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This paper investigates the influence of a new parallel distributed controller (PDC) on the
stabilization region of continuous Takagi-Sugeno (T-S) fuzzy models. Using a nonquadratic
Lyapunov function, a new sufficient stabilization criterion is established in terms of linear matrix
inequality. The criterion examines the derivative membership function; an approach to determine
state variables is given based on observer design. In addition, a stabilization condition for
uncertain system is given. Finally, numeric simulation is given to validate the developed approach.

1. Introduction

Fuzzy control systems have experienced a big growth of industrial applications in the recent
decades, because of their reliability and effectiveness. Many researches have investigated the
Takagi-Sugeno models [1–3] during the last decades. Two classes of Lyapunov functions are
used to analyze these systems: quadratic Lyapunov functions and nonquadratic Lyapunov
ones which are less conservative than the first class. Many researches have investigated with
nonquadratic Lyapunov functions [4–10].

As the information about the time derivatives ofmembership function is considered by
the PDC fuzzy controller, it allows the introduction of slack matrices to facilitate the stability
analysis. The relationship between themembership function of the fuzzymodel and the fuzzy
controllers is used to introduce some slack matrix variables. The boundary information of
the membership functions is brought to the stability condition and thus offers some relaxed
stability conditions [6]. In order to determine the state variables many approaches of observer
design are given [9–11].
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In this paper, new stabilization conditions for Takagi-Sugeno uncertain fuzzy models
based on the use of fuzzy Lyapunov function are presented. This criterion is expressed in
terms of linear matrix inequalities (LMIs) which can be efficiently solved by using various
convex optimization algorithms [12, 13]. The presented method is less conservative than
existing results.

The organization of the paper is as follows. In Section 2, we present the system
description and problem formulation and we give some preliminaries which are needed
to derive results. Section 3 will be concerned with stabilization analysis for continuous T-S
fuzzy systems by the use of new PDC controller based on derivative membership functions.
An observer approach design is derived to estimate state variables. In Section 4, a new
stabilization condition for uncertain system is given. Next, a new robust PDC controller
design approach is presented. Illustrative examples are given in Section 5 for a comparison
of previous results to demonstrate the advantage of the proposed method. Finally Section 6
makes the conclusion.

Notation. Throughout this paper, a real symmetric matrix S > 0 denotes S being a positive
definite matrix. The superscript “T” is used for the transpose of a matrix.

2. System Description and Preliminaries

Consider an uncertain T-S fuzzy continuous model for a nonlinear system as follows:

IF z1(t) is Mi1, . . . , zp(t) is Mip,

THEN ẋ(t) = (Ai + ΔAi)x(t) + (Bi + ΔBi)u(t) i = 1, . . . , r,
(2.1)

where Mij (i = 1, 2, . . . , r, j = 1, 2, . . . , p) is the fuzzy set and r is the number of model rules,
x(t) ∈ �n is the state vector, u(t) ∈ �m is the input vector, Ai ∈ �n×n, Bi ∈ �n×m are constant
real matrices, and z1(t), . . . , zp(t) are known premise variables.ΔAi, andΔBi are time-varying
matrices representing parametric uncertainties in the plant model. These uncertainties are
admissibly norm-bound and structured.

The final outputs of the fuzzy systems are:

ẋ(t) =
r∑

i=1

hi(z(t)){(Ai + ΔAi)x(t) + (Bi + ΔBi)u(t)}, (2.2)

where

z(t) =
[
z1(t)z2(t) · · · zp(t)

]
,

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

,

wi(z(t)) =
p∏

j=1

Mij

(
zj(t)

) ∀t.

(2.3)
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The term Mi1(zj(t)) is the grade of membership of zj(t) inMi1

Since

⎧
⎪⎨

⎪⎩

r∑
i=1
wi(z(t)) � 0

wi(z(t)) ≥ 0, i = 1, 2, . . . , r
we have

⎧
⎪⎨

⎪⎩

r∑
i=1
hi(z(t)) = 1,

hi(z(t)) ≥ 0, i = 1, 2, . . . , r
(2.4)

for all t.
We have the following property:

r∑

k=1

ḣk(z(t)) = 0. (2.5)

This study investigates the PDC controller influence on the closed-loop stability region and
gives robustness analysis of uncertain Takagi-Sugeno fuzzy system. Thus, we consider a PDC
fuzzy controller which examines the derivative membership function and it is given by

u(t) = −
r∑

i=1

hi(z(t))Fix(t) −
r∑

ρ=1

ḣρ(z(t))
(
Kρ + R

)
x(t). (2.6)

The fuzzy controller design consists to determine the local feedback gains Fi, Kρ, and R in
the consequent parts. The state variables are determined by an observer and are detailed in
the next section.

The open-loop system is given by

ẋ(t) =
r∑

i=1

hi(z(t))(Ai + ΔAi)x(t). (2.7)

By substituting (2.6) into (2.2), the closed-loop fuzzy system can be represented as:

ẋ(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

⎧
⎨

⎩AΔi − BΔiFj −
r∑

ρ=1

ḣρ(z(t))BΔi

(
Kρ + R

)
⎫
⎬

⎭x(t), (2.8)

where AΔi = Ai + ΔAi and BΔi = Bi + ΔBi.

Assumption 2.1. The time derivative of the premises membership function is upper bound
such that |ḣk| ≤ φk, for k = 1, . . . , r, where, φk, k = 1, . . . , r are given positive constants.

Assumption 2.2. The matrices denote the uncertainties in the system and take the form of

ΔAi = DaiFai(t)Eai ,

ΔBi = DbiFbi(t)Ebi ,
(2.9)
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where Dai ,Dbi , Eai , and Ebi are known constant matrices and Fai(t) and Fbi(t) are unknown
matrix functions satisfying:

FT
ai(t)Fai(t) ≤ I, ∀t,

FT
bi
(t)Fbi(t) ≤ I, ∀t,

(2.10)

where I is an appropriately dimensioned identity matrix.

Lemma 2.3 (Boyd et al. Schur complement [12]). Given constant matrices Ω1,Ω2, and Ω3 with
appropriate dimensions, where Ω1 = ΩT

1 and Ω2 = ΩT
2 , then

Ω1 + ΩT
3Ω

−1
2 Ω3 ≺ 0 (2.11)

if and only if

[
Ω1 ΩT

3
−Ω2

]
� 0 or

[−Ω2 Ω3

Ω1

]
� 0. (2.12)

Lemma 2.4 (Peterson and Hollot [2]). Let Q = QT,H,E, and F(t) satisfying FT (t)F(t) ≤ I are
appropriately dimensional matrices then the following inequality

Q +HF(t)E + ETFT (t)HT ≺ 0 (2.13)

is true, if and only if the following inequality holds for any λ � 0

Q + λ−1HHT + λETE ≺ 0. (2.14)

The aim of the next section is to find conditions for the stabilization of the closed-loop
T-S fuzzy system by using the Lyapunov theory.

3. Main Results

Consider the closed-loop system without uncertainties

ẋ(t) =
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}. (3.1)

In order to give stability conditions, the slack matrix variables and the membership function
boundary Mozelli et al. [14] are used. Consider the following null product that will serve
stability analysis purposes:

2
[
xT (t)M + ẋT (t)μM

]
×
[
ẋ(t) −

r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}
]
= 0. (3.2)
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3.1. A PDC Controller with Derivative Membership Function

By substituting (2.6) into (3.1), the closed-loop fuzzy system can be represented as:

ẋ(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

{
Ai − BiFj −

r∑

m=1

ḣm(z(t))Bi(Km + R)

}
x(t). (3.3)

The next Theorem gives sufficient conditions to guarantee stability of system (3.3).

Theorem 3.1. Under Assumptions 2.1 and 2.2, and for μ � 0, ε ≥ 0, the Takagi-Sugeno fuzzy system
(3.1) is stabilizable with the PDC controller (2.6), with gains given by Fi = ST

i H
−T , Kρ = V T

ρ H
−T ,

and R = V TH−T , if there exist positive definite symmetric matrices Tk, k = 1, 2, . . . , r, Y , and any
matricesH,Si, Vρ, and V with appropriate dimensions such that the following LMIs hold.

Ti � 0,

Ti + Y � 0 (i = 1, 2, . . . , r),

Λii ≺ 0,

Λij ≺ 0,

(3.4)

Λij = Λij + Λji, (3.5)

where

Λij =

⎡

⎣Tφ −AiH
T −HAT

i + BiS
T
j + SjB

T
i + BiV

T

φ + V φB
T
i ∗

Ti − μ
(
AiH

T − BiS
T
j − BiV

T

φ

)
+H μ

(
HT +H

)

⎤

⎦,

V φ =
r∑

ρ=1

φρ

(
V T
ρ + V T

)
,

Tφ =
r∑

k=1

φk(Tk + Y ).

(3.6)

Proof of Theorem 3.1. Let’s consider the fuzzy weighting-dependent Lyapunov-Krasovskii
functional as:

V (x(t)) =
r∑

k=1

hk(z(t)) · Vk(x(t)), (3.7)

with Vk(x(t)) = xT (t)(Pk + εX)x(t), k = 1, 2, . . . , r, where Pk = PT
k , X = XT , ε ≥ 0, and

(Pk + εX) ≥ 0.
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This candidate Lyapunov function satisfies

(i) V (x(t)) is C1,

(ii) V (0) = 0 and V (x(t)) ≥ 0 for x(t)/= 0,

(iii) ‖x(t)‖ → ∞ ⇒ V (x(t)) → ∞.

The time derivative of V (x(t)) is given by:

V̇ (x(t)) =
r∑

k=1

ḣk(z(t))Vk(x(t)) +
r∑

k=1

hk(z(t))V̇k(x(t)). (3.8)

Adding the null product, then

V̇ (x(t)) =
r∑

k=1

ḣk(z(t))Vk(x(t)) +
r∑

k=1

hk(z(t))V̇k(x(t)) + 2
[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣ẋ(t) −
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

⎧
⎨

⎩Ai − BiFj −
r∑

ρ=1

ḣρ(z(t))Bi

(
Kρ + R

)
⎫
⎬

⎭x(t)

⎤

⎦.

(3.9)

Equation (3.9) can be rewritten as,

V̇ (x(t)) = Υ1(x, z) + Υ2(x, z), (3.10)

where

Υ1(x, z) = xT (t)

(
r∑

k=1

ḣk(z(t)) · (Pk + εX)

)
x(t) + 2

[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣
r∑

i=1

r∑

ρ=1

hi(z(t))ḣρ(z(t))Bi

(
Kρ + R

)
x(t)

⎤

⎦,

Υ2(x, z) =
r∑

i=1

hi(z(t))
{
2xT (t)(Pi + εX)ẋ(t)

}
+ 2

[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣ẋ(t) −
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))
{
Ai − BiFj

}
x(t)

⎤

⎦.

(3.11)

Then, based on Assumption 2.1, an upper bound of Υ1(x, z) is obtained as:

Υ1(x, z) ≤
r∑

i=1

hi(z(t))

⎧
⎨

⎩

r∑

k=1

φk · x(t)T (Pk + εX)x(t) + 2
[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣
r∑

ρ=1

φρBi

(
Kρ + R

)
x(t)

⎤

⎦

⎫
⎬

⎭.

(3.12)
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Based on (2.5), it follows that
∑r

k=1 ḣk(z(t))(1 − ε)X = 0 where X is any symmetric
matrix of proper dimension.

Suppose that X =
∑r

k=1 ḣk(z(t))(1 − ε)X and adding X to (3.12), then

Υ1(x, z) ≤
r∑

i=1

hi(z(t))

⎧
⎨

⎩

r∑

k=1

φk · x(t)T (Pk +X)x(t) + 2
[
xT (t)M + ẋT (t)μM

]

×
⎡

⎣
r∑

ρ=1

φρBi

(
Kρ + R

)
x(t)

⎤

⎦

⎫
⎬

⎭

=
r∑

i=1

hi(z(t))
{
x(t)TPφx(t) + 2xT (t)M · BiKφx(t) + 2ẋT (t)μM · BiKφx(t)

}
,

(3.13)

where

Pφ =
r∑

k=1

φk · (Pk +X), Kφ =
r∑

ρ=1

φρ

(
Kρ + R

)
. (3.14)

Then,

V̇ (x(t)) ≤
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

×
{
x(t)TPφx(t) + 2xT (t)M · BiKφx(t) + 2ẋT (t)μM · BiKφx(t)

+ 2xT (t)(Pi + εR)ẋ(t) + 2xT (t)Mẋ(t) + 2ẋT (t)μMẋ(t)

−2xT (t)M
(
Ai − BiFj

)
x(t) − 2ẋT (t)μM

(
Ai − BiFj

)
x(t)

}
.

(3.15)

Using vector ηT = [xT (t) ẋT (t)]T , (3.15) can be rewritten as

V̇ (x(t)) ≤
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))ηTΞijη

=
r∑

i=1

h2
i (z(t))η

TΞiiη +
r∑

i=1

∑

i≺j
hi(z(t))hj(z(t))ηT(Ξij + Ξji

)
η,

(3.16)

where

Ξij =

⎡
⎢⎣

{
Pφ −M

(
Ai − BiFj − BiKφ

)
−
(
Ai − BiFj − BiKφ

)T
MT

}
∗

(Pi + εX) − μM
(
Ai − BiFj − BiKφ

)
+MT μ

(
M +MT

)

⎤
⎥⎦. (3.17)
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If Ξii ≺ 0 and (Ξij + Ξji) ≺ 0, then V̇ (x(t)) ≺ 0 and (3.3) is stable. Pre- and post-
multiplying Ξii ≺ 0 and (Ξij + Ξji) ≺ 0 by nonsingular matrices diag(M−1,M−1) and
diag(M−T ,M−T), respectively, and pre- and postmultiplying by M−1 and M−T , respectively,
then we obtain

M−1(Pi + εX)M−T � 0 (i = 1, 2, . . . , r),

M−1(Pi +X)M−T � 0 (i = 1, 2, . . . , r),

Λii ≺ 0 (i = 1, 2, . . . , r),

Λij ≺ 0 (i ≺= 1, 2, . . . , r),

(3.18)

where Λij = Λij + Λji, and

Λij =

⎡
⎢⎢⎢⎢⎢⎣

{
M−1PφM

−T −
(
Ai − BiFj − BiKφ

)
M−T

−M−1
(
Ai − BiFj − BiKφ

)T} ∗
{
M−1(Pi + εX)M−T − μ

(
Ai − BiFj − BiKφ

)
M−T +M−1

}
μ
(
M−T +M−1)

⎤
⎥⎥⎥⎥⎥⎦

(3.19)

for the following variables definition:

H = M−1, Ti = H(Pi + εX)HT, Tφ = HPφH
T, Sj = HFT

j ,

Vj = HKT
ρ , V = HRT, Y = HXHT.

(3.20)

If LMI in (3.4) holds then the closed-loop continuous fuzzy system (3.3) is asymptotically
stable. The control gains are given by Fi = ST

i H
−T , Kρ = V T

ρ H
−T , and R = V TH−T . This

completes the proof.

Remark 3.2. The selection of φk given in Assumption 2.1 is performed by using a simple
procedure given in [15] .

Remark 3.3. The major contribution of the Theorem 3.1 is represented by the proposed PDC
controller given by (2.6). The contribution appears in the gains (Kρ + R) introduced in
the controller term based on derivative membership functions. The stabilization condition
proposed is less conservative than some of those in the literature, as is shown in the example
below.

3.2. Observer Design

In order to determine state variables of the system, this section gives a solution by the means
of fuzzy observer design. The following condition is to be satisfied by the observer:

x(t) − x̂(t) −→ 0 as t −→ ∞, (3.21)
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where x̂(t) denotes the state vector estimated by a fuzzy observer. This condition guarantees
that the steady-state error between x(t) and x̂(t) converge to 0 and we denote this error by
e(t) = x(t) − x̂(t).

A stabilizing observer-based controller can be formulated as follow:

̂̇x(t) =
r∑

j=1

hi(z(t))
{
Aix̂(t) + Biu(t) + Lj

(
Cix̂(t) − y(t)

)}
,

y(t) = −
r∑

i=1

hi(z(t))Cix̂(t),

(3.22)

where y(t) denotes the output vector.
We consider the proposed PDC controller given by (2.6):

u(t) = −
r∑

i=1

hi(z(t))Fix̂(t) −
r∑

ρ=1

ḣρ(z(t))
(
Kρ + R

)
x̂(t). (3.23)

Replacing the fuzzy controller (2.6) in fuzzy observer (3.22)we obtain the closed-loop
fuzzy system as:

ẋ(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

⎧
⎨

⎩
(
Ai − BiFj

) −
r∑

ρ=1

ḣρ(z(t))
(
Kρ + R

)
⎫
⎬

⎭x(t)

+
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

⎧
⎨

⎩BiFj +
r∑

ρ=1

ḣρ(z(t))
(
Kρ + R

)
⎫
⎬

⎭e(t)

ė(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))
{
Ai − LiCj

}
e(t).

(3.24)

The augmented system is represented as follows:

ẋa(t) =
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))G̃ijxa(t)

=
r∑

j=1

hi(z(t))hj(z(t))G̃iixa(t) + 2
r∑

i=1

r∑

i≺j
hi(z(t))hj(z(t))

{
G̃ij + G̃ji

2

}
xa(t),

(3.25)
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where

xa(t) =
[
x(t)
e(t)

]
,

G̃ij =

⎡

⎣Ai − BiFj −
r∑

ρ=1
ḣρBi

(
Kρ + R

)
BiFj +

r∑
ρ=1

ḣρBi

(
Kρ + R

)

0 Ai − LiCj

⎤

⎦.

(3.26)

By applying Theorem 1 in [16] in the augmented system (3.25)we derive the following
Theorem.

Theorem 3.4. Under Assumptions 2.1 and 2.2, and for 0 ≤ μ ≤ 1, the Takagi-Sugeno fuzzy system
(3.1) is stable if there exist positive definite symmetric matrices Pk, k = 1, 2, . . . , r, and R, matrices
F1, . . . , Fr such that the following LMIs holds.

Pk + R � 0, k ∈ {1, . . . , r},
Pj + μR ≥ 0, j = 1, 2, . . . , r,

Pφ +
{
G̃T

ii

(
Pk + μR

)
+
(
Pk + μR

)
G̃ii

}
≺ 0, i, k ∈ {1, . . . , r},

{
G̃ij + G̃ji

2

}T
(
Pk + μR

)
+
(
Pk + μR

)
{
G̃ij + G̃ji

2

}
≺ 0, for i, j, k = 1, 2, . . . , r such that i ≺ j,

(3.27)

where

G̃ij =

⎡

⎣Ai − BiFj −
r∑

ρ=1
ḣρBi

(
Kρ + R

)
BiFj +

r∑
ρ=1

ḣρBi

(
Kρ + R

)

0 Ai − LiCj

⎤

⎦,

Pφ =
r∑

k=1

φk(Pk + R).

(3.28)

Proof of Theorem 3.4. The result follows immediately from the proof of Theorem 1 in [16].

4. Robust Stability Condition with PDC Controller

Consider the uncertain closed-loop system (2.8). A sufficient robust stability condition is
given as follows.

Theorem 4.1. Under Assumptions 2.1 and 2.2, and for μ � 0, ε ≥ 0, the Takagi-Sugeno fuzzy system
(2.2) is stabilizable with the PDC controller (2.6), with gains given by Fi = ST

i H
−T , Kρ = V T

ρ H
−T ,
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and R = V TH−T , if there exist positive definite symmetric matrices Tk, k = 1, 2, . . . , r, Y , and any
matricesH,Si, Vρ, and V with appropriate dimensions such that the following LMIs hold.

Ti � 0,

Ti + Y � 0 (i = 1, 2, . . . , r),
∑

ii

≺ 0,

∑

ij

≺ 0,

(4.1)

∑

ij

=
∑

ij

+
∑

ji

,

Tφ =
r∑

k=1

φk(Tk + Y ),

(4.2)

where

Σij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 MDai MDbi ET
ai −

(
Ebi

(
Fi +Kφ

))T

Φ22 μMDai μMDbi 0 0
∗ −λI 0 0 0
∗ ∗ −λI 0 0
∗ ∗ ∗ −λ−1I 0
∗ ∗ ∗ ∗ −λ−1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.3)

with

Φ11 = Pφ +
[
M · BiKφ +K

T

φB
T
i M

]
−
[
MGii +Gii

TMT
]
,

Φ12 = (Pi + εX) − μ
(
Gii − BiKφ

)T
MT +M,

Φ22 = μ
(
M +MT

)
,

(4.4)

where Gij = Ai − BiFj , Gii = Ai − BiFi, and Pφ =
∑r

k=1 φk(Pk + R).
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Proof. [Proof of Theorem 4.1] The result follows immediately from the proof of Theorem 3.1
by replacing in the matrix inequality Ai with Ai +DaiF(t)Eai and Bi with Bi +DbiF(t)Ebi, we
obtain the following inequality:

V̇ (x(t)) ≤
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

×
{
x(t)TPφx(t) + 2xT (t)M · BiKφx(t) + 2ẋT (t)μM · BiKφx(t)

+ 2xT (t)(Pi + εR)ẋ(t) + 2xT (t)Mẋ(t) + 2ẋT (t)μMẋ(t)

− 2xT (t)M
(
Ai − BiFj

)
x(t) − 2xT (t)M

×
(
[
Dai Dbi

] [
Fai(t) 0
0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
])

x(t)

− 2ẋT (t)μM
(
Ai − BiFj

)
x(t) − 2ẋT (t)μM

×
(
[
Dai Dbi

] [
Fai(t) 0
0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
])

x(t)

}
.

(4.5)

Using vector ηT = [xT (t) ẋT (t)]T , (4.5) can be rewritten as

V̇ (x(t)) ≤
r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))ηT Ξ̃ijη

=
r∑

i=1

h2
i (z(t))η

T Ξ̃iiη +
r∑

i=1

∑

i≺j
hi(z(t))hj(z(t))ηT

(
Ξ̃ij + Ξ̃ji

)
η,

(4.6)

where

Ξ̃ij = Ξij +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M

⎛

⎝[
Dai Dbi

] [
Fai(t) 0
0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
]⎞

⎠

+

([
Dai Dbi

] [
Fai(t) 0
0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
])T

MT

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∗

μM

(
[
Dai Dbi

] [
Fai(t) 0
0 Fbi(t)

] [
Eai

−Ebi

(
Fj +Kφ

)
])

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ξ̃ij = Ξij +
[
M
[
Dai Dbi

]

μM
[
Dai Dbi

]
][

Fai(t) 0
0 Fbi(t)

][ Eai 0
−Ebi

(
Fj +Kφ

)
0

]

+

⎡

⎣E
T
ai −

(
Ebi

(
Fj +Kφ

))T

0 0

⎤

⎦
[
Fai(t) 0
0 Fbi(t)

]T
⎡

⎣
DT

aiM
T μDT

aiM
T

DT
bi
MT μDT

bi
MT

⎤

⎦.

(4.7)
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Then, based on Lemma 2.4, an upper bound of Ξ̃ij obtained as:

Ξ̃ij = Ξij + λ−1M
[
Dai Dbi

μDai μDbi

]⎡

⎣
DT

ai μDT
ai

DT
bi

μDT
bi

⎤

⎦MT

+ λ

⎡

⎣E
T
ai −

(
Ebi

(
Fj +Kφ

))T

0 0

⎤

⎦
[

Eai 0
−Ebi

(
Fj +Kφ

)
0

]
≺ 0

(4.8)

by Schur complement, we obtain,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 MDai MDbi ET
ai −

(
Ebi

(
Fj +Kφ

))T

Φ22 μMDai μMDbi 0 0
∗ −λI 0 0 0
∗ ∗ −λI 0 0
∗ ∗ ∗ −λ−1I 0
∗ ∗ ∗ ∗ −λ−1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0, (4.9)

with

Φ11 = Pφ +
[
M · BiKφ +K

T
φB

T
i M

]
−
[
M
(
Ai − BiFj

)
+
(
Ai − BiFj

)T
MT

]
,

Φ12 = (Pi + εX) − μ
(
Ai − BiFj − BiKφ

)T
MT +M,

Φ22 = μ
(
M +MT

)
.

(4.10)

If the LMI (4.1) holds then the system (2.8) is stable. This completes the proof.

The following theorem gives sufficient conditions for robust PDC controller design.

Theorem 4.2. Under Assumptions 2.1 and 2.2, and for μ � 0, ε ≥ 0, the Takagi-Sugeno robust
fuzzy system (2.2) is stabilizable with the PDC controller (2.6), with gains given by Fi = S̃T

i H̃
−T ,
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Kρ = Ṽ T
ρ H̃

−T , and R = Ṽ T H̃−T , if there exist positive definite symmetric matrices T̃k, k = 1, 2, . . . , r,

Ỹ , and any matrices H̃, S̃i, Ṽρ, and Ṽ with appropriate dimensions such that the following LMIs hold.

T̃i � 0,

T̃i + Ỹ � 0 (i = 1, 2, . . . , r),

Λ̃ii ≺ 0,

Λ̃ij ≺ 0,

(4.11)

Λ̃ij = Λ̃ij + Λ̃ji,

T̃φ =
r∑

k=1

φk

(
T̃k + Ỹ

)
,

Ṽ φ =
r∑

ρ=1

φρ

(
Ṽ T
ρ + Ṽ T

)
,

(4.12)

where

Λ̃ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃11 Φ̃12 Dai Dbi HET
ai −S̃jE

T
bi
− Ṽ φE

T
bi

Φ̃22 μDai μDbi 0 0
∗ −λI 0 0 0
∗ ∗ −λI 0 0
∗ ∗ ∗ −λ−1I 0
∗ ∗ ∗ ∗ −λ−1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.13)

with

Φ̃11 = T̃φ −AiH̃
T − H̃AT

i + BiS̃
T
j + S̃jB

T
i + BiṼ

T

φ + Ṽ φB
T
i ,

Φ̃12 = T̃i − μ

(
AiH̃

T − BiS̃
T
j − BiṼ

T

φ

)
+ H̃,

Φ̃22 = μ
(
HT +H

)
.

(4.14)

Proof of Theorem 4.2. Consider (4.8) and pre- and postmultiplying by M−1 and M−T ,
respectively, then we obtain

Λ̃ij = Λij + λ−1
[
Dai Dbi

μDai μDbi

]⎡

⎣
DT

ai μDT
ai

DT
bi

μDT
bi

⎤

⎦

+ λM−1

⎡

⎣E
T
ai −

(
Ebi

(
Fj +Kφ

))T

0 0

⎤

⎦
[

Eai 0
−Ebi

(
Fj +Kφ

)
0

]
M−T ≺ 0,

(4.15)

with Λij defined by (3.5).
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By Schur complement, we obtain,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃11 Φ̃12 Dai Dbi M−1ET
ai −M−1

(
Ebi

(
Fj +Kφ

))T

Φ̃22 μDai μDbi 0 0
∗ −λI 0 0 0
∗ ∗ −λI 0 0
∗ ∗ ∗ −λ−1I 0
∗ ∗ ∗ ∗ −λ−1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≺ 0, (4.16)

with

Φ̃11 = M−1PφM
−T −

(
Ai − BiFj − BiKφ

)
M−T −M−1

(
Ai − BiFj − BiKφ

)T
,

Φ̃12 = M−1(Pi + εX)M−T − μ
(
Ai − BiFj − BiKφ

)
M−T +M−1,

Φ̃22 = μ
(
M−T +M−1

)

(4.17)

for the following variables definition:

H̃ = M−1, T̃i = H̃(Pi + εX)H̃T , T̃φ = H̃PφH̃
T ,

S̃j = H̃FT
j , Ṽj = H̃KT

ρ , Ṽ = H̃RT , Ỹ = H̃XH̃T .
(4.18)

If LMI in (4.11) holds then the closed-loop continuous fuzzy system (2.8) is
asymptotically stable.

The control gains are given by Fi = S̃T
i H̃

−T , Kρ = Ṽ T
ρ H̃

−T , and R = Ṽ T H̃−T . This
completes the proof.

5. Numerical Examples

In order to show the improvements of the proposed approaches over some existing results, in
this section, we present a numerical example in which we present the feasible area for a T-S
fuzzy system. Indeed, we compare the proposed fuzzy Lyapunov approaches (Theorem 3.4)
with result provided by [17], and in [14, Theorem 6]. A second example is given to improve
the given gains of robust PDC controller.

Example 5.1. Consider the following continuous T-S fuzzy system:

ẋ(t) =
r∑

i=1

hi(z(t))Aix(t),

(5.1)
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Figure 1: Feasible area provided by [17] (+), [14] (©) and Theorem 3.1 (•).

with

r = 2; A1 =
[
3.6 −1.6
6.2 −4.3

]
, A2 =

[−a −1.6
6.2 −4.3

]
,

B1 =
[−0.45

−3
]
, B2 =

[−b
−3
]
,

(5.2)

where a ∈ [0, 25], b ∈ [0, 2], considering μ = 0.04 and φ1,2 = 1.
The proposed approach (Theorem 3.4) gives less conservative stabilization conditions

(Figure 1) than some recent results provided by [14, 17].

Example 5.2. Consider the uncertain continuous T-S fuzzy system given by (2.8)with

r = 2; A1 =
[
3.6 −1.6
6.2 −4.3

]
, A2 =

[−a −1.6
6.2 −4.3

]
,

B1 =
[−0.45

−3
]
, B2 =

[−b
−3
]
,

Da1 = Ea1 =
[
0.3 0
0 0

]
, Db1 = Eb1 =

[
0.3
0

]
,

Da2 = Ea2 =
[−0.2 0

0 0.3

]
, Db2 = Eb2 =

[−0.2
0.3

]

(5.3)
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for a = 1, b = 0.5, considering μ = 0.04, λ = 0.1 and φ1,2 = 1, we find the following gains
values:

F1 = [−5.03401.5230], F2 = [3.7868 − 0.8082],

K1 = [−180.233465.7330], K2 = [−180.949465.9073], R = [201.9216 − 71.7345].
(5.4)

6. Conclusion

This paper provided new conditions for the stabilization with a class of PDC controller
of Takagi-Sugeno fuzzy systems in terms of a combination of the LMI approach and the
use of nonquadratic Lyapunov function as fuzzy Lyapunov function. In addition, the time
derivative of membership function is considered by the PDC fuzzy controller and the slack
matrix variables are introduced in order to facilitate the stability analysis. An approach to
design an observer is derived in order to estimate variable states. In addition, a new condition
of the stabilization of uncertain system is given in this paper.

The stabilization condition proposed in this paper is less conservative than some of
those in the literature, which has been illustrated via examples.
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