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The statistics of sea level is essential in the field of geosciences, ranging from ocean dynamics to
climates. The fractal properties of sea level, such as long-range dependence (LRD) or longmemory,
1/f noise behavior, and self-similarity (SS), are known. However, the description of its multiscale
behavior as well as local roughness with the Hölder exponent h(t) from a view of multifractional
Brownian motion (mBm) is rarely reported, to the best of our knowledge. In this research, we will
exhibit that there is the multiscale property of sea level based on h(t)s of sea level data recorded by
the National Data Buoy Center (NDBC) at six stations in the Florida and Eastern Gulf of Mexico.
The contributions of this paper are twofold as follows. (i) Hölder exponent of sea level may not
change with time considerably at small time scale, for example, daily time scale, but it varies
significantly at large time scale, such as at monthly time scale. (ii) The dispersion of the Hölder
exponents of sea level may be different at different stations. This implies that the Hölder roughness
of sea level may be spatial dependent.

1. Introduction

The study of sea level fluctuations plays a role in geosciences [1–3]. There are two categories
of time scales of sea level. One is for yearly data with time scales in one yr, or 10 yr, or more;
see, for example, [4–16]. The other is about data with time scales hourly, daily, weekly, or
monthly; see, for example, [17–39]. The former generally relates to the study of trend of
relative mean sea level with respect to global and Earth or planetary changes, for example, in
the filed of climates, while the latter is usually associated with the research of local dynamics
of sea level in the aspects of navigations, coastal engineering, tide power production, ship
design, and so forth. Our research uses the hourly sea level data recorded by NDBC [40].

Since the pioneering work of Hurst on time series with long-range dependence (LRD)
is observed in the Nile Basin [41], the LRD property of time series in geosciences has been
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widely observed; see, for example, [42–59]. By LRD, one means that the covariance function
C(τ) of time series x(t) decays so slowly such that

∫∞

0
C(τ)dτ = ∞, (1.1)

where τ is time lag and C(τ) = E[x(t + τ)x(t)]. Therefore, LRD is a global property of time
series [60–66].

In addition to LRD, there is another essential property of processes in geosciences,
called self-similarity (SS); see, for example, [67–84]. By SS, we mean that a random function
x(t) satisfies the property given by

x(t) � aHx(at), ∀a > 0, t > 0, (1.2)

where � is the equality in distribution, H ∈ (0, 1) is the Hurst parameter that measures SS,
and a is a scale [61, 83–86]. Note that the term SS implies the roughness or irregularity of a
random function [86]. If x(t) satisfies (1.2), it is globally self-similar. That is, its irregularity
characterized by H keeps the same for all t > 0 [87], corresponding the case of monofractal
[88, 89].

Since the global SS implies the same value of H for all t, it may be too restrictive
to describe real data in engineering and sciences to use a monofractal model. Therefore,
multifractal models are desired in various fields of sciences and engineering; see, for example,
[85–92] and references therein, including those in geosciences; see, for example, [93–110], just
citing a few. From a view of multifractal, a random function that is not self-similar may be of
local self-similarity (LSS).

There are several ways of describing multifractality of a random function based on
various definitions of dimensions, such as the Minkowski dimension, the Rényi dimension,
the Hausdorff dimension, the packing dimension, the box-counting dimension, and the
correlation dimension [86, 89, 90, 111–114]. In this paper, we adopt the Hölder exponent
0 < h(t) < 1 in multifractional Brownian motion (mBm) introduced by Peltier and Levy-
Vehel [115]. Taking into account h(t) in mBm, therefore, one may use the following:

x(t) � ah(t)x(at), ∀a > 0, t > 0, (1.3)

to characterize the LSS property of a locally self-similar random function x(t) on a point-by-
point basis. We call the LSS or local roughness characterized by h(t) the Hölder roughness
in this paper. The applications of h(t) attract increasing interests of researchers in sciences
and technologies, ranging from teletraffic to geophysics; see, for example, [116–134], simply
mentioning a few.

This paper aims at investigating the Hölder multiscales (Hölder scales for short) of
sea level. By Hölder scales, we mean the time scales described by the Hölder exponents in
mBm. The contributions of this paper are in two aspects. On the one hand, we will reveal that
variations of h(t) of sea level may be indistinctively at small time scale, for example, daily
time scale, but h(t) of sea level varies significantly at large time scale, such as at monthly time
scale. On the other hand, we will exhibit that the dispersion of the Hölder exponents of sea
level may usually be spatial dependent.



Mathematical Problems in Engineering 3

Table 1:Measured data at LKWF1.

Series name Record date and time L (record length)
x lkwf1 1996(t) 0:00, 1 Jan.–23:00, 31 Dec. 1996 8208
x lkwf1 1997(t) 0:00, 1 Jan.–23:00, 31 Dec. 1997 7776
x lkwf1 1998(t) 0:00, 1 Jan.–23:00, 31 Dec. 1998 8736
x lkwf1 1999(t) 0:00, 1 Jan.–23:00, 31 Dec. 1999 8760
x lkwf1 2000(t) 0:00, 1 Jan.–17:00, 26 Feb. 2000 1362
x lkwf1 2001(t) 17:00, 8 Aug.–23:00, 31 Dec. 2001 2972
x lkwf1 2002(t) 0:00, 1 Jan.–23:00, 31 Dec. 2002 8740
x lkwf1 2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 8582
x lkwf1 2004(t) 0:00, 1 Jan.–14:00, 5 Oct. 2004 6655

The remaining paper is organized as follows. Data used in this research are briefed in
Section 2. The method for describing the Hölder exponent in mBm is explained in Section 3.
Results of data processing and discussions are given in Section 4, which is followed by
conclusions.

2. Data

NDBC is a part of the US National Weather Service (NWS) [135]. It provides scientists with
data for their scientific research, including significant wave height and water level [136]. We
use the data measured at stations named LKWF1, LONF1, SAUF1, SMKUF1, SPGF1, and
VENF1, respectively. In terms of the names of measurement stations, LKWF1 implies the
station at Lake Worth, FL [137]; the station LONF1 is the one at Long Key, FL [138]; the
station SAUF1 is at St. Augustine, FL [139]; SMKUF1 is the station at Sombrero Key, FL [140];
SPGF1 is at Settlement Point, GBI [141]; and VENF1 is at Venice, FL [142]. They are located
in the Florida and Eastern Gulf of Mexico. The data are under the directory of Water Level,
which are publicly accessible [143], referring Gilhousen [144] as an instance of research using
the data by NDBC.

All data were hourly recorded with ten separate devices indexed by TGn (n =
01, 02, . . . , 10). Without losing generality, this research utilizes the data from the device TG01.
Denote the data series by x s yyyy(t), where s is the name of the measurement station and
yyyy stands for the index of year. Denote by h s yyyy(t) its corresponding h(t) at the station
s in the year of yyyy. For example, x lkwf1l 2002(t) and h lkwf1l 2002(t), respectively,
represent the measured sea level time series and its h(t) at the station LKWF1 in 2002.

If the recorded data are labeled by 99, they are taken as outliers, which are not
involved in the computations. In this case, they are replaced with the mean of that series.
NDBC suggests that 10 ft should be subtracted from every level series x s yyyy(t) [145]. By
taking into account this suggestion in the computation of h(t), we modify x s yyyy(t) by
subtracting 10 ft and denote y s yyyy(t) modified data of sea level. That is,

y s yyyy(t) = x s yyyy(t) − 10. (2.1)

Tables 1, 2, 3, 4, 5 and 6 list those data.
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Table 2: Measured data at LONF1.

Series name Record date and time L (record length)
x lonf11 1998(t) 0:00, 3 Nov.–23:00, 31 Dec. 1998 1416
x lonf1 1999(t) 0:00, 1 Jan.–21:00, 31 Dec. 1999 8757
x lonf1 2000(t) 0:00, 1 Jan.–23:00, 31 Dec. 2000 8484
x lonf1 2001(t) 0:00, 1 Jan.–23:00, 31 Dec. 2001 8760
x lonf1 2002(t) 0:00, 1 Jan.–23:00, 31 Dec. 2002 8760
x lonf1 2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 8697
x lonf1 2004(t) 0:00, 1 Jan.–23:00, 31 Dec. 2004 8758
x lonf1 2005(t) 0:00, 1 Jan.–23:00, 31 Dec. 2005 8750
x lonf1 2006(t) 0:00, 1 Jan.–23:00, 31 Dec. 2006 8735
x lonf1 2007(t) 0:00, 1 Jan.–23:00, 31 Dec. 2007 8692
x lonf1 2008(t) 0:00, 1 Jan.–21:00, 19 Jan. 2008 444

Table 3: Measured data at SAUF1.

Series name Record date and time L (record length)
x sauf1 1996(t) 0:00, 1 Jan.–14:00, 10 Aug. 1996 5511
x sauf1 1997(t) 0:00, 25 Feb.–23:00, 31 Dec. 1997 6240
x sauf1 1998(t) 0:00, 1 Jan.–23:00, 31 Dec. 1998 8736
x sauf1 1999(t) 0:00, 1 Jan.–23:00, 31 Dec. 1999 8136
x sauf1 2000(t) 0:00, 1 Jan.–23:00, 31 Dec. 2000 8715
x sauf1 2001(t) 0:00, 1 Jan.–21:00, 31 Dec. 2001 8758
x sauf1 2002(t) 20:00, 6 Feb.–23:00, 20 Aug. 2002 4684

Table 4: Measured data at SMKF1.

Series name Record date and time L (record length)
x smkf1 1998(t) 0:00, 3 Nov.–23:00, 31 Dec. 1998 1416
x smkf1 1999(t) 0:00, 1 Jan.–23:00, 31 Dec. 1999 7775
x smkf1 2000(t) 0:00, 1 Aug.–23:00, 31 Dec. 2000 3542
x smkf1 2001(t) 0:00, 1 Jan.–23:00, 31 Dec. 2001 5776
x smkf1 2002(t) 0:00, 1 Jan.–23:00, 31 Dec. 2002 8742
x smkf1 2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 5851
x smkf1 2004(t) 0:00, 1 Jan.–23:00, 31 Dec. 2004 8439
x smkf1 2005(t) 0:00, 1 Jan.–23:00, 31 Dec. 2005 8667
x smkf1 2006(t) 0:00, 1 Jan.–23:00, 31 Dec. 2006 8623
x smkf1 2007(t) 0:00, 1 Jan.–23:00, 31 Dec. 2007 8702
x smkf1 2008(t) 0:00, 1 Jan.–23:00, 31 Dec. 2008 8679
x smkf1 2009(t) 0:00, 1 Jan.–23:00, 31 Dec. 2009 8109
x smkf1 2010(t) 0:00, 1 Jan.–23:00, 31 July 2010 5074
x smkf1 2011(t) 0:00, 1 Jan.–23:00, 31 Dec. 2011 8759

Table 5: Measured data at SPGF1.

Series name Record date and time L (record length)
x spgf1 1996(t) 0:00, 1 Jan.–23:00, 15 Dec. 1996 8616
x spg1 1997(t) 0:00, 6 Mar.–23:00, 15 Dec. 1997 7080
x spg1 1998(t) 0:00, 1 Jan.–23:00, 7 Jan. 1998 168
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Table 6: Measured data at VENF1.

Series name Record date and time L (record length)
x venf1 2002(t) 0:00, 1 Oct.–23:00, 31 Dec. 2002 2208
x ven1 2003(t) 0:00, 1 Jan.–23:00, 31 Dec. 2003 8760
x ven1 2004(t) 0:00, 1 Jan.–16:00, 7 Jan. 2004 634
x ven1 2006(t) 14:00, 22 July–23:00, 31 Dec. 2006 3882
x ven1 2007(t) 0:00, 1 Jan.–23:00, 31 Dec. 2007 8663
x ven1 2008(t) 0:00, 1 Jan.–23:00, 31 Oct. 2008 7189

3. Methodology

Let B(t) be the standard Brownian motion. Then, B(t) satisfies the following properties.

(i) The increments B(τ + t) − B(t) are Gaussian.

(ii) E[B(τ + t) − B(t)] = 0 and

Var[B(t + τ) − B(t)] = σ2τ, (3.1)

where σ2 = E{[B(t + 1) − B(t)]2} = E{[B(1) − B(0)]2} = E{[B(1)]2}.
(iii) In nonoverlapping intervals [t1, t2] and [t3, t4], the increments B(t4)-B(t3) and B(t2)-

B(t1) are independent.

(iv) B(0) = 0 and B(t) is continuous at t = 0.

Kolmogorov introduced a class of random functions the covariance function of which
is now recognized as the one of fractional Brownian motion (fBm) [146, Theorem 6]. Note
that, for a random function x(t), the function f(τ) expressed by

f(τ) = Var[x(t + τ) − x(t)] = E
{
[x(t + τ) − x(t)]2

}
(3.2)

is termed serial variation function; see, for example, Matérn [147, page 51]. It is usually called
variogram in geosciences [148–157]. In the field of fluid mechanics, it is named structure
function [158–161]. Yaglom derived fBm based on the theory of structure functions [162].
In this paper, we use the fBm introduced by Bandelbrot and van Ness based on fractional
calculus [163].

It is well known that B(t) is nondifferentiable in the domain of ordinary functions
[164–166]. In the domain of generalized functions, however, it is differentiable [167, 168].

Denote the fBm by BH(t). Based on the Weyl’s fractional derivative or integral [163],
it is expressed by

BH(t) − BH(0) =
1

Γ(H + 1/2)

⎧⎪⎪⎨
⎪⎪⎩

∫0

−∞

[
(t − u)H−0.5 − (−u)H−0.5

]
dB(u)

+
∫ t

0
(t − u)H−0.5dB(u)

⎫⎪⎪⎬
⎪⎪⎭
. (3.3)
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If the first item on the right hand of (3.3) is taken as the zero-input response of the system that
generates BH(t) for t > 0, we may regard the fBm as the convolution of the impulse function
tH−1/2/Γ(H + 1/2) and dB(t)/dt [169]. Therefore, (3.3) may be rewritten by

BH(t) − BH(0) = B0(u) +
tH−0.5

Γ(H + 1/2)
∗ dB(t)

dt
, (3.4)

where ∗ is the operator of convolution and

B0(u) =
1

Γ(H + 1/2)

∫0

−∞

[
(t − u)H−0.5 − (−u)H−0.5

]
dB(t). (3.5)

It may be interesting to note that tH−1/2/Γ(H + 1/2) is a special case of the operators of
fractional order discussed by Mikusinski [170, Equation (59.1)].

The function BH(t) has the following properties.

(i) BH(0) = 0.

(ii) The increments BH(t + t0) − BH(t0) are Gaussian.

(iii) Its structure function is given by

Var[BH(t + τ) − BH(t)] = σ2τ2H, (3.6)

where σ2 = E{[BH(t + 1) − BH(t)]2} = E{[BH(1) − BH(0)]2} = E{[BH(1)]2}.
In addition, it satisfies the self-similarity expressed by (1.2), which implies that BH(t)

is globally self-similar. Consequently, there is a limitation that its self-similarity or roughness
keeps the same for all t > 0. To release such a limitation, one may adopt the tool of the mBm
equipped with the Hölder exponent h(t); see, for example, [115, 119, 133]. In fact, the mBm
is a generalization of fBm by replacing the Hurst parameter H in (3.3) with a continuous
function h(t) that satisfies H : [0,∞) → (0, 1); see [87, 115–134, 171–182]. Denote the mBm
by X(t). Then,

X(t) =
1

Γ(h(t) + 1/2)

⎧⎪⎪⎨
⎪⎪⎩

∫0

−∞

[
(t − u)h(t)−0.5 − (−u)h(t)−0.5

]
dB(u)

+
∫ t

0
(t − u)h(t)−0.5dB(u)

⎫⎪⎪⎬
⎪⎪⎭
. (3.7)

Considering the local growth of the increment process of X(t), one may write a
sequence given by

Sk

(
j
)
=

m

N − 1

j+k∑
j=0

∣∣∣∣X(i + 1) −X(i)
∣∣∣∣, 1 < k < N, (3.8)
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Figure 1: Daily sea level at the station SMKUF1 from January 1 to Jan. 4 in 2008. (a). x smkf1 2008(t) on
Jan. 1, 2008. (b). x smkf1 2008(t) on Jan. 2, 2008. (c). x smkf1 2008(t) on Jan. 3, 2008. (d). x smkf1 2008(t)
on Jan. 4, 2008.

wherem is the largest integer not exceedingN/k. Then, h(t) at point t = j/(N−1) is given by

h(t) = −
log

(√
π/2Sk

(
j
))

log(N − 1)
. (3.9)

The above is the expression of applying mBm to investigate h(t) of sea level time series,
which measures the Hölder roughness of sea level on a point-by-point basis.

4. Observations and Discussions

We demonstrate h(t)s of sea level series x smkf1 2008(t) at the time scales of day, week, and
month, respectively.
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Figure 2: Hölder exponents of daily sea level at the station SMKUF1 from Jan. 1 to Jan. 4 in 2008. (a).
h smkf1 2008(t) on Jan. 1, 2008. (b). h smkf1 2008(t) on Jan. 2, 2008. (c). h smkf1 2008(t) on Jan. 3, 2008.
(d). h smkf1 2008(t) on Jan. 4, 2008.

4.1. Hölder Roughness at Daily Time Scale

Figure 1 indicates 4 daily series of sea level at the station SMKUF1 from Jan. 1 to Jan. 4 in
2008. Figure 2 demonstrates their corresponding Hölder exponents. From Figure 2, we see
that 4h(t)s of daily series of sea level vary with time insignificantly. Therefore, we obtain the
remark below.

Remark 4.1. The Hölder exponents of sea level at the daily time scale, that is, 24 hours, may
not vary significantly. This may imply that h(t) ≈ h(t + τ) if τ ≤ 24 hours.

4.2. Hölder Roughness at Weekly Time Scale

Four weekly series of sea level at the station SMKUF1 in Jan. 2008 are shown in Figure 3.
Their corresponding Hölder exponents are plotted in Figure 4. They appear monotonically
increase, see Figures 4(b) and 4(d), or decrease, see Figures 4(a) and 4(c). In general, they
imply the following remark.
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Figure 3: Weekly sea level at the station SMKUF1 on January 2008. (a). x smkf1 2008(t) in the 1st week in
Jan. 2008. (b). x smkf1 2008(t) in the 2ndweek in Jan. 2008. (c). x smkf1 2008(t) in the 3rd week on January
2008. (d). x smkf1 2008(t) in the 4th week in Jan. 2008.

Remark 4.2. The Hölder exponents of sea level at the weekly time scale, that is, 168 hours,
may not vary considerably enough.

4.3. Hölder Roughness at Monthly Time Scale

Figure 5 illustrates 4 monthly series of sea level at the station SMKUF1 in 2008. Their
corresponding Hölder exponents are indicated in Figure 6. From Figure 6, we see the
following.

Remark 4.3. The Hölder exponents of sea level at the monthly time scale vary with time
significantly.

4.4. Variation of Hölder Roughness at Large Time Scale

We now investigate the Hölder exponents of sea level at large time scale. By large time scale,
we mean that the scale is around month or larger. Figure 7(a) indicates the sea level series
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Figure 4:Hölder exponents of weekly sea level at the station SMKUF1 in January 2008. (a). h smkf1 2008(t)
in the 1st week on January 2008. (b). h smkf1 2008(t) in the 2nd week in Jan. 2008. (c). h smkf1 2008(t) in
the 3rd week in Jan. 2008. (d). h smkf1 2008(t) in the 4th week in Jan. 2008.

x smkf1 2008(t), Figure 7(b) shows its Hölder exponent, and Figure 7(c) the histogram of its
Hölder exponent.

One thing worth noting is that variances of Hölder exponents of sea level at different
stations may be considerably different. For instance,

Var[h smkf1 2008(t)] = 1.203 × 10−3,

Var[h lonf1l2005(t)] = 6.425 × 10−4.
(4.1)

The above implies that the variance of h smkf1 2008(t) is larger than that of h lonf1l2005(t)
in one magnitude of order. Consequently, comes the following remark.

Remark 4.4. The variances of the Hölder exponents of sea level at different observation
stations may be considerably different.
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Figure 5: Monthly sea level at the station SMKUF1 in 2008. (a). x smkf1 2008(t) on January 2008. (b).
x smkf1 2008(t) in March 2008. (c). x smkf1 2008(t) on July 2008. (d). x smkf1 2008(t) on October 2008.

We summarize the variances of the Hölder exponents of test data in Tables 7, 8, 9, 10,
11 and 12.

4.5. Discussions

Generally, the Hölder exponents of sea level series are time varying. They are considerably
at large time scales but insignificantly at small time scales. In addition, their variations are in
general spatial dependent as the Tables 7–12 exhibit. For instance, in 2002, Var[h(t)] varies,
in the form of magnitude of order, from 10−3 to 10−4 at different stations. This motivates us to
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Figure 6:Hölder exponents of month sea level at the station SMKUF1 in 2008. (a). h smkf1 2008(t) on Jan.
2008. (b). h smkf1 2008(t) onMarch 2008. (c). h smkf1 2008(t) in July 2008. (d). h smkf1 2008(t) in October
2008.

take the spatial-time modeling of Hölder roughness of sea level as our possible future work.
Finally, we note that the meaning of the term of local roughness of a random function is the
same as that of local self-similarity [60, 65, 86]. Thus, according to (1.2), Remarks 4.1–4.3
exhibit the self-similarity of sea level at small and large time scales, respectively.

5. Conclusions

We have presented our results in the Hölder exponents of sea level in the Florida and Eastern
Gulf of Mexico. The present results reveal an interesting phenomenon of time scales of sea
level. To be precise, the Hölder exponents of sea level may not vary considerably at small time
scales, such as daily time scale, but vary with time significantly at large time scale, such as
monthly time scale. Moreover, our research exhibits that variations of the Hölder exponents
of sea levels may be spatial dependent. Though the research is with the data in Florida and
Eastern Gulf of Mexico, the results may be useful for further exploring general properties of
the Hölder scales and roughness of sea level.
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Figure 7: Illustrations of h smkf1 2008(t) and its Hölder exponent. (a). x smkf1 2008(t). (b) Hölder
exponent h smkf1 2008(t). (c). Histogram of h smkf1 2008(t).

Table 7: Variances of the Hölder exponents at LKWF1.

Series name Var[h(t)]
x lkwf1 1996(t) 1.217 × 10−3

x lkwf1 1997(t) 1.006 × 10−3

x lkwf1 1998(t) 9.499 × 10−4

x lkwf1 1999(t) 1.164 × 10−3

x lkwf1 2000(t) 5.901 × 10−4

x lkwf1 2001(t) 1.169 × 10−3

x lkwf1 2002(t) 8.939 × 10−4

x lkwf1 2003(t) 9.710 × 10−4

x lkwf1 2004(t) 9.361 × 10−4
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Table 8: Variances of the Hölder exponents at LONF1.

Series name Var[h(t)]
h lonf11 1998(t) 3.978 × 10−3

h lonf1 1999(t) 4.123 × 10−4

h lonf1 2000(t) 1.570 × 10−3

h lonf1 2001(t) 1.135 × 10−3

h lonf1 2002(t) 1.407 × 10−3

h lonf1 2003(t) 2.359 × 10−3

h lonf1 2004(t) 9.493 × 10−4

h lonf1 2005(t) 6.425 × 10−4

h lonf1 2006(t) 1.245 × 10−3

h lonf1 2007(t) 2.142 × 10−3

h lonf1 2008(t) 8.245 × 10−5

Table 9: Variances of the Hölder exponents at SAUF1.

Series name Var[h(t)]
x sauf1 1996(t) 1.083 × 10−3

x sauf1 1997(t) 1.355 × 10−3

x sauf1 1998(t) 8.766 × 10−4

x sauf1 1999(t) 1.324 × 10−3

x sauf1 2000(t) 7.272 × 10−4

x sauf1 2001(t) 6.961 × 10−4

x sauf1 2002(t) 3.992 × 10−3

Table 10: Variances of the Hölder exponents at SMKF1.

Series name Var[h(t)]
x smkf1 1998(t) 9.501 × 10−4

x smkf1 1999(t) 1.144 × 10−3

x smkf1 2000(t) 1.310 × 10−3

x smkf1 2001(t) 1.520 × 10−3

x smkf1 2002(t) 1.181 × 10−3

x smkf1 2003(t) 1.176 × 10−3

x smkf1 2004(t) 1.243 × 10−3

x smkf1 2005(t) 1.210 × 10−3

h smkf1 2006(t) 1.101 × 10−3

h smkf1 2007(t) 1.164 × 10−3

h smkf1 2008(t) 1.203 × 10−3

h smkf1 2009(t) 1.242 × 10−3

h smkf1 2010(t) 1.084 × 10−3

h smkf1 2011(t) 1.176 × 10−3

Table 11: Variances of the Hölder exponents at SPGF1.

Series name Var[h(t)]
x spgf1 1996(t) 1.018 × 10−3

x spgf1 1997(t) 8.803 × 10−4

x spgf1 1998(t) 2.659 × 10−4
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Table 12: Variances of the Hölder exponents at VENF1.

Series name Var[h(t)]
x venf1 2002(t) 1.069 × 10−3

x venf1 2003(t) 1.271 × 10−3

x venf1 2004(t) 8.863 × 10−4

x venf1 2006(t) 2.268 × 10−3

x venf1 2007(t) 2.454 × 10−3

x venf1 2008(t) 2.930 × 10−3
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[120] K. J. Falconer, R. Le Guével, and J. Lévy-Véhel, “Localizable moving average symmetric stable and
multistable processes,” Stochastic Models, vol. 25, no. 4, pp. 648–672, 2009.
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