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A newmethod is suggested for obtaining the exact and numerical solutions of the initial-boundary
value problem for a nonlinear parabolic type equation in the domain with the free boundary. With
this aim, a special auxiliary problem having some advantages over the main problem and being
equivalent to the main problem in a definite sense is introduced. The auxiliary problem allows
us to obtain the weak solution in a class of discontinuous functions. Moreover, on the basis of
the auxiliary problem a higher-resolution numerical method is developed so that the solution
accurately describes all physical properties of the problem. In order to extract the significance
of the numerical solutions obtained by using the suggested auxiliary problem, some computer
experiments are carried out.

1. Introduction

It is known that many practical problems such as distribution of heat waves, melting glaciers,
and filtration of a gas in a porous medium, and so forth, are described by nonlinear equations
of the parabolic type.

In [1], at first the effect of localization of the solution of the equation describing the
motion of perfect gas in a porous medium is observed and the solution in the traveling wave
form is structured. Then, the mentioned properties of the solution for the nonlinear parabolic
type equation are studied in [2, 3], and so forth.

These problems are also called free boundary problems. Therefore, it is necessary to
obtain the moving unknown boundary together with the solution of a differential problem.
Its nature raises several difficulties for finding analytical as well as numerical solutions of this
problem.

The questions of the existence and uniqueness of the solutions of the free boundary
problems are studied in [4, 5]. In [5], Oleı̆nik introduced the notion of a generalized
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solution of the Stefan problem whose uniqueness and existence were guaranteed in the
class of measurable bounded functions. In [4], Kamenomostskaya considered the classical
quasilinear heat conduction equation and constructed the generalized solution by the use of
an explicit difference scheme.

In the literature there are some numerical algorithms (homogeneous schemes) which
are approximated by finite differences of the differential problemwithout taking into account
the properties occurring in the exact solution [6–8].

2. Traveling Wave Solution of the Main Problem

We consider the equation

∂u

∂t
=

∂2ϕ(u)
∂x2

, in R2
+ (2.1)

with following initial

u(x, 0) = u0(x) = 0, in I = [0,∞) (2.2)

and boundary

u(0, t) = u1(t) = μ0t
n, t > 0 (2.3)

conditions, where R2
+ = I × [0, T). Here, μ0 and n are real known constants. In order to

study the properties of the exact solution of the problem (2.1)–(2.3) for the sake of simplicity
the case ϕ(u) = uσ is considered. It is clear that the function ϕ(u) satisfies the following
conditions:

(i) ϕ(u) ∈ C2(R2
+),

(ii) ϕ′(u) ≥ 0, for u ≥ 0 and σ ≥ 2,

(iii) for σ ≥ 2, ϕ′′(u) have alternative signs on the domain when u(x, t)/= 0.

It is easily shown that the problem (2.1)–(2.3) has the solution in the traveling wave
form as

u(x, t) =

⎧
⎪⎨

⎪⎩

(

D
σ − 1
σ

)1/(σ−1)
(Dt − x)1/(σ−1), 0 < x < Dt,

0, x ≥ Dt.

(2.4)

Via simple calculation we get the following:

(1) the function u(x, t) and w(x, t) = −∂uσ(x, t)/∂x = Du(x, t) are continuous in
D�(t) = {(x, t) | 0 ≤ x ≤ Dt, 0 ≤ t ≤ T}, but ut and ux do not exist when σ > 2;

(2) when σ = 2, ut and ux are finite;

(3) for 1 < σ < 3/2, all derivatives ut, ux, and uxx exist;

(4) for 3/2 < σ < 2 the ut and ux exist, but uxx does not exist.
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Therefore when σ > 2, we must only consider the weak solution for the problem (2.1)–
(2.3). As it is seen from the formula (2.4), when n = 1/(σ − 1), the solution is equal to zero at

x = �(t) = Dt. Here, D = ±
√

(σ/(σ − 1))μσ−1
0 is the speed of the front of the traveling wave

and

u(�(t), t) = 0. (2.5)

Taking into account (2.5), we get

dx

dt
= − ∂u/∂t

∂u/∂x
=

D∂u(x, t)/∂x
∂u/∂x

= D. (2.6)

It is clear that when u = 0, (2.1) degenerates to the first-order equation. The weak solution is
defined as follows.

Definition 2.1. A nonnegative function u(x, t) which is satisfying the initial condition (2.2)
and boundary conditions (2.3) and (2.5) is called a weak solution of the problem (2.1)–(2.3),
and (2.5), if the following integral relation

∫ ∫

D�(t)

{

u(x, t)
∂f(x, t)

∂t
− ∂uσ(x, t)

∂x

∂f(x, t)
∂x

}

dx dt = 0 (2.7)

holds for every test functions f(x, t) from
o

C1,1(D�(t)) and f(x, T) = 0.

Because the function u(x, t) andw(x, t) = −∂uσ(x, t)/∂x are continuous in the domain
D�(t), the integral involving (2.7) exists in the Riemann sense.

Now, we show that the solution defined by the formula (2.4) satisfies the integral
equality (2.7); that is, u(x, t) is the weak solution of the problem (2.1)–(2.3).

According to the definition of the weak solution, we can write

0 =
∫T

0

∫Dt

0

{

u(x, t)
∂f(x, t)

∂t
+Du(x, t)

∂f(x, t)
∂x

}

dx dt

=
∫T

0

∫Dt

0
u(x, t)

∂f(x, t)
∂t

dx dt +D

∫T

0

∫Dt

0
u(x, t)

∂f(x, t)
∂x

dx dt.

(2.8)

Changing the order of integration in the first integral and then applying the integration by
parts to the inner integrals of the first and second terms in the last expression with respect to
t and x, respectively, we have

∫DT

0

∫T

x/D

u(x, t)
∂f(x, t)

∂t
dt dx +D

∫T

0

∫Dt

0
u(x, t)

∂f(x, t)
∂x

dx dt = 0. (2.9)

If we reapply integration by parts to the inner integrals in the first term and second term by t
and x, respectively, we prove that the solution in the form (2.4) satisfies the integral relation
(2.7).
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3. Auxiliary Problem and Its Exact Solution

In order to find the weak solution of the problem (2.1)–(2.3), according to [9, 10] the special
auxiliary problem

∂v

∂t
=

∂

∂x

(
∂v

∂x

)σ

, (3.1)

v(x, 0) = v0(x), (3.2)

u(0, t) =
∂v(0, t)

∂x
= μ0t

n (3.3)

is introduced. Here, the function v0(x) is any solution of the equation

dv0(x)
dx

= 0. (3.4)

The problem (3.1)–(3.3) has the solution

v(x, t) =

⎧
⎪⎨

⎪⎩

−D1/(σ−1)
(
σ − 1
σ

)σ/(σ−1)
(Dt − x)σ/(σ−1), x < Dt,

0, x ≥ Dt

(3.5)

in the traveling wave form [9]. As is seen from (3.5), the differentiability property of the
function v(x, t) is more than the differentiability property of the solution u(x, t). In addition
to this, from (3.5)we get

u(x, t) =
∂v(x, t)

∂x
. (3.6)

Theorem 3.1. If the function v(x, t) is a soft solution of the problem (3.1)–(3.3), then the function
u(x, t) obtained by (3.6) is a weak solution of the main problem (2.1)–(2.3) in sense of (2.7).

The auxiliary problem has the following advantages.

(i) The function v(x, t) is smoother than u(x, t).

(ii) The function v(x, t) is an absolutely continuous function.

(iii) In the process of finding the solution u(x, t), one does not need to use the first and
second derivatives of u(x, t)with respect to x.

The graphs of the function structured by the formulas (2.4), (3.5), and (3.6) are shown
in the Figures 1(a), 1(b), and 2(a), respectively.
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Figure 1: (a) The exact solution of the main problem. (b) The exact solution of the auxiliary problem.
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Figure 2: (a) The function u(x, t) = ∂v(x, t)/∂x. (b) Numerical solution obtained by using the classical
algorithm (4.6)–(4.7).

4. Developing a Numerical Algorithm in a Class of
Discontinuous Functions

In this section we investigate an algorithm for finding a numerical solution of the problem
(2.1)–(2.3). At first, we cover the region D�(t) by a special grid:

ωτ = {(xi, tk) | xi = Dti, tk = kτ, i, k = 0, 1, 2, . . .}, (4.1)

where τ is the step of the grid with respect to t variable.
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Now, we will develop a numerical algorithm as follows. Since the function ∂uσ/∂x is
continuous, we can approximate the problem (3.1)–(3.3) by the following finite differences
schemes:

Vi,k+1 = Vi,k +
τ

hσ+1

[
(Vi+1,k+1 − Vi,k+1)σ − (Vi,k+1 − Vi−1,k+1)σ

]
, (4.2)

Vi,0 = v0(xi), (4.3)

V0,k+1 = V1,k+1 − hμ0t
n
k+1 (4.4)

(i = 0, 1, 2, . . . ; k = 0, 1, 2, . . .). Here, h = Dτ and v0(xi) is any grid function of (3.4).
It can be easily shown that

Ui,k+1 =
Vi+1,k+1 − Vi,k+1

h
, (4.5)

and the grid functionUi,k+1 defined by (4.5) is a solution of the nonlinear system of algebraic
equations:

Ui,k+1 = Ui,k +
τ

h2

(
Uσ

i+1,k+1 − 2Uσ
i,k+1 +Uσ

i−1,k+1
)

(4.6)

(i = 1, 2, . . . ; k = 0, 1, 2, . . .). The initial and boundary conditions for (4.6) are

Ui,0 = 0 (i = 0, 1, 2, . . .),

U0,k+1 = μ0t
n
k+1 (k = 0, 1, 2, . . .).

(4.7)

Here, Vi,k and Ui,k are the approximation values of v(x, t) and u(x, t) at any point (xi, tk) of
the grid ωτ . For the sake of simplicity we introduce the notations Vi,k = V , Vi,k+1 = V̂, and
Vi±1,k+1 = V̂±.

4.1. Convergence

In this section we will investigate some properties of the numerical solution and of the
question of convergence of the numerical solution to the weak exact solution. Suppose that
εi,k, δi,k, and ηi,k are the errors of approximations of the functions ∂v/∂x, ∂v/∂t, and ∂ϕ/∂x
by finite differences, respectively. Then, we can write (3.1) in the following form:

vt + δi,k+1 = ϕx(v̂x + εi,k+1) + ηi,k+1 (4.8)

or

vt = ϕx(v̂x) + γi,k+1, (4.9)
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where

γi,k+1 = δi,k+1 + ϕxx

(
yx

)
εi,k+1 + ηi,k+1. (4.10)

At first, we show that the finite difference scheme (4.2) is consistent; that is, γi,k+1
approaches zero when τ → 0. It is known that the suitable characteristic of continuity of
any function f(x) on the any interval [a, b] is its modulus continuity:

ω
(
δ, f

) ≡ π
(
f
)
= sup

|t−x|<δ

∣
∣f(t) − f(x)

∣
∣,

εi,k+1 =
∂v(xi, tk+1)

∂x
− v̂x =

∂v(xi, tk+1)
∂x

− ∂v
(
x∗
i , tk+1

)

∂x

= u(xi, tk+1) − u
(
x∗
i , tk+1

)
= π(u) −→ 0, x∗

i ∈ (xi − h, xi),

δi,k+1 =
∂v(xi, tk+1)

∂t
− v̂t =

∂v(xi, tk+1)
∂t

− ∂v
(
xi, t

∗
k+1

)

∂t

=
∂ϕ(u(xi, tk+1))

∂x
− ∂ϕ

(
u
(
xi, t

∗
k+1

))

∂x
= π

(
∂ϕ(u)
∂x

)

−→ 0, t∗k+1 ∈ (tk+1, tk+1 + τ).

(4.11)

Finally,

ηi,k+1 =
∂ϕ(û)
∂x

− ϕx(û) =
∂ϕ(u(xi, tk+1))

∂x
− ∂ϕ

(
u
(
x∗∗
i , tk+1

))

∂x
−→ 0, x∗∗

i ∈ (xi − h, xi).

(4.12)

Therefore, γi,k+1 → 0, if τ → 0.

Theorem 4.1 (Maximum Principle). The solution of problem (4.2)–(4.4) takes its maximum (or
minimum) value on the boundary of the domain of definition of the solution, that is,

0 ≤ Vi,k+1 ≤ M = max
i,k

{|u0|, |u1|}. (4.13)

Proof. At first, let us write (4.2) in the following form:

Vi,k+1 − Vi,k

τ
=

1
h

[(
Vi+1,k+1 − Vi,k+1

h

)σ

−
(
Vi,k+1+1 − Vi−1,k+1

h

)σ]

=
1
h

(
Ûσ

i − Ûσ
i−1

)
= −w(xi, tk).

(4.14)

Assume that Vi,k+1 is not constant and Vi,k+1 takes the greatest value at some point of
the grid ωτ rather than at boundary nodes of γτ . Then, there is such a point (x1, t1) ∈ ωτ that
V̂ takes the maximal value and even some neighborhood points V (x1, t1) less than V̂ (x1, t1).
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If V̂x1,t1 > Vx1,t1 , because the function ϕ(u) = uσ is monotone, the left part of the relation
(4.14) is positive, but the right part is negative. Hence we arrive to inconsistency. We arrive to
the same inconsistency if V̂±(x1, t1) > V̂ (x1, t1). Similarly, we can prove that V̂ does not take a
minimal value at the inner nodes of the grid ωτ .

From Theorem 4.1, it follows that the solution of the problem (4.2)–(4.4) converges to
the solution of problem (3.1)–(3.3) pointwise, that is,

max
i

|vi,k − Vi,k| −→ 0. (4.15)

It can be easily seen that the solution of the mentioned problem is continuously dependent
on initial data.

Now, we will prove convergence of the Ui,k to the solution of the main problem. To
this end, by subtracting (4.2) from (4.9) and taking (4.5) into account, we have

Rt =
(
ϕ′(ũ)(vx − Vx)

)

x + γi,k (4.16)

or

Rt =
(
ϕ′(ũ)(ui,k −Ui,k)

)

x + γi,k, ũ ∈ (ui,k,Ui,k), (4.17)

where R̂ = vi,k+1 − Vi,k+1. By multiplying the last equation with R̂ and summing with respect
to i and k, we get

(
R̂, Rt

)

L2(ωτ )
=
(
R̂,

(
ϕ′(ũ)(ui,k −Ui,k)

)

x

)

L2(ωτ )
+
(
R̂, vi,k

)

L2(ωτ )
. (4.18)

Here, the symbol (f, g) denotes the differences analogy of the scalar product of the functions
of f and g in L2(ωτ) sense:

(
f, g

)

L2(ωτ )
= τh

∑

i=1

∑

k=0

fi,k gi,k. (4.19)

With some algebra we have

1
2

∑

i

R2
i

∣
∣
∣
tk
= T +

(
ui,k −Ui,k, ϕ

′(ũ)(ui,k −Ui,k)
)

L2(ωτ )

≤ 1
2

∑

i

R2
i

∣
∣
∣
tk=0

+ Tmax
i

R2
i

∥
∥γi,k

∥
∥
L2(ωτ )

.

(4.20)

It follows that the numerical solution Ui,k converges in mean to ui,k.



Mathematical Problems in Engineering 9

0 2 4 6 8 10
−14

−12

−10

−8

−6

−4

−2

0
V
i,
k

xi

T = 2

T = 4

T = 6

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

xi

T = 2

T = 4

T = 6

U
i,
k
=
V
x

(b)

Figure 3: (a) Numerical solution of the problem (4.2)–(4.4). (b) Numerical solution of the main problem
obtained by using the solution of the problem (4.2)–(4.4).

5. Numerical Experiments

In order to extract the significance of the suggested method, the numerical solution obtained
using the proposed auxiliary problem is compared with the exact solution of the problem
(2.1)–(2.3) on an equal footing. With this aim, firstly, computer experiments are performed
on the algorithm (4.2)–(4.4)with the values σ = 3, T = 2, 4, and 6. The graphs of the obtained
numerical solutions are presented in Figure 3(a). The numerical solutions of the main
problem (2.1)–(2.3) obtained by using the algorithm (4.2)–(4.4) are shown in Figure 3(b).
The numerical solution of the main problem obtained using the algorithm (4.6)–(4.7) is
demonstrated in Figure 2(b).

Comparing Figures 1(a) and 3(b) shows that the numerical and the exact solutions of
the main problem (2.1)–(2.3) coincide. Moreover, the graphs of the functions v(x, t) and Vi,k

coincide, too.
Thus, the numerical experiments carried out show that the suggested numerical algo-

rithms are efficient and economical from a computer point of view. The proposed algorithms
permit us to develop the higher-resolution methods where the obtained solution correctly
describes all physical features of the problem, even if the differentiability order of the solution
of the problem is less than the order of differentiability which is required by the equation from
the solution.

The finite differences scheme (4.2)–(4.4) has the first-order approximation with respect
to t. But using the different versions of Runge-Kutta’s methods we can increase the order of
the algorithms mentioned previously.

6. Conclusions

The new method is suggested for obtaining the regular weak solution for the free boundary
problem of the nonlinear parabolic type equation.

The auxiliary problem which has some advantages over the main problem is intro-
duced and it permits us to find the exact solution with singular properties.
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The auxiliary problem introduced previously allows us to develop the higher-reso-
lution method where the obtained solution correctly describes all physical features of the
problem, even if the differentiability order of the solution of the problem is less than the
order of differentiability which is required by the equation from the solution.
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