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Bio-inspired computing has lately demonstrated its usefulness with remarkable contributions to
shape detection, optimization, and classification in pattern recognition. Similarly, multithreshold
selection has become a critical step for image analysis and computer vision sparking considerable
efforts to design an optimal multi-threshold estimator. This paper presents an algorithm for
multi-threshold segmentation which is based on the artificial immune systems(AIS) technique,
also known as theclonal selection algorithm (CSA). It follows the clonal selection principle
(CSP) from the human immune system which basically generates a response according to the
relationship between antigens (Ag), that is, patterns to be recognized and antibodies (Ab), that
is, possible solutions. In our approach, the 1D histogram of one image is approximated through a
Gaussian mixture model whose parameters are calculated through CSA. Each Gaussian function
represents a pixel class and therefore a thresholding point. Unlike the expectation-maximization
(EM) algorithm, the CSA-based method shows a fast convergence and a low sensitivity to
initial conditions. Remarkably, it also improves complex time-consuming computations commonly
required by gradient-based methods. Experimental evidence demonstrates a successful automatic
multi-threshold selection based on CSA, comparing its performance to the aforementioned well-
known algorithms.

1. Introduction

Several image-processing applications aim to detect and classify relevant features which may
be later analyzed to perform several high-level tasks. In particular, image segmentation seeks
to group pixels within meaningful regions. Commonly, gray levels belonging to the object are
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substantially different from those featuring the background. Thresholding is thus a simple
but effective tool to isolate objects of interest; its applications include several classics such as
document image analysis, whose goal is to extract printed characters [1, 2], logos, graphical
content, or musical scores; also it is used for map processing which aims to locate lines,
legends, and characters [3]. Moreover, it is employed for scene processing, seeking for object
detection, marking [4], and for quality inspection of materials [5, 6].

Thresholding selection techniques can be classified into two categories: bilevel and
multilevel. In the former, one limit value is chosen to segment an image into two classes: one
representing the object and the other one segmenting the background. When distinct objects
are depicted within a given scene, multiple threshold values have to be selected for proper
segmentation, which is commonly called multilevel thresholding.

A variety of thresholding approaches have been proposed for image segmentation,
including conventional methods [7–10] and intelligent techniques [11, 12]. Extending the
segmentation algorithms to a multilevel approach may cause some inconveniences: (i) they
may have no systematic or analytic solution when the number of classes to be detected
increases, and (ii) they may also show a slow convergence and/or high computational cost
[11].

In this work, the segmentation algorithm is based on a parametric model holding
a probability density function of gray levels which groups a mixture of several Gaussian
density functions (Gaussian mixture). Mixtures represent a flexible method of statistical
modelling as they are employed in a wide variety of contexts [13]. Gaussian mixture has
received considerable attention in the development of segmentation algorithms despite its
performance is influenced by the shape of the image histogram and the accuracy of the
estimated model parameters [14]. The associated parameters can be calculated considering
the expectation-maximization (EM) algorithm [15, 16] or gradient-based methods such as
Levenberg-Marquardt, LM [17]. However, EM algorithms are very sensitive to the choice of
the initial values [18]; meanwhile, gradient-based methods are computationally expensive
and may easily get stuck within local minima [14]. Therefore, some researchers have
attempted to develop methods based on modern global optimization algorithms such as
the learning automata (LA) [19] and differential evolution algorithm [20]. In this paper,
an alternative approach using a bio-inspired optimization algorithm for determining the
parameters of a Gaussian mixture is presented.

On the other hand, biological inspired methods can successfully be transferred into
novel computational paradigms as shown by the successful development of artificial neural
networks, evolutionary algorithms, swarming algorithms, and so on. The human immune
system (HIS) is a highly evolved, parallel, and distributed adaptive system [21] that
exhibits remarkable abilities that can be imported into important aspects in the field of
computation. This emerging field is known as artificial immune system (AIS) [22] which is a
computational system fully inspired by the immunology theory and its functions, including
principles and models. AISs have recently reached considerable research interest from
different communities [23], focusing on several aspects of optimization, pattern recognition,
abnormality detection, data analysis, and machine learning. Artificial immune optimization
has been successfully applied to tackle numerous challenging optimization problems with
remarkable performance in comparison to other classical techniques [24].

Clonal selection algorithm (CSA) [25] is one of the most widely employed AIS
approaches. The CSA is a relatively novel evolutionary optimization algorithm which
has been built on the basis of the clonal selection principle (CSP) [26] of HIS. The CSP
explains the immune response when an antigenic pattern is recognized by a given antibody.
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In the clonal selection algorithm, the antigen (Ag) represents the problem to be optimized
and its constraints, while the antibodies (Abs) are the candidate solutions of the problem.
The antibody-antigen affinity indicates as well the matching between the solution and
the problem. The algorithm performs the selection of antibodies based on affinity either
by matching against an antigen pattern or by evaluating the pattern via an objective
function. In mathematical grounds, CSA has the ability of getting out of local minima while
simultaneously operating over a pool of points within the search space. It does not use the
derivatives or any of its related information as it employs probabilistic transition rules instead
of deterministic ones. Despite its simple and straightforward implementation, it has been
extensively employed in the literature for solving several kinds of challenging engineering
problems [27–29].

In this paper, the segmentation process is considered as an optimization problem
approximating the 1D histogram of a given image by means of a Gaussian mixture model.
The operation parameters are calculated through the CSA. Each Gaussian contained within
the histogram represents a pixel class and therefore belongs to the thresholding points. In
order to compare the segmentation results with other optimization methods, the number
of elements in the Gaussian mixture (classes) is considered already known or given by
the user. The experimental results, presented in this work, demonstrate that CSA exhibits
fast convergence, relative low computational cost, and no sensitivity to initial conditions by
keeping an acceptable segmentation of the image, that is, a better mixture approximation in
comparison to the EM- or gradient-based algorithms.

This paper organizes as follows. Section 2 presents the method following the Gaussian
approximation of the histogram. Section 3 provides information about the CSA while
Section 4 demonstrates the automatic threshold determination. Section 5 discusses some
implementation details. Experimental results for the proposed approach are presented in
Section 6, followed by the discussion summarized in Section 7.

2. Gaussian Approximation

Let consider an image holding L gray levels [0, . . . , L − 1] whose distribution is displayed
within a histogram h(g). In order to simplify the description, the histogram is normalized
just as a probability distribution function, yielding

h
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g
)
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ng

N
, h

(
g
)
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h
(
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(2.1)

where ng denotes the number of pixels with gray level g and N being the total number of
pixels in the image.

The histogram function can thus be contained into a mix of Gaussian probability
functions of the form

p(x) =
K∑

i=1
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)2

2σ2
i

]

, (2.2)

with Pi being the probability of class i, pi(x) being the probability distribution function of
gray-level random variable x in class i, μi and σi being the mean and standard deviation of
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the ith probability distribution function, and K being the number of classes within the image.
In addition, the constraint

∑K
i=1 Pi = 1 must be satisfied.

The mean square error is used to estimate the 3K parameters Pi, μi, and σi; i = 1, . . . , K.
For instance, the mean square error between the Gaussian mixture p(xi) and the experimental
histogram function h(xi) is now defined as follows:
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Assuming an n-point histogram as in [13] and ω being the penalty associated with the
constrain

∑K
i=1 Pi = 1. In general, the parameter estimation that minimizes the square error

produced by the Gaussian mixture is not a simple problem. A straightforward method is to
consider the partial derivatives of the error function to zero by obtaining a set of simultaneous
transcendental equations [13]. However, an analytical solution is not always available
considering the nonlinear nature of the equation which in turn yields the use of iterative
approaches such as gradient-based or maximum likelihood estimation. Unfortunately, such
methods may also get easily stuck within local minima.

In the case of other algorithms such as the EM algorithm and the gradient-based
methods, the new parameter point lies within a neighbourhood distance of the previous
parameter point. However, this is not the case for the CSA which is based on stochastic
principles. New operating points are thus determined by a parameter probability function
that may yield points lying far away from previous operating points, providing the algorithm
with a higher ability to locate and pursue a global minimum.

This paper aims to compare its segmentation results to other optimization methods
that have been applied to similar segmentation tasks. Therefore, the number of elements in
the Gaussian mixture (classes) is considered as already known or provided by the user. The
number of classes, in most cases, represents the number of objects which are contained in the
image. However, if the selected number is lower than the object number, it can be assumed
that results actually favour the classification of bigger objects yet bearing the expense of
ignoring small subjects.

3. Clonal Selection Algorithm

In natural immune systems, only the antibodies (Abs) which are able to recognize the
intrusive antigens (nonself cells) are to be selected to proliferate by cloning [21]. Therefore,
the fundament of the clonal optimization method is that only capable Abs will proliferate.
Particularly, the underlying principles of the CSA are borrowed from the CSP as follows:

(i) maintenance of memory cells which are functionally disconnected from repertoire,

(ii) selection and cloning of most stimulated Abs,

(iii) suppression of nonstimulated cells,

(iv) affinity maturation and reselection of clones showing the highest affinities,

(v) mutation rate proportional to Abs affinities.

From immunology concepts, an antigen is any substance that forces the immune
system to produce antibodies against it. Regarding the CSA systems, the antigen concept
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refers to the pending optimization problem which focuses on circle detection. In CSA, B cells,
T cells, and antigen-specific lymphocytes are generally called antibodies. An antibody is a
representation of a candidate solution for an antigen, for example, the prototype circle in
this work. A selective mechanism guarantees that those antibodies (solutions) that better
recognize the antigen and therefore may elicit the response are to be selected holding long
life spans. Therefore, such cells are to be named memory cells (M).

3.1. Definitions

In order to describe the CSA, the notation includes boldfaced capital letters indicating
matrices and boldfaced small letters indicating vectors. Some relevant concepts are also
revisited below:

(i) antigen: the problem to be optimized and its constraints (circle detection),

(ii) antibody: the candidate solutions of the problem (circle candidates),

(iii) affinity: the objective function measurement for an antibody (circle matching),

The limited-length character string d is the coding of variable vector x as d = encode(x);
and x is called the decoding of antibody d following x = decode(d).

Set I is called the antibody space; namely, d ∈ I. The antibody population space is thus
defined as

Im = {D : D = (d1,d2, . . . ,dm),dk ∈ I, 1 ≤ k ≤ m}, (3.1)

where the positive integer m is the size of antibody population D = {d1,d2, . . . ,dm}which is
an m-dimensional group of antibody d, being a spot within the antibody space I.

3.2. CSA Operators

Based on [30], the CSA implements three different operators: the clonal proliferation operator
(TC

P ), the affinity maturation operator (TA
M), and the clonal selection operator (TC

S ). A(k) is
the antibody population at time k that represents the set of antibodies a, such as A(k) =
{a1(k), a2(k), . . . , an(k)}. The evolution process of CSA can be described as follows:

A(k)
TP
C−→ Y(k)

TA
M−→ Z(k) ∪A(k)

TC
S−→ A(k + 1). (3.2)

3.2.1. Clonal Proliferation Operator (TC
P )

Define

Y(k) = TC
P (A(k)) =

[
TC
P (a1(k)), TC

P (a1(k)), . . . , TC
P (an(k))

]
, (3.3)

where (k) = TC
P (A(k)) = ei · ai(k)i = 1, 2, . . . , n, and ei is a qi-dimensional identity column
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vector. Function round(x) gets x to the least integer bigger than x. There are various methods
for calculating qi. In this work, it is calculated as follows:

qi(k) = round

[

Nc · F(ai(k))
∑n

j=1 F
(
aj(k)

)

]

i = 1, 2, . . . , n, (3.4)

where Nc is called the clonal size. The value of qi(k) is proportional to the value of F(ai(k)).
After clonal proliferation, the population becomes

Y(k) = {Y1(k),Y2(k), . . . ,Yn(k)}, (3.5)

where

Yi(k) =
{
yij(k)

}
=
{
yi1(k),yi2(k), . . . ,yiqi(k)

}
,

yij(k) = a1(k), j = 1, 2, . . . , qi, i = 1, 2, . . . , n.
(3.6)

3.2.2. Affinity Maturation Operator (TA
M)

The affinity maturation operation is performed by hypermutation. Random changes are
introduced into the antibodies just like it happens in the immune system. Such changes may
lead to increase in the affinity. The hypermutation is performed by the operator TA

M which is
applied to the population Y(k) as it is obtained by clonal proliferation Z(k) = TC

M(Y(k)).
The mutation rate is calculated using the following equation [25]:

α = e(−ρ·F(ab)), (3.7)

α beingthe mutation rate, F being the objective function value of the antibody (ab) as it is
normalized between [0,1], and ρ being a fixed step. In [31], it is demonstrated the importance
of including the factor ρ into (3.7) to improve the algorithm performance. The way ρ modifies
the shape of the mutation rate is shown by Figure 1.

The number of mutations held by a clone with objective function value F is equal to
L ·α, considering L as the length of the antibody—22 bits are used in this paper. For the binary
encoding, mutation operation can be done as follows: each gene within an antibody may be
replaced by its opposite number (i.e., 0-1 or 1-0).

Following the affinity maturation operation, the population becomes

Z(k) = {Z1(k),Z2(k), . . . ,Zn(k)},
Zi(k) =

{
zij(k)

}
=
{
zi1(k), zi2(k), . . . , ziq1(k)

}
,

zij(k) = TA
M

(
yij(k)

)
, j = 1, 2, . . . , q1, i = 1, 2, . . . , n,

(3.8)

where TA
M is the operator as it is defined by (3.7) and applied onto the antibody yij .
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Figure 1: Hypermutation rate versus fitness, considering some size steps.

3.2.3. Clonal Selection Operator (TC
S )

Define, for all i = 1, 2, . . . , n, bi(k) ∈ Zi(k) as the antibody with the highest affinity in Zi(k),
then ai(k + 1) = TC

S (Zi(k) ∪ ai(k)), where TC
S is defined as

TC
S (Zi(k) ∪ ai(k)) =

{
bi(k) if F(ai(k)) < F(bi(k))
ai(k) if F(ai(k)) ≥ F(bi(k)),

(3.9)

where i = 1, 2, . . . , n.
Each step of the CSA may be defined as follows.

(1) Initialize randomly a population (Pinit), a set h = Pr + n of candidate solutions of
subsets of memory cells (M) which is added to the remaining population (Pr), with
the total population being PT = Pr +M, with M holding n memory cells.

(2) Select the n best individuals of the population PT to build A(k), according to the
affinity measure (objective function).

(3) Reproduce (TC
P ) population A(k) proportionally to their affinity with the antigen

and generate a temporary population of clones Y(k). The clone number is an
increasing function of the affinity with the antigen (3.1).

(4) Mutate (TA
M) the population Y(k) of clones according to the affinity of the antibody

to the antigen (3.4). A maturated antibody population Z(k) is thus generated.

(5) Reselect (TC
S ) the best individuals from Z(k) and A(k) to compose a new memory

set M = A(k + 1).

(6) Add random Pr novel antibodies (diversity introduction) to the new memory cells
M to build PT .

(7) Stop if any criteria are reached; otherwise return to (2.2).

Figure 2 shows the full draw of the CSA. The clone number in Step 3 is defined
according to (3.1). Although a unique mutation operator is used in Step 5, the mutated values
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Figure 2: Basic flow diagram of clonal selection algorithm (CSA).

of individuals are inversely proportional to their fitness by means of (3.7); that is, the more
Ab shows a better fitness, the less it may change.

The similarity property [32] within the Abs can also affect the convergence speed
of the CSA. The idea of the antibody addition based on the immune network theory is
introduced for providing diversity to the newly generated Abs in M, which may be similar
to those already in the old memory M. Holding such a diverse Ab pool, the CSA can avoid
being trapped into local minima [30], contrasting to well-known genetic algorithms (GAs)
which usually tend to bias the whole population of chromosomes towards only the best
candidate solution. Therefore, it can effectively handle challenging multimodal optimization
tasks [33–36].

The management of population includes a simple and direct searching algorithm for
globally optimal multimodal functions. This is also another clear difference in comparison to
other evolutionary algorithms, like GA, because it does not require crossover but only cloning
and hypermutation of individuals in order to use affinity as selection mechanism. The CSA
is adopted in this work to find the parameters P , σ, and μ of Gaussian functions and their
corresponding threshold values for the image.

4. Determination of Thresholding Values

The next step is to determine the optimal threshold values. Considering that the data classes
are organized such that μ1 < μ2 < · · · < μK, the threshold values are obtained by computing
the overall probability error of two adjacent Gaussian functions, yielding

E(Th) = Ph+1 · E1(Th) + Pi · E2(Th), h = 1, 2, . . . , K − 1, (4.1)
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considering

E1(Th) =
∫Th

−∞
ph+1(x)dx,

E2(Th) =
∫∞

Th

ph(x)dx.

(4.2)

E1(Th) is the probability of mistakenly classifying the pixels in the (h + 1)th class belonging
to the hth class, while E2(Th) is the probability of erroneously classifying the pixels in the hth
class belonging to the (h + 1)th class. Pj

′s are the a priori probabilities within the combined
probability density function, and This the threshold value between the hth and the (h + 1)th
classes. One Th value is chosen such as the error E(Th) is minimized. By differentiating E(Th)
with respect to Th and equating the result to zero, it is possible to use the following equation
to define the optimum threshold value Th:

AT2
h + BTh + C = 0, (4.3)

considering

A = σ2
h
− σ2

h+1,

B = 2 · (μhσ
2
h+1 − μh+1σ

2
h

)
,

C =
(
σhμh+1

)2 − (
σh+1μh

)2 + 2 · (σhσh+1)2 · ln
(
σh+1Ph

σhPh+1

)
.

(4.4)

Although the above quadratic equation has two possible solutions, only one of them
is feasible; that is, a positive value falling within the interval.

5. Implementation Details

In this work, either an antibody or an antigen will be represented (in binary form) by a bit
chain of the form

c = 〈c1, c2, . . . , cL〉, (5.1)

with c representing a point in an L-dimensional space:

c ∈ SL. (5.2)

The clonal selection algorithm can be stated as follows.

(1) An original population of N individuals (antibodies) is generated, considering the
size of 22 bits.

(2) The n best individuals based on the affinity measure are selected. They will
represent the memory set.
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(3) Such n best individuals are cloned m times.

(4) Performing a hypermutation of the cloned individuals which follows the pro-
portion inside the affinity between antibodies and antigens and generating one
improved antibody population.

(5) From the hypermutated population, the individuals with the higher affinity are to
be reselected.

(6) As for the original population, the individuals with the highest affinity are replaced,
improving the overall cells set.

Once the above steps are completed, the process is started again, until one individual
showing the highest affinity is found, that is, finding the minimum stated in (2.3). At this
work, the algorithm considers 3 Gaussians to represent the same number of classes. However,
it can be easily expanded to more classes. Each single Gaussian has the variables Pi, μi, σi

(with i = 1, 2, 3) representing the Hamming shape-space by means of an 22 bits word over
the following ranges:

Pi : [1, max(h)]

μi :
[
min

(
g
)
, max

(
g
)]

σi :
[
1, max

(
g
)∗0.5

]
,

(5.3)

with g representing the grey level and h is the histogram of the grey level image. Hence, the
first step is to generate the initial individual population of the antibody population by means
of

AB = 2 · r, (N,Sp

) − 1; (5.4)

with Sp representing the bit string assigned to each of the initial individuals N. Later, in order
to perform the mapping from binary string to real value, we use

(〈cL, . . . , c2, c1〉)2 =

(
21∑

i=0

ci · 2i
)

10

= r ′. (5.5)

As to find the corresponding real value for r,

r = r ′ · rmax

222 − 1
, (5.6)

with rmax representing max(h),max(g),max(g)/2.
The population is set to 100 individuals (N), including the best 20 individuals (n). The

20 selected individuals are cloned 10 times (m). The corresponding mutation probability is
proportional to the resulting error by (2.3). The algorithm is thus executed until the minimum
possible value of (2.3) is reached.
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Figure 3: (a) Original “The Cameraman” image and (b) its correspondent histogram.

6. Experimental Results

6.1. Presentation of Results

In this section, two experiments are tested to evaluate the performance of the proposed
algorithm. The first one considers the well-known image of the “The Cameraman” shown
in Figure 3(a) as its corresponding histogram is presented by Figure 3(b). The goal is to
segment the image with 3 different pixel classes. During learning, the CSA algorithm adjusts 9
parameters in this test. In this experiment, a population of 100 (N) individuals is considered.
Each candidate holds 9 dimensions, yielding

IN =
{
σN

1 , σN
2 , σN

3 , PN
1 , PN

2 , PN
3 , μN

1 , μN
2 , μN

3

}
, (6.1)

with N representing the individual’s number, in this case, 100. The parameters (P, σ, μ) are
randomly initialized.

The experiments suggest that, after 130 iterations, the CSA algorithm has converged
to the global minimum. Figure 4(a) shows the obtained Gaussian functions (pixel classes),
while Figure 4(b) shows the combined graph. The layout in Figure 4(b) suggests an easy
combination of the Gaussian functions to approximate the shape of the graph shown in
Figure 3(b), representing the histogram of the original image. Figure 5 shows the segmented
image whose threshold values are calculated according to (3.4) and (3.5).

In order to test the performance, the algorithm gets to analyze the image shown in
Figure 6 whose histogram exhibits a remarkable problem (a set of peaks) regarding class
approximation. Such image, due to its complexity, is considered as a benchmark image for
other algorithms, including classical approaches as in [7, 10] or intelligent algorithms as in
[11, 12]. For this particular image, after 190 generations, the algorithm was capable to achieve
the minimum approximation value J (see (2.3)), considering three different classes. Figure 7
shows the approximation quality; meanwhile, Figure 8 presents the obtained segmented
image.

The third experiment considers a new image known as “The scene” shown by
Figure 9(a). The histogram is presented in Figure 9(b). Now, the algorithm considers 4 pixel
classes. The optimization is performed by the CSA algorithm resulting in the Gaussian
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Figure 4: Applying the CSA algorithm for 3 classes and its results: (a) Gaussian functions for each class,
(b) mixed Gaussian functions (approaching the original histogram).

Figure 5: The image after the segmentation is applied, considering three classes.
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Figure 6: Benchmark image and its histogram.
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Figure 7: CSA segmentation for 3 classes over the benchmark image: (a) Gaussian functions for each class.
(b) Mixed Gaussian functions approaching the look of the original histogram.

Figure 8: The benchmark image after segmentation considering all three classes.

functions shown by Figure 10(a). Figure 10(b) presents the combined graph from the
addition of such Gaussian functions.

After the optimization by the CSA algorithm, the added layout including all 4
Gaussian functions is obtained as shown by Figure 11(a). It is also evident that the resulting
function approaches the original histogram as Figure 11(b) shows the resulting image after
applying the segmentation algorithm.

6.2. Comparing the CSA versus the EM and LM Methods

In order to enhance the algorithm’s analysis, the proposed approach is compared to the EM
algorithm and the Levenberg-Marquardt (LM) method which are commonly employed for
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Figure 9: Third experiment data: (a) the original image “The scene” and (b) its corresponding histogram.
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Figure 10: Applying the CSA algorithm for 4 classes: (a) Gaussian functions at each class: (b) adding all
four Gaussian functions, it approaches the original histogram.

computing Gaussian mixture parameters. The comparison focuses on the following issues:
sensitivity to initial conditions, singularities, convergence, and computational costs.

6.2.1. Sensitivity to the Initial Conditions

In this experiment, initial values of the mixture model for all methods are randomly set
while the same histogram is taken in account for the approximation task. Final parameters
representing the Gaussian mixture (considering four different classes) after convergence are
reported. All algorithms (EM, LM, and CSA) are executed until no change in parameter
values is detected. Figure 12(a) shows the image used in this comparison while Figure 12(b)
pictures its histogram. All experiments are conducted several times in order to assure
consistency. Table 1 exhibits the parameter values (μq, σq, Pq, q ∈ 1, . . . , 4) of the obtained
Gaussian mixtures, considering the two initial conditions in which the highest contrasts were
found. Figure 13 shows the segmented images obtained under such initial conditions. Further
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Figure 11: Segmentation of “The Scene” considering four classes for the CSA algorithm. (a) Comparison
between the original histogram and the Gaussian approach. (b) The image after the segmentation process.
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Figure 12: (a) Original image used for the comparison on initial conditions and (b) its corresponding
histogram.

analysis on Table 1 shows the acute sensitivity of the EM algorithm to initial conditions.
By such sensitivity, it is observed in Figure 13 where a clear pixel misclassification appears
in some sections of the image. In case of the LM method, although it does not present
a considerable difference in comparison to optimal values, its deviation shows that it is
prone to get trapped into a local minimum. On the other hand, the CSA algorithm exhibits
the best performance as its parameter values fall the nearest to the optimal approximation
performance.

6.2.2. Convergence and Computational Cost

The experiment aims to measure the number of iterations and the computing time spent
by the EM, the LM, and the CSA required to calculate the parameters of the Gaussian
mixture after considering three different benchmark images. Figure 14 shows the images
used in the experiment. Such images are selected, since they are employed in the standard
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Figure 13: Segmented images after applying the EM, the LM, and the CSA algorithm with different initial
conditions.

Table 1: Comparison between the EM, the LM, and the CSA algorithm, considering two different initial
conditions.

Parameters Initial condition 1 EM LM CSA Initial condition 2 EM LM CSA

μ1 40.6 33.13 32.12 32.23 10 20.90 31.80 32.25

μ2 81.2 81.02 82.05 81.55 100 82.78 80.85 82.00

μ3 121.8 127.52 127 126.89 138 146.67 128 127.11

μ4 162.4 167.58 166.80 167.00 200 180.72 165.90 166.50

σ1 15 25.90 25.50 25.30 10 18.52 20.10 25.01

σ2 15 9.78 9.70 9.86 5 12.52 9.81 9.45

σ3 15 17.72 17.05 17.12 8 20.5 15.15 17.23

σ4 15 17.03 17.52 17.45 22 10.09 18.00 17.22

P1 0.25 0.0313 0.0310 0.317 0.20 0.0225 0.0312 0.317

P2 0.25 0.2078 0.2081 0.198 0.30 0.2446 0.2079 0.214

P3 0.25 0.2508 0.2500 0.249 0.20 0.5232 0.2502 0.245

P4 0.25 0.5102 0.5110 0.501 0.30 0.2098 0.5108 0.498

segmentation literature. All the experiments consider four classes. Table 2 shows the
averaged measurements as they are obtained from 20 experiments. It is evident that the
EM is the slowest to converge (iterations), and the LM shows the highest computational
cost (time elapsed) because it requires complex Hessian approximations. On the other hand,
the CSA shows an acceptable tradeoff between its convergence time and its computational
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Figure 14: Original benchmark images ((a)–(c)) and segmented images obtained by the EM, the LM, and
the CSA algorithms.
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Table 2: Iterations and time requirements of the EM, the LM, and the CSA algorithm as they are applied to
segment benchmark images (see Figure 14).

Iterations (a) (b) (c)
Time elapsed

EM 1855 1833 1870

2.72 s 2.70 s 2.73 s

LM 985 988 958

4.03 s 4.04 s 4.98 s

CSA 201 188 282

0.21 s 0.18 s 0.25 s

cost. Finally, Figure 14 below shows the segmented images as they are generated by each
algorithm. By analyzing the images (a)–(c) in Figure 14, it is clear that the CSA approach
presents better results when the segmented images are compared with the original ones. In
case of the EM and LM algorithms, several stains are identified in regions where the intensity
level must be considered homogenous.

7. Conclusions

In this paper, an automatic image multi-threshold approach based on the clonal selection
algorithm (CSA) is proposed. The segmentation process is considered to be similar to an
optimization problem. The algorithm approximates the 1-D histogram of a given image using
a Gaussian mixture model whose parameters are calculated through the CSA. Each Gaussian
function approximating the histogram represents a pixel class and therefore one threshold
point.

Experimental evidence shows that the CSA has a compromise between its convergence
time and its computational cost when it is compared to the expectation-maximization (EM)
method and the Levenberg-Marquardt (LM) algorithm. Additionally, the CSA also exhibits
a better performance under certain circumstances (initial conditions) on which it is well
reported in the literature [14, 18] that the EM has underperformed. Finally, the results
have shown that the stochastic search accomplished by the CSA method shows a consistent
performance with no regard of the initial value and still showing a greater chance to reach
the global minimum.

Although Table 2 indicates that the CSA method can yield better results in comparison
to the EM and gradient-based methods, notice that the aim of our paper is not intended
to beat all segmentation algorithms which have been proposed earlier but to show that the
artificial immune systems can effectively serve as an attractive alternative to evolutionary
algorithms which have been employed before to successfully segment images.
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