated by any other individual in the population.

For the sake of clarity, we list the notations which are used to represent the RCPSP as
follows.

Rk: the availability of kth type of resource, k = 1, . . . , K.

rik: the amount of the kth type of resource requested by activity Ni, i = 1, . . . , n.

di: the duration of activity Ni in the deterministic situation.

sti: the start time of activity Ni in the deterministic situation.

fti: the finish time of activity Ni in the deterministic situation.

du
i : the duration of activity Ni in the presence of perturbation.
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stui : the start time of activity Ni in the presence of perturbation.

ftui : the finish time of activity Ni in the presence of perturbation.

S: the schedule, S = (st1, . . . , stn).

M(S): the makespan of schedule S in the deterministic situation.

Mµ(S): the makespan of schedule S under a specific realization of uncertainty µ.

St: the perturbation strength.

OT : the occurrence time of the perturbation.

ET : the end time of the perturbation.

3. Methodology

As the three objectives are in conflict with each other, a multiobjective optimization approach
is required to solve the problem. To do this, we employ one of the classic multiobjective evol-
utionary algorithms, named NSGA-II [19], as the basic optimizer for the problem. In the
procedure of NSGA-II, the parent population and the offspring are combined and sorted in
order to generate the next-generation population. The combined population is classified into
different ranks of nondomination via a nondominated sorting mechanism. In order to main-
tain the diversity among nondominated solutions, a crowding-distance assignment mecha-
nism is used in the selection of solutions in the same nondomination rank. However, the
chromosome and genetic operators are redesigned for the RCPSP.

3.1. Chromosome Representation and Population Initialization

3.1.1. Chromosome Representation

In the RCPSP, a solution must contain the information about the sequence of activity execu-
tion.We employ the activity sequence proposed byHartmann [20] to represent an individual,
I, denoted as follows:

I =
(
j0, j1, . . . , jn, jn+1

)
. (3.1)

The activity sequence is a precedence feasible permutation of the set of activities and the
element at each index is the ID of the activity to be executed.

In order to generate a schedule, the Serial Schedule Generation Scheme (SSGS) is em-
ployed to perform this transformation from chromosome representation. SSGS consists of n
stages for a network of n nondummy nodes, and in each stage one activity from the activity
sequence is selected and executed at its earliest possible time, considering precedence and
resource constraints [21]. Algorithm 1 shows the pseudocode of the procedure of SSGS.

3.1.2. Population Initialization

In the operator of population initialization, the individuals are generated serially via a two-
step procedure [20, 21]: the first step is identifying the eligible activities, then one of the them
is randomly selected in the second step. At a position in the activity list, an activity is said to



Mathematical Problems in Engineering 7

i = 1
while i ≤ n do

sti = 0, st′i = 0, ftmax = 0
Obtain the maximum finish time of the predecessors: ftmax =
max{ftj | Nj ∈ Predi}
Determine the earliest time point, st′i, which satisfying the resource con-
straints and st′i ≥ ftmax.
Set sti = st′i.

end while

Algorithm 1: Pseudocode of the Serial Schedule Generation Scheme (SSGS).

be eligible if all of its predecessors have been scheduled. Formally, let P(i) be the position of
activityNi in the activity list, if we look at the position q (q = 0, 1, . . . , n+1), an activityNq∗ is
said to be an eligible activity at the position q if P(j) < q, for all j,Nj ∈ Predq∗ . The set which
consists of all eligible activities at position q is denoted as EAq.

3.2. Genetic Operators

The crossover and the mutation operators are crucial for the performance of the genetic algo-
rithms. The crossover operator combines two parents to generate two children. Similar with
the situation in nature, crossover ensures that the childrenmaintain some good characteristics
of their parents. We employ a two-point position-based crossover operator [22, 23] in this
research. For each crossover operator, two integer random numbers, r1 and r2, r1 < r2, are
selected from the interval [1, n]. Usually, the two-point position-based crossover for schedu-
ling problem can be divided into two versions [22]: in the first version, the activities outside
the two selected points are inherited from one parent to the child, while in the other version,
the set of activities between two randomly selected points is inherited from one parent to
the child. In this research, we employ the first version of crossover operator. Let P1 and P2
be the two selected parents, CH1 and CH2 be the two new generated children. It is clear
that the children consist of three parts separated by the two crossover points (r1 and r2).
For example,CH1 is constructed as (jCH1

1 , . . . , jCH1
r1 , jCH1

r1+1
, . . . , jCH1

r2 , jCH1
r2+1

, . . . , jCH1
n ), where the

first part (jCH1
1 , . . . , jCH1

r1 ) and the third part (jCH1
r2+1

, . . . , jCH1
n ) are inherited from the parent

P1 and the second part (jCH1
r1+1

, . . . , jCH1
r2 ) is taken from the parent P2. What should be noted

is that in order to maintain the precedence feasibility of the new generated children, in the
inheritance of the second and the third parts, all elements that already exist in the previous
parts of children should be eliminated. The construction of CH2 is the same with CH1. In
[21], the authors proved this crossover operator can create precedence feasible offspring.
Figure 1 shows an example of the crossover operation. Suppose a project has 10 nondummy
activities, the parents P1 and P2 are (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and (1, 4, 5, 2, 3, 7, 6, 9, 8, 10),
respectively. The crossover points are r1 = 4 and r2 = 7. According to the two-point cross-
over operation, the new generated children are CH1 = (1, 2, 3, 4, 5, 7, 6, 8, 9, 10) and CH1 =
(1, 4, 5, 2, 3, 6, 7, 9, 8, 10).

Mutation is another important operator which is used to strengthen the algorithm’s
ability of exploring the unexplored area of the search space. We use the mutation operator
presented by [21]. The mutation operator can be described as follows. An random integer
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Figure 1: An example of crossover operation.
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number, a, is generated from interval [1, n]. Let activity j ′
b
be the last predecessor of acti-

vity j ′a and let activity j ′c be the first successor of j ′a in the activity list. Another random
integer number, d, is generated from the interval [b + 1, c − 1]. If d < a, the activity list is
replaced by (j ′0, . . . , j

′
d−1, j

′
a, j

′
d, . . . , j

′
a−1, j

′
a+1, . . . , j

′
n+1). If d > a, it is replaced by (j ′0, . . . ,

j ′a−1, j
′
a+1, . . . , j

′
d−1, j

′
a, j

′
d+1, . . . , j

′
n+1). Figure 2 shows an example of mutation operator.

3.3. Hybrid Multiobjective Evolutionary Algorithm for RCPSP

3.3.1. Framework of the H-MOEA

As a nature-inspired metaheuristic, multiobjective evolutionary algorithms (MOEAs) have
been used successfully in the past to solve the multiobjective problems, especially the com-
plex optimization problem. To date, there are several representative MOEAs. For the brief
view history of the MOEAs and the mechanism of each MOEA, readers are referred to the
survey [24]. In order to speed up the convergency of the optimization algorithm, local search
procedure is usually hybridized with the MOEAs. Ishibuchi andMurata [25, 26]were among
the first to implement such a hybridization. [27] improved the performance of multiobjective
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Figure 3: The conceptual framework of the hybrid multiobjective evolutionary algorithm for RCPSP.

genetic local search, and a comparative experiment study was implemented on the 0/1
knapsack problem [28].

In order to deal with the stochastic RCPSPs more effectively, a hybrid multiobjective
evolutionary algorithm (H-MOEA) is proposed. In the natural-inspired metaheuristics, the
individuals in the population contain a rich information about the solution. In several single-
objective combinatorial optimization problems, experience shows that this heuristic informa-
tion is useful to the convergence performance of the algorithms [29–32]. Different from single-
objective optimization, the useful information can be obtained from the nondominated set,
instead of from a single solution. In the procedure of H-MOEA, the information contained
in the nondominated set is extracted periodically and utilized with a Pareto dominance
relation based local search [33]. Figure 3 shows the conceptual framework of the proposed
H-MOEA. From the figure, it can be seen that H-MOEA consists of two main functional
modules: a search module (MOEA) and a knowledge module. The first module is used to
search through the vast solution space and identify the nondominated solutions, while the
knowledge module takes charge of obtaining useful information throughout the ongoing
optimization process and applying this knowledge to guide the subsequent search process.

3.3.2. Heuristic Information

In this paper, we focus on the extraction and utilization of Position Priority Information which
indicates the useful knowledge about the position of an activity in the schedule. The infor-
mation used to establish an appropriate schedule priority for different activities is stored in
a matrix PPI with size n × n, where n is the number of nondummy activities. The element in
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Table 1: Example of 6 schedules with 6 nondummy activities.

I1 I2 I3 I4 I5 I6

Schedule 1 1 2 3 4 5 6
Schedule 2 1 3 2 4 6 5
Schedule 3 2 1 3 4 5 6
Schedule 4 2 3 1 5 4 6
Schedule 5 1 2 4 3 6 5
Schedule 6 3 1 2 6 4 5

Table 2: Example of the Position Priority Informationmatrix.

I1 I2 I3 I4 I5 I6

Activity 1 3 2 1 0 0 0
Activity 2 2 2 2 0 0 0
Activity 3 1 2 2 1 0 0
Activity 4 0 0 1 3 2 0
Activity 5 0 0 0 1 2 3
Activity 6 0 0 0 1 2 3

the matrix PPI(i, j) denotes the appearance times of an activity Ni at the position j. Tables 1
and 2 show an example of the construction of the priority information matrix. Table 1 shows
6 different schedules of a project with 6 nondummy activities. If we look at the first position
I1, for the 6 different schedules, the scheduled activities at this position are 1, 1, 2, 2, 1, 3,
respectively. In other words, for the 6 different activities, the appearance times at the first
position are 3, 2, 1, 0, 0 and 0, respectively. Then, the first column of the matrix PPI is
accordingly constructed (see Table 2).

3.3.3. Local Search with the Heuristic Information

In H-MOEA, the feasible schedule (or part of it) can be constructed based on the obtained
heuristic information. Then the two-step individual generation procedure [20, 21] can be
modified as follows: the first step is identifying the eligible activities, then one of them is
selected according to the Position Priority Information. In the second step of the modified indi-
vidual generation procedure, the heuristic information stored in the matrix is transformed
into the selection probability and Roulette Selection is employed to identify the next activity
to be scheduled. For example, we suppose the Eligible Activity Set in the second position
EA2 = (N3,N4), from the matrix PPI shown in Table 2, and we can see that PPI(3, 3) and
PPI(4, 3) are 2 and 1, respectively. Then the selection probability for activitiesN3 andN4 are
2/(2+1) and 1/(2+1), respectively. We denote this Modified Individual Generation procedure
asMIG.

In single-objective project scheduling problems, experience showed that good candi-
date schedules are usually found “fairly close” to other good schedules [34–36]. Encouraged
by this experience, we employ a local search procedure around the neighborhood of the
schedule in themultiobjective version of the PSPs. Let Indi be an individual in the population,
Indnew

i the individual after the local search. If Indnew
i dominates Indi, then replace the

Indi with Indnew
i in the population. Similar with the crossover and the mutation operators,
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i = 1, p = 0, m = 0
while i ≤ population size do

p = randomly generated value between the interval [0, 1]
if p ≤ pls then

m = randomly generated value between the interval [1,n].
Copy the [1,m] part of the individual Indi to the individual Indnew

i .
Generate the [m + 1, n] part of the individual Indnew

i by the operator
MIG.
Evaluate the individual Indnew

i .
if Indnew

i dominates Indi then
Replace Indi with Indnew

i .
end if

end if
i = i + 1

end while

Algorithm 2: Pseudocode of the local search procedure.

the local search is conducted with a probability rate, denoted as pls. The procedure of the local
search is illustrated in Algorithm 2. In each generation, the local search is implemented on
each individual with the predefined local search probability. For each local search procedure,
just one neighbor is generated for the individual. However, the local search procedure
employed in the current research is the simplest form. We are aware of that several issues are
important in the hybridization of MOEAs and local search, such as balance between genetic
search and local search [37, 38] size of examined neighborhood and choice of solutions to
which local search is applied [39]. The main focus of this paper is extracting and utilizing the
knowledge in RCPSP, and the above-mentioned issues and comparative study with respect
to RCPSP will be addressed in our future study to improve the effectiveness of knowledge
utilization and the performance of H-MOEA.

4. Case Study

4.1. Hypothetic Problem Description

In this section, we first studied a hypothetical problem to illustrate the proposed approach.
Suppose that a project consists of 20 nondummy activities and there are 4 types of resources
with availability R = (48, 53, 42, 50). The precedence relation amongst activities is depicted
as in Figure 4. In the network, the nodes N0 and N21 are dummy nodes which, respectively,
indicate the start node and the end node. The parameters about durations and required
resources for each activity are listed in Table 3.

4.2. Parameter Settings

We used a population size of 40. Crossover and mutation probabilities were 0.98 and 0.1,
respectively. The evolution was terminated after 200 generations. Please note that the cross-
over probability is defined for each individual. In the calculation of robustness, the sample
size was set as 50. For the proposed H-MOEA, the rate of local search was set as 0.45. In all
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Figure 4: The precedence relation of tasks.

Table 3: Durations and required resources of the nondummy activities of the hypothetic problem.

Ni di ri
N1 17 (19, 20, 10, 19)
N2 30 (13, 7, 9, 13)
N3 23 (14, 7, 7, 20)
N4 21 (19, 20, 20, 20)
N5 29 (13, 15, 5, 20)
N6 26 (14, 19, 6, 16)
N7 29 (18, 12, 18, 6)
N8 22 (11, 18, 10, 5)
N9 21 (12, 16, 7, 18)
N10 24 (6, 7, 19, 16)
N11 26 (13, 9, 6, 15)
N12 22 (18, 8, 9, 11)
N13 25 (8, 13, 16, 12)
N14 19 (16, 13, 6, 20)
N15 24 (10, 15, 6, 18)
N16 25 (17, 20, 19, 7)
N17 20 (14, 22, 13, 12)
N18 18 (13, 17, 20, 10)
N19 27 (21, 22, 19, 17)
N20 20 (16, 24, 17, 14)

of the experiments, we assumed that the perturbation interval covered the whole execution
process of the schedules, that is, all of the activities were affected by the perturbation. For
the hope of eliminating the effect of random generator, each algorithm was repeated 30 times
with different random seeds.

4.3. Experiment Results

We studied the scenarios under uncertainties with different perturbation strengths 0.15, 0.25,
and 0.35. The obtained nondominated solutions in three-dimensional space are depicted as
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Figure 5: The obtained nondominated solutions in the three-dimensional space with different perturbation
strengths: (a) perturbation strength 0.15; (b) perturbation strength 0.25; (c) perturbation strength 0.35.

in Figure 5, where the distribution of the solutions under perturbation strengths 0.15, 0.25,
and 0.35 is shown in Figures 5(a), 5(b), and 5(c), respectively. The well-distributed solutions
shown in these figures indicate that the proposed three objectives, named makespan,
robustness, and stability, are in conflict with each other.

In order to visualize the relation between the makespan and the robustness, we pro-
jected the nondominated solutions in the robustness-makespan space (see Figure 6). Figures
6(a), 6(b), and 6(c), respectively, show the projection of the obtained results under perturba-
tion strengths 0.15, 0.25, and 0.35. It can be seen from these figures that some dominated
solution were included in the robustness-makespan space. This is because these solution
provided a better performance on stability. By looking at the measure of robustness, we can
see that, by the increase of the perturbation strength, the robustness value decreased (from
Figure 6(a) to Figure 6(c)) as expected.

Another important issue of RCPSP is genotype-phenotype analysis. We investigated
two nondominated solutions obtained under the perturbation 0.25. SolutionA, IA = (0, 1, 6, 3,
13, 2, 7, 4, 16, 5, 9, 10, 12, 19, 8, 14, 15, 20, 17, 11, 18, 21), with objective values makespan = 210,
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Figure 6: The projection of the nondominated solutions in the robustness-makespan space with different
perturbation strengths: (a) perturbation strength 0.15; (b) perturbation strength 0.25; (c) perturbation
strength 0.35.

robustness = 0.8951, and standard deviation = 0.0859; solution B, IB = (0, 3, 1, 6, 4, 16, 13, 2,
5, 7, 9, 12, 8, 14, 11, 10, 19, 17, 15, 18, 20, 21), with objective values makespan= 210, robustness =
0.8444, and standard deviation = 0.0342. One can see that although these two solutions had the
same makespans, solution A had a better measure on robustness than solution B. Figures 7
and 8, respectively, show the genotype-phenotype mapping of solutions A and B. It can be
seen from the figures that for both schedules, since there weremany available resources, more
than one precedence-feasible activities were allowed to be executed concurrently.

Let us recall that we indicated the robustness of a schedule as the difference between
the deterministic makespan before disruption, and the actual makespan after execution. In
some literature, such as [10], a surrogate measure—total amount of free slacks—was employed
to indicate the robustness of a schedule. It seems that a schedule with higher measure of free
slack sum would cope with the perturbation better. Actually, this situation cannot be held in
some cases. For example, by looking at the obtained solutions A and B, it can be seen from
Figure 7 that the total amount of the free slacks of schedule A is 4 + 4 + 6 = 14 (denoted as
blue blocks in the figure), while the value for schedule B is 3 + 2 + 6 + 10 = 21 (see Figure 8).
However, in real execution in the presence of perturbation, solution A, compared to solution
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Figure 7: Snapshots of obtained schedule A, with objective values makespan = 210, robustness = 0.8951, and
standard deviation = 0.0859.

B, had a better performance of absorbing the uncertainty in the environment, thus, had a
lower measure of difference with the planned execution in deterministic environment.

4.4. Performance Analysis

In this section, we evaluated the performance of the proposed H-MOEA. Here we use MOEA
to represent the normal MOEA. We employ the measure of set cover [40], denoted as SC, to
implement the comparison among different approaches. Let A and B be the two obtained
nondominated sets, SC(A,B) is defined as the rate of solutions in B which are dominated by
the solutions inA. It is clear that a higher value of SC(A,B) indicates a better performance of
the set A. Note, however, SC(A,B) is not necessarily equal to SC(B,A).

4.4.1. Test Problem Instances

Besides the hypothetical problem described in the above section (denoted as P0), we tested
our approach on the benchmark problems generated with Progen, which is a problem
generator developed by Kolisch et al. [41]. The network complexity (NC) and resource factor
(RF) are two important parameters to Progen. The former parameter indicates the average
number of immediate successors of an activity. The latter parameter, ranged between 0 and 1,
is used to control the percentage of resource types required by an activity. In the generation of
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Figure 8: Snapshots of obtained schedule A, with objective values makespan = 210, robustness = 0.8444, and
standard deviation = 0.0342.

Table 4: Parameter settings of the 20 generated instances of benchmark.

Index N NC K RF Index N NC K RF
P1 20 1.8 4 0.75 P11 30 2.5 2 0.75
P2 20 1.8 4 1 P12 30 2.5 2 1
P3 20 2.1 4 0.75 P13 60 1.8 4 0.75
P4 20 2.1 4 1 P14 60 1.8 4 1
P5 20 2.5 2 0.75 P15 60 2.1 4 0.75
P6 20 2.5 2 1 P16 60 2.1 4 1
P7 30 1.8 4 0.75 P17 60 2.5 2 0.75
P8 30 1.8 4 1 P18 60 2.5 2 1
P9 30 2.1 4 0.75 P19 120 1.8 4 0.75
P10 30 2.1 4 1 P20 120 1.8 4 1

the problem instances, we assumed that the durations, the resource availability, and the re-
quired resources for each activity were generated between the predefined intervals, satisfying
the resource constraint that the maximum of the required resource cannot exceed the resource
availability. Table 4 shows the parameter settings of the 20 generated instances.

4.4.2. Performance Comparison under the Same Number of Generations

The algorithm parameters remained the same as in the above section. We ran the algorithm
with all of the generated instances under three different perturbation strengths (0.15, 0.25,
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Table 5: The mean value and the variance of the set covers SC(H-MOEA,MOEA)(SC1) and
SC(MOEA,H-MOEA)(SC2) within the scenarios of perturbation strengths 0.15, 0.25, and 0.35, under the
same number of generations.

St = 0.15 St = 0.25 St = 0.35

SC1 SC2 SC1 SC2 SC1 SC2

P0 0.3158 ± 0.0631 0.1158 ± 0.0151 0.4375 ± 0.0675 0.0983 ± 0.0093 0.4550 ± 0.0967 0.0883 ± 0.0076
P1 0.2492 ± 0.0487 0.1508 ± 0.0176 0.3900 ± 0.0931 0.1908 ± 0.0367 0.2942 ± 0.0659 0.1542 ± 0.0270
P2 0.2933 ± 0.0401 0.1792 ± 0.0245 0.3167 ± 0.0647 0.1683 ± 0.0327 0.3483 ± 0.0564 0.2058 ± 0.0427
P3 0.4383 ± 0.0487 0.2000 ± 0.0200 0.4667 ± 0.0901 0.0825 ± 0.0124 0.2992 ± 0.0354 0.1200 ± 0.0150
P4 0.2942 ± 0.0530 0.1350 ± 0.0245 0.3400 ± 0.0600 0.1542 ± 0.0221 0.4517 ± 0.0974 0.1400 ± 0.0264
P5 0.2892 ± 0.0574 0.1250 ± 0.0145 0.4283 ± 0.0817 0.1608 ± 0.0274 0.4267 ± 0.0820 0.1758 ± 0.0416
P6 0.4700 ± 0.0406 0.1008 ± 0.0145 0.5475 ± 0.0759 0.1458 ± 0.0256 0.6250 ± 0.0870 0.0558 ± 0.0068
P7 0.3417 ± 0.0690 0.1992 ± 0.0461 0.4250 ± 0.0762 0.1958 ± 0.0579 0.5083 ± 0.0917 0.1550 ± 0.0479
P8 0.3517 ± 0.0552 0.2583 ± 0.0653 0.3542 ± 0.0645 0.2800 ± 0.0534 0.3608 ± 0.0694 0.2667 ± 0.0302
P9 0.3858 ± 0.0747 0.2317 ± 0.0354 0.2600 ± 0.0290 0.2592 ± 0.0259 0.3864 ± 0.0743 0.2218 ± 0.0189
P10 0.4625 ± 0.0653 0.1442 ± 0.0396 0.4458 ± 0.0777 0.1733 ± 0.0345 0.4408 ± 0.0979 0.1442 ± 0.0299
P11 0.5025 ± 0.0981 0.1650 ± 0.0432 0.3608 ± 0.0629 0.1500 ± 0.0281 0.4127 ± 0.0503 0.2967 ± 0.0363
P12 0.3258 ± 0.0494 0.2258 ± 0.0446 0.3025 ± 0.0583 0.2650 ± 0.0455 0.3325 ± 0.0647 0.3033 ± 0.0510
P13 0.3033 ± 0.0427 0.2367 ± 0.0415 0.2508 ± 0.0441 0.3242 ± 0.0780 0.3783 ± 0.0673 0.2433 ± 0.0610
P14 0.3408 ± 0.0636 0.2567 ± 0.0456 0.3483 ± 0.0716 0.2992 ± 0.0559 0.2908 ± 0.0562 0.2974 ± 0.0758
P15 0.3983 ± 0.0803 0.2492 ± 0.0481 0.3358 ± 0.0814 0.2325 ± 0.0663 0.3175 ± 0.0612 0.2608 ± 0.0549
P16 0.4392 ± 0.0781 0.2383 ± 0.0535 0.3292 ± 0.0627 0.2708 ± 0.0398 0.3667 ± 0.0927 0.3017 ± 0.0765
P17 0.3017 ± 0.0693 0.3992 ± 0.0727 0.3500 ± 0.0680 0.3225 ± 0.0727 0.4075 ± 0.0974 0.2642 ± 0.0780
P18 0.3400 ± 0.0475 0.2833 ± 0.0447 0.3508 ± 0.0834 0.3433 ± 0.0700 0.3792 ± 0.0598 0.2683 ± 0.0440
P19 0.3842 ± 0.0528 0.2817 ± 0.0720 0.3983 ± 0.0912 0.2375 ± 0.0694 0.3375 ± 0.0804 0.2533 ± 0.0740
P20 0.3858 ± 0.0649 0.1375 ± 0.0271 0.3508 ± 0.1001 0.2392 ± 0.0720 0.3075 ± 0.0516 0.2358 ± 0.0592

and 0.35). First, we compared the performances of the proposed H-MOEA with normal
MOEA under the same number of generations, that is, both algorithms were terminated after
200 generations. The results are reported in the Table 5, where SC1 represents the set cover
SC(H-MOEA, MOEA) and SC2 denotes the set cover SC(MOEA, H-MOEA).

In Table 5, the mean value of the set cover which is better than its reverse figure is pre-
sented in bold face. From the figures, one can clearly see that the H-MOEA considerably out-
performed the normal one in most cases. For the instances with 20 (P0–P6) and 30 (P7–P12)
nondummy activities, H-MOEA had a significant better performance than MOEA in all sce-
narios with three different perturbations. For example, if we look at the experimental results
of instance P1, the mean values of SC1 under the perturbations with strengths 0.15, 0.25, and
0.35 are 0.2492, 0.3900, and 0.2942, respectively, while the reverse figures (SC2 under the
perturbations with strengths 0.15, 0.25, and 0.35) are only 0.1508, 0.1908, and 0.1542, respec-
tively. The same set of figures for P6 are 0.4700, 0.5475, 0.6250 and 0.1008, 0.1458, 0.0558,
respectively. For the instances with 60 nondummy activities, H-MOEA performed better
than normal MOEA in most cases. However, one can see that for the instances P13 under
perturbation strength 0.25 and P17 under perturbation strength 0.15,MOEA outperformedH-
MOEA, with the mean values of set cover SC2 0.3242 and 0.3992, respectively, and the reverse
figures are 0.2508 and 0.3017. Also, for the instances P14 under perturbation strength 0.35
and P18 under perturbation strength 0.25, H-MOEA andMOEA approximately had the same
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Figure 9: The obtained relative computation time (RCT) with different local search rates for P0, P8, and
P15 with a perturbation strength 0.15.

performance. Finally, we investigated two instances with 120 nondummy activities. The
experimental results also suggest that H-MOEAperformed better thanMOEAunder deferent
perturbation strength levels.

4.4.3. Remarks on H-MOEA

In the proposed H-MOEA, the information contained in the obtained approximating non-
dominated solutions were extracted and utilized periodically. The experimental results dis-
cussed above show that H-MOEA has a considerable better performance than normalMOEA.
This indicates that the heuristic information accumulated in the previous runs is very useful
to guide the subsequent search process. Since we employed a local search procedure in the
process of MOEA, it was unavoidable that the computation time of the proposed H-MOEA
increased to a certain degree. In other words, the improvement of convergence performance
was with the sacrifice of computation time. Thus, it is an important issue to investigate the
relation between the local search rate and the performance of H-MOEA. Here, we employ
two measures, relative set cover RSC and relative computation time RCT , to indicate the
performance of the proposed H-MOEA. RSC and RCT are calculated as follows:

RSC =
SC(H-MOEA,MOEA)
SC(MOEA,H-MOEA)

, (4.1)

RCT =
CTH-MOEA

CTMOEA
, (4.2)
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perturbation strength 0.15.

where CTH-MOEA denotes the computation time of the proposed H-MOEA and CTMOEA

represents the computation time of the normal MOEA.
We tested the effect of local search rate pls on the proposed H-MOEA by varying

the local search rate from 0.1 to 0.75 on the problems P0 (20 nondummy activities), P8 (30
nondummy activities), and P15 (60 nondummy activities) under perturbation strength 0.15.
Figure 9 shows the values of relative computation timeRCT with variation of local search rate
pls. The values of relative set cover RSC with variation of pls are reported in Figure 10. All
the values in the figures are the mean values of the obtained results after 30 repeated runs. It
can be clearly seen, from Figure 9, that, by the increase of local search rate, more computation
time was needed to perform the H-MOEA.

The definition of relative set cover RSC in (4.1) shows that a value greater than 1
indicates a better performance for H-MOEA. By looking at Figure 10, it can be seen that even
a lower local search rate (0.1) could yield a better performance for the instances with 20
nondummy activities (P0) and 30 nondummy activities (P8), with RSC values about 1.30 and
1.13, respectively. It is interesting to notice that the values of relative set cover RSC did not
improve linearly with the increase of local search rate (see Figure 10). In some cases, for ex-
ample, for instance with 20 nondummy activities (P0), the highest value of RSC did not cor-
respond to the highest local search rate. One of the reasons for this is that a higher local
search rate might limit the exploration ability of the algorithm in the search space. Thus, with
another consideration, computation time, the local search rate should not be too high. In this
research, we commonly consider that a local search rate between 0.3 and 0.5 is suitable to the
proposed algorithm and the problem domain. In real application on other complex problems,
a tradeoff between convergence performance and computational time is possibly needed.
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Table 6: The mean value and the variance of the set covers SC(H-MOEA,MOEA)(SC1) and
SC(MOEA,H-MOEA)(SC2) within the scenarios of perturbation strengths 0.15, 0.25, and 0.35, under the
same examined solutions.

St = 0.15 St = 0.25 St = 0.35

SC1 SC2 SC1 SC2 SC1 SC2

P0 0.3692 ± 0.0939 0.0983 ± 0.0083 0.4425 ± 0.0900 0.1108 ± 0.0147 0.4117 ± 0.0756 0.1017 ± 0.0136
P1 0.3275 ± 0.0559 0.1267 ± 0.0239 0.3992 ± 0.0966 0.1425 ± 0.0242 0.2800 ± 0.0536 0.1842 ± 0.0313
P2 0.2792 ± 0.0380 0.1458 ± 0.0170 0.3025 ± 0.0491 0.1633 ± 0.0219 0.3233 ± 0.0476 0.2242 ± 0.0446
P3 0.3392 ± 0.0414 0.2383 ± 0.0287 0.4067 ± 0.0883 0.1392 ± 0.0253 0.3392 ± 0.0726 0.1175 ± 0.0207
P4 0.2833 ± 0.0469 0.1883 ± 0.0423 0.2775 ± 0.0335 0.1925 ± 0.0317 0.4492 ± 0.1074 0.2408 ± 0.0659
P5 0.3100 ± 0.0659 0.1492 ± 0.0205 0.4158 ± 0.0748 0.1908 ± 0.0307 0.4150 ± 0.0542 0.1583 ± 0.0273
P6 0.4433 ± 0.0582 0.1292 ± 0.0293 0.5600 ± 0.1226 0.2292 ± 0.0635 0.4800 ± 0.0732 0.1175 ± 0.0188
P7 0.3417 ± 0.0690 0.1992 ± 0.0461 0.4250 ± 0.0762 0.1958 ± 0.0579 0.5083 ± 0.0917 0.1550 ± 0.0479
P8 0.3075 ± 0.0526 0.2942 ± 0.0487 0.3208 ± 0.0777 0.3333 ± 0.0774 0.3075 ± 0.0579 0.3117 ± 0.0492
P9 0.2808 ± 0.0428 0.2617 ± 0.0322 0.3433 ± 0.0576 0.2408 ± 0.0335 0.3627 ± 0.0348 0.2769 ± 0.0198
P10 0.3117 ± 0.0741 0.2233 ± 0.0299 0.3758 ± 0.0501 0.1775 ± 0.0228 0.3483 ± 0.0585 0.2092 ± 0.0564
P11 0.5037 ± 0.1087 0.1650 ± 0.0462 0.3642 ± 0.0524 0.1558 ± 0.0297 0.3128 ± 0.0265 0.2364 ± 0.0127
P12 0.2883 ± 0.0597 0.2983 ± 0.0609 0.3167 ± 0.0619 0.2700 ± 0.0447 0.3542 ± 0.0540 0.3500 ± 0.0780
P13 0.2458 ± 0.0523 0.3183 ± 0.0746 0.2475 ± 0.0348 0.3458 ± 0.0845 0.3733 ± 0.0895 0.2883 ± 0.0681
P14 0.3642 ± 0.0791 0.2525 ± 0.0534 0.3175 ± 0.0826 0.3242 ± 0.0632 0.3726 ± 0.0635 0.3214 ± 0.0468
P15 0.3558 ± 0.0946 0.3033 ± 0.0619 0.3162 ± 0.0486 0.3210 ± 0.0331 0.4058 ± 0.0596 0.3374 ± 0.0288
P16 0.3225 ± 0.0503 0.2783 ± 0.0455 0.3433 ± 0.0880 0.2792 ± 0.0629 0.2700 ± 0.0480 0.3750 ± 0.0840
P17 0.2717 ± 0.0574 0.3667 ± 0.0661 0.3292 ± 0.0575 0.3033 ± 0.0488 0.2833 ± 0.0654 0.3767 ± 0.0676
P18 0.3483 ± 0.0707 0.2417 ± 0.0522 0.3150 ± 0.0674 0.3925 ± 0.0687 0.3842 ± 0.0694 0.2258 ± 0.0473
P19 0.3458 ± 0.0727 0.3575 ± 0.0790 0.3650 ± 0.0779 0.3142 ± 0.0572 0.3150 ± 0.0609 0.3125 ± 0.0863
P20 0.3254 ± 0.0649 0.2384 ± 0.0341 0.2704 ± 0.0801 0.2137 ± 0.0520 0.2674 ± 0.0613 0.2059 ± 0.0462

4.4.4. Performance Comparison under the Same Computational Effort

As indicated above, due to local search at each generation, muchmore solutions are examined
in proposed H-MOEA using more computation time. In order to further investigate the
performance of proposed H-MOEA, we, respectively, compared the performances of H-
MOEA and MOEA under the same number of examined solutions and computational time.
To do this, we executed the algorithms as follows: at first, we ran the MOEA with 200
generations and recorded the number of examined solutions in MOEA and its computational
time. Then, the proposed H-MOEA was executed with the following two termination condi-
tions: (1) the number of examined solutions was achieved; (2) the computational time was
achieved.

Table 6 shows the computational results obtained under the same examined solutions,
while the results under the same computation time are reported in Table 7. After careful
examination of the data, it could be found that the proposed H-MOEA outperformed normal
MOEA on small size instances, while the performance of H-MOEA decreased on relative
large scale cases. By looking at the instances P0–P12, the data suggests H-MOEA performed
better than normal MOEA in most instances, under both the same examined solutions (see
Table 6) and the same computation time (see Table 7). For relative large scale instances (P13–
P20), shown as in Table 6, H-MOEA still outperformed MOEA in most cases under the same
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Table 7: The mean value and the variance of the set covers SC(H-MOEA,MOEA) (SC1) and SC(MOEA,H-
MOEA)(SC2) within the scenarios of perturbation strengths 0.15, 0.25, and 0.35, under the same
computational time.

St = 0.15 St = 0.25 St = 0.35

SC1 SC2 SC1 SC2 SC1 SC2

P0 0.2800 ± 0.0551 0.1367 ± 0.0095 0.3800 ± 0.0428 0.1083 ± 0.0082 0.4775 ± 0.0733 0.0892 ± 0.0117
P1 0.3025 ± 0.0684 0.1633 ± 0.0288 0.3858 ± 0.0845 0.0917 ± 0.0115 0.2250 ± 0.0407 0.2517 ± 0.0365
P2 0.2075 ± 0.0128 0.2200 ± 0.0163 0.2850 ± 0.0462 0.1833 ± 0.0213 0.3233 ± 0.0424 0.2217 ± 0.0280
P3 0.4133 ± 0.0786 0.2025 ± 0.0285 0.3850 ± 0.0682 0.1067 ± 0.0130 0.3108 ± 0.0427 0.1233 ± 0.0069
P4 0.2617 ± 0.0501 0.1917 ± 0.0290 0.3183 ± 0.0471 0.1842 ± 0.0305 0.3575 ± 0.0616 0.2092 ± 0.0606
P5 0.2125 ± 0.0161 0.1525 ± 0.0186 0.3650 ± 0.0691 0.1942 ± 0.0406 0.3833 ± 0.0867 0.1975 ± 0.0425
P6 0.4475 ± 0.0746 0.1283 ± 0.0362 0.5933 ± 0.0746 0.1475 ± 0.0323 0.4800 ± 0.0744 0.1417 ± 0.0282
P7 0.3417 ± 0.0690 0.1992 ± 0.0461 0.4250 ± 0.0762 0.1958 ± 0.0579 0.5083 ± 0.0917 0.1550 ± 0.0479
P8 0.2983 ± 0.0645 0.2808 ± 0.0599 0.4275 ± 0.0694 0.2208 ± 0.0425 0.3133 ± 0.0445 0.3250 ± 0.0488
P9 0.2883 ± 0.0486 0.2967 ± 0.0468 0.2833 ± 0.0415 0.2308 ± 0.0179 0.3015 ± 0.0312 0.2453 ± 0.0203
P10 0.3524 ± 0.0452 0.29432±0.0298 0.3453 ± 0.0674 0.30343±0.0446 0.4018 ± 0.0906 0.3472 ± 0.0439
P11 0.4725 ± 0.1044 0.2175 ± 0.0618 0.4450 ± 0.0840 0.1717 ± 0.0308 0.4531 ± 0.0368 0.2741 ± 0.0153
P12 0.3008 ± 0.0489 0.2617 ± 0.0555 0.3000 ± 0.0372 0.3025 ± 0.0575 0.3383 ± 0.0674 0.3433 ± 0.0684
P13 0.2158 ± 0.0472 0.4250 ± 0.0594 0.2267 ± 0.0400 0.3825 ± 0.0651 0.3117 ± 0.0579 0.3158 ± 0.0816
P14 0.3967 ± 0.0742 0.2583 ± 0.0466 0.3458 ± 0.0699 0.3513 ± 0.0992 0.3369 ± 0.0264 0.2867 ± 0.0224
P15 0.3350 ± 0.0488 0.2750 ± 0.0459 0.3452 ± 0.0431 0.3501 ± 0.0523 0.3940 ± 0.0511 0.4012 ± 0.0634
P16 0.3417 ± 0.0865 0.3400 ± 0.0971 0.3233 ± 0.0525 0.2692 ± 0.0623 0.3267 ± 0.0858 0.3350 ± 0.0696
P17 0.2875 ± 0.0656 0.2904 ± 0.0557 0.2575 ± 0.0650 0.2467 ± 0.0655 0.3183 ± 0.0588 0.3258 ± 0.0854
P18 0.3342 ± 0.0610 0.3450 ± 0.0775 0.2575 ± 0.0638 0.2592 ± 0.0608 0.2908 ± 0.0574 0.3000 ± 0.0497
P19 0.2883 ± 0.0451 0.3267 ± 0.0745 0.2683 ± 0.0712 0.3458 ± 0.0786 0.2567 ± 0.0557 0.4400 ± 0.0887
P20 0.2978 ± 0.0447 0.3004 ± 0.0631 0.2503 ± 0.0601 0.2294 ± 0.0523 0.3772 ± 0.0719 0.3685 ± 0.0793

examined solutions. While under the same computation time, the performances of H-MOEA
andMOEAwere comparable on instances P13–P20, suggested as in Table 7. Themain reason of
performance decrease of H-MOEA on large scale instances could be considered as limitation
on global search ability of the algorithm. As indicated in [37], the number of generations
is decreased when the available computation time is limited. As a result, the exploration in
search space is not fully utilized.

5. Conclusion

In this paper, we study a resource-constrained project scheduling problem in the presence of
perturbation on activity durations. Robust scheduling is employed as the methodology to solve
this problem. We measure the robustness of a schedule as the expectation of the difference
between the actual makespan after execution and the planned makespan. The stability of the
schedule under the perturbation is indicated by the statistical measure of standard deviation.
Then, the problem is modelled as a multiobjective optimization problem, where makespan
minimization, robustness maximization, and stability maximization (standard deviation
minimization) are considered simultaneously.
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We employ multiobjective evolutionary algorithm (MOEA) to obtain the Pareto opti-
mal solutions of the problem. The normal MOEA is improved by incorporating a knowledge-
based local search procedure. We call the improved MOEA as Hybrid MOEA (H-MOEA). In
the process of the proposed H-MOEA, two additional procedures are integrated: information
extraction and information utilization. In the former procedure, heuristic information is ob-
tained periodically from the obtained approximating nondominated individuals. In the latter
procedure, the obtained information is utilized in the local search to improve the individuals
in the population. Experimental study shows that the proposed approach is feasible and effec-
tive for the resource-constrained project scheduling problem with stochastic durations and
that the proposed H-MOEA performs better than normal MOEA. In future work, we plan to
employ the hybrid multiobjective evolutionary algorithm to investigate the project schedul-
ing problem under dynamic environment. It is also worthwhile to focus on the design of more
efficient hybrid MOEAs for solving large-scale problems in future work.
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