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A new fault detection method using neural-networks-augmented state observer for nonlinear
systems is presented in this paper. The novelty of the approach is that instead of approximating
the entire nonlinear system with neural network, we only approximate the unmodeled part that is
left over after linearization, in which a radial basis function (RBF) neural network is adopted.
Compared with conventional linear observer, the proposed observer structure provides more
accurate estimation of the system state. The state estimation error is proved to asymptotically
approach zero by the Lyapunov method. An aircraft system demonstrates the efficiency of the
proposed fault detection scheme, simulation results of which show that the proposed RBF neural
network-based observer scheme is effective and has a potential application in fault detection and
identification (FDI) for nonlinear systems.

1. Introduction

One of the basic requirements for successful residual-based fault detection and identification
(FDI) is that during fault-free operation, the residuals should be zero in the deterministic
case or zero-mean and uncorrelated in stochastic case. While this condition is easy to meet
in linear systems, it is a difficult task for nonlinear systems. Reference [1] presents a fault-
tolerant control (FTC) scheme for a class of multi-input-multi-output stochastic systems
with actuator faults, in which the actuator fault diagnosis is based on the state estimation
and the nominal controller is designed to compensate for the loss of actuator effectiveness.
However, for nonlinear systems, the common approach of linearizing the nonlinear system
with Taylor series expansion about an operating point may work reasonably well for control
design, but the errors from the unmodeled nonlinear terms affect the residual in a way
that renders residual-based FDI techniques unusable. Reference [2] proposes a fault-tolerant
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tracking control method based on adaptive control technique for near-space-vehicle attitude
dynamics, in which Takagi-Sugeno fuzzy model is used to describe the nonlinear system,
and then an adaptive tracking control scheme is developed based on on-line actuator faults
estimation.

One way of eliminating this problem is to develop state observers that estimate
the actual state vector that includes the linear and nonlinear terms. State observers of
nonlinear dynamic systems are, therefore, becoming a growing topic for fault detection and
identification (FDI) [3-6]. Several observer design methods have been proposed in recent
years for nonlinear dynamic systems [7-9]. However, effective and accurate observer design
methods for generic nonlinear systems are still an open research issue. Neural networks
(NN) provide one of the newer approaches to robust FDI for nonlinear systems [10-12]. The
theory and application research of the neural networks is still a hot topic in intelligent control
fields. Reference [13] uses three neural networks as parametric structures for facilitating
the implementation of the iterative algorithm, to solve the near-optimal control problem
of the nonlinear discrete-time systems with control constraints. Reference [14] develops a
weighting-delay-based method for stability analysis of a class of recurrent neural networks
with time-varying delay, and the optimization method is used to calculate the optimal
weighting-delay parameters. Applications of neural networks in FDI can be grouped into
two categories of tasks: (1) neural network observers for detecting the faults and (2) neural
network classifiers for classifying fault patterns.

In this paper we focus on the first group of tasks: we present a new method for fault
detection using a neural-networks-augmented state observer. The novelty of our approach
is that instead of using the entire nonlinear system for designing the neural network-based
observer, we only use the unmodeled part that is left over after a conventional linearization
with Taylor series. Instead of the multilayered back-propagation neural networks, we choose
radial basis function (RBF) neural network, which is faster to train and does not have the
problem of local minima [15]. This allows us to build a state observer with an output tracking
error that approaches zero asymptotically. The technique is applicable to systems that have
nonlinearities, but their accurate nonlinear models are either not available or are difficult (or
too time-consuming) to use. However, it assumes that the linearized models of these systems
are available.

2. Problem Formulation

Consider the affine nonlinear dynamic system as follows:

x(t) = f(x(t)) + g(x(t))u+6(t),
y(t) = Cx(t),

2.1)

where x € R, u € R",y € R',6 € R"is a norm-bounded fault vector, ||6(f)|| < D,
CeRF, f(x)=[f1 (x),fz(x),...,fn(x)]T, g(x) = [gij(x)] ., and f(-), g(-) are continuously
differentiable vector functions. Our goal is to design a nonlinear state observer that is
a combination of a conventional observer and a neural network (the neuro-augmented
observer).
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System (2.1) is linearized at operating point (x, 1), resulting in the state space model

X =Ax+Bu+¢(x,u,t)+6(t),
y(t) = Cx(t),

(2.2)

where A = (0f/0x),_,, € R"" and B = g(xo) € R are constant matrices. f(x) is expanded
in a first-order Taylor series approximation at x = xp, and f(x) = f(xp) + Ax+ f (x). Similarly,
g(x) = g(x0) + g(x). Now we can get ¢(x, u) = f(x9) + f(x) + g(x)u.

The nonlinear function ¢ (x, u) in system (2.2) includes an unmodeled nonlinear high-
order term. If the system has no fault, that is, 6(t) = 0, the state observer of system (2.2)
is

%=(A-LCO)%+Ly+Bu+p(x u), (2.3)

where X is the state estimate, and L € R™? is the observer gain matrix. Define the state
estimation error € = x — X, and we get

E€=(A-LC)e+¢(x,u) - p(x,u). (2.4)

The task of observer design is to select a suitable matrix L and make the state estima-
tion error tend to zero asymptotically.

Reference [16] provides a method to check the stability of estimation error. However,
it does not indicate how to choose the observer gain matrix L and how to approximate the
nonlinear term. For the state estimation error equation (2.4), if ¢. = ¢(x, u) — ¢(x,u) then the
state estimation error at time ¢ is

t
£(t) = e e(0) +f e O g, (1) dr. (2.5)
0

From (2.5) we can see that minimizing ¢, and driving it to zero would make the estimation
error also approach zero asymptotically. Thus, the success of the observer depends on the
successful approximation of the nonlinear term that resulted from the unmodeled portion of
the original system. In order to achieve that goal, we propose the following structure shown
as Figure 1, which incorporates an RBF neural network into the state estimation loop.

The RBF neural network is used to approximate the nonlinear term ¢(x, u), thereby
driving ¢, to zero, and thus improving the accuracy of state estimation. With that, we can
expect the residuals during fault-free (healthy) situations to remain small, which is essential
for successful FDI design.

3. Design of Neuro-Augmented Observer
Based on RBF Neural Network

An RBF neural network observer is introduced for system (2.2), expressed by

X=(A-LC)X+Ly+ Bu+ ¢uu(X,u,), (3.1)



4 Mathematical Problems in Engineering

J/6
u H Nonlinear system '7—) Y

RBF neural network |é

€|

Figure 1: Robust fault detection based on neural network nonlinear observer.

where ¢,,,(X,u) is the neural network nonlinear estimator. It is realized by a three-layer
RBF neural network. The first layer is direct input layer, and the hidden layer consists of
several nodes. Each node contains a parameter vector called a center. The node calculates the
Euclidean distance between the center and network input vector and then passes the result
through a nonlinear function. The output layer is a set of linear combiners. The overall input-
output response of the RBF neural network is a mapping ¢, : R**" — R", then we get

¢nn (3?/ u) = [‘i)nnl (3?/ u)/ ¢nn2 (f, u)/ cee /¢nnn(£/ u)]/ (32)

$(x,u) = Zwijoj(”x -cill.pj), i=12,...,n, (3.3)
i=1

where x € R™™ is input vector; n + m,n are the number of inputs and outputs; s is the
number of nodes in the hidden layer; {w;;,i =1 ~n,j = 1 ~ s} are the weights of the linear
combiners of the output layer; {c;,j = 1 ~ s} are the centers of hidden nodes; {p;,j = 1 ~ s}
are the widths of the Gaussian function. The nonlinear activation function o(-) is selected as
Gaussian function, and then o(x, p) = e /P,

Define

o(x,p) = [01(x.p), 05 (5, s ()]
W=lwj], i=12,...,nj=12,...,s.

(3.4)

Then
$(x,u) = Wo(x, u). (3.5)

Assumption 3.1. The RBF neural network can approximate the nonlinear function ¢(x, u)
arbitrarily closely, that is, there exists an ideal weight matrix W*, satisfying ¢(x,u) =
W*o(x, p), where x is the input vector.

Assumption 3.2. For the system (2.2) and observer (3.3), the nonlinear term ¢(x, 1) satisfies
the global Lipschitz condition, that is, ||¢(x, u) — (X, w)| < y|lx — X
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Theorem 3.3. The state estimation error approaches zero asymptotically (lim;_, € = 0), provided
(1) ¥ < Amin(Q)/2Amax(P), where P,Q are positive definite symmetric matrices and Amin

and Amax, respectively, denote the minimum eigenvalue and maximum eigenvalue of the
matrices,

(ii) the Lyapunov equation (A — LC)™P + P(A - LC) = -Q holds,

(iii) the weight tuning law of RBF neural network is adopted as follows:

w; = no;(X, p)Pe, (3.6)

where wj is the i th column of W and 1 is the learning rate in range of [0, 1].

Proof. Select the Lyapunov function

_ 1 T 1 A TTA7
Vi=sePet ﬁtr(w w), (3.7)

where W = W* — W. Since the state estimation error is € = x — ¥, see from (2.4), we get

E=(A-LC)e+p(x,u,t) — Pun(X,u,t)

(3.8)
= (A-LC)e+ W¥o(x,p) —-Wo(X,p).
Adding and subtracting W*o (X, p) in (3.8), we get
é=(A-LC)e+W*o(x,p) -Wo(x,p) + Wo(x,p) -W*o(x,p). (3.9)

Considering 6 = o(x, p) — o(X, p), W =W*-W,and w(t) = W*G, the above equation can be
converted to

¢=(A-LC)e+Wa(X,p) +w(t). (3.10)

Then we get

| 1 1 [T
V==26eTPe+ —'Pe+ — tr(W W>
2 2 Ui

- %sTQs + gTP[WG(J?,p) + w(t)] + % tr (WTW> (3.11)

1 S - _ 1S o7
- EETQE +e Pw(t) + > &' Pwioi(X,p) + p wiTwi,
P i1
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where ; is the ith column of W. And then

. 1 > ~ ~T\ ~
V =z’ Qe+ Pult) + 211 (1" Pai(x, p) + ;] ) 7oi]. (3.12)

QIH

If the weight tuning law of the RBF neural network is w; = -noi(X, p)Pe or w; = no;(x, p)Pe,
then

. 1
V=- zeTQs + el Pw(t)

1
< - E”EH)‘mm(Q)“*‘f” + [[€][Amax (P) |[zo ()
1 * * =
= - §||5||)me(Q)||5” + el dmax (P) |W¥o (x,p) = W¥o (X, p) ||
1 ~
= = 5l (Qllell + el max(P) | p(x, ) = (2, )| (3.13)
1 ~
< - EHEH)‘min(Q)”g” + [lelldmax (P)yllx — X||
mll’\(Q)
S - =€ )tmm(Q) el + € -)‘max(P)
|| I llell + llell (P llell
<0,
then V < 0. Therefore, the RBF neural network observer is stable, and lim;_, ., € = 0. O

4. Numerical Simulation Study

A fourth-order longitudinal aircraft model [15] is employed to demonstrate the effectiveness
of the proposed method. The longitudinal perturbation equation is linearized in horizontal
flight at a speed vy = 300 m/sec and at a height of 12000 m. The system matrices A, B, and C
have the following forms:

~0.017 0.026 —981
A |F00143 —1.02 1 ]
0 206 —1 12
0 0
(4.1)
0 0 1000
5 0032 —0032 c_lo1o00
578 -578 |’ 001 0|
0 0 0001

where x(t) = [v,a,q, Q]T is state vector and the state variables v, a, 6, g are forward velocity,
attack angle, pitch angle, and pitch angular velocity, respectively. u = [, 8]" is control
input vector, &g is the left elevator, and 6, is the right elevator.
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Figure 2: Residuals: left-elevator-stuck fault.

Nonlinear state observer (3.3) is designed by placing the poles of (A - LC) at -2, -3,
—4, and 5. The observer gain matrix L is

1983 0.026 0 -9.81
-0.0143 198 1 0
L= 0 206 28 0 | (42)

0 0 1 5

The nonlinear term ¢(x,u) is approximated by RBF neural network estimator
¢Pun(X,u). It is realized by a three-layer RBF neural network with a 6-8-4 structure. The
input layer consists of 6 nodes, and the input vector is [X1(t), X2 (), X3(t), X4(t), u1 (t), ()]
The hidden layer consists of 8 nodes. The output layer is the estimation of nonlinear term
[(])nnl(t),gbnnz(t),¢nn3(t),¢nn4(t)]T. The RBF neural network can be off-line trained during
fault-free operation. In practice, ¢ (x, 1) will be variable with the changes of flight conditions.
Therefore the off-line training and on-line learning can be combined to approximate the
nonlinear term ¢(x, 1), in order to improve the adaptability of the neural network observer.

In the simulation, the left-elevator-stuck fault occurs from t = 2 sec. The residuals are
shown in Figure 2. In Figure 2, we get that the state residuals change significantly at 2 sec and
the fault-free residuals before 2 sec are zeros. Faults can be detected by comparing the output
residuals with preselected thresholds, which are typically derived from the magnitudes of
the residuals during fault-free cases.

5. Conclusions

A new nonlinear observer based on RBF neural network is designed in this paper. The
novelty of this work is that instead of approximating the entire nonlinear system with neural
network, only the unmodeled part of nonlinear system after linearization is approximated.
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Furthermore, an RBF neural network that has better performance than the traditional neural
networks is employed to design the state observer. The proposed neuro-augmented observer
can generate residuals that are essential for fast fault detection. Simulation results of an
aircraft model demonstrate the effectiveness of the proposed neuro-augmented observer and
exhibit the application prospect of the robust fault detection scheme.
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