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Drought is part of natural climate variability and ranks the first natural disaster in the world.
Drought forecasting plays an important role in mitigating impacts on agriculture and water
resources. In this study, a drought forecast model based on the random forest method is proposed
to predict the time series of monthly standardized precipitation index (SPI). We demonstrate
model application by four stations in the Haihe river basin, China. The random-forest- (RF-) based
forecast model has consistently shown better predictive skills than the ARIMA model for both
long and short drought forecasting. The confidence intervals derived from the proposed model
generally have good coverage, but still tend to be conservative to predict some extreme drought
events.

1. Introduction

Drought is part of the natural variability of climate and its recurrence is inevitable and
random. It affects nearly everywhere across all climate regions, though its features differ from
region to region. Although specific definitions of drought depend on differences in disci-
plinary perspectives (e.g., meteorology, hydrology, agriculture, and socioeconomy), a typical
definition of it originates from a deficiency of precipitation over a prolonged period, resulting
in water supply shortage for some activity, group, or environmental sector. Drought reduces
crop, livestock, and forest production and can result in widespread famine and death.
Drought ranks the first amongst all natural hazards in terms of the number of people directly
affected [1-3], and it is threatening nearly 50% of the most populated areas [4].
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Drought forecasting plays an important role in taking contingency actions in advance
of drought to mitigate its risk and impacts. A variety of forecasting methods have been
developed to predict drought occurrence. Statistical run theory is the first attempt to predict
drought likelihood [5-10]. Other stochastic models such as Markov chain [11, 12], renewal
process [13, 14], and Poisson process [15, 16] also have been long suggested to characterise
and predict drought events. Time series model is another widely approach for drought
forecasting. For example, Chung and Salas [17] applied a low-order discrete autoregressive
moving average model to estimate drought occurrence probabilities and the risk of depen-
dent hydrological processes. Mishra and Desai [18] used seasonal and nonseasonal autore-
gressive integrated moving average (ARIMA) models to forecast the standardized precipita-
tion index (SPI) in the Kansabati river basin in India. They showed that the predicted SPI
agreed with observations with one- to two-month lead time but the prediction performance
decreased with increasing lead time. Durdu [19] showed that the method of Mishra and Desai
[18] can be used for drought forecast with reasonably accuracy upto two months in the
Buyuk Menderes river basin in Turkey. Moreover, many other forecasting methods have
been developed to address nonlinearity and nonstationarity of time series of drought events.
Kim et al. [20] evaluated the application of the nonparametric kernel smoothing to estimate
return periods of drought in arid regions. Kim et al. [21] proposed a conjunction model to
forecast drought based on wavelet transformation and neural networks. Mishra and Desai
[22] showed that a feed-forward recursive neural network provided better prediction of SPI
than the ARIMA model with one-month lead time.

Drought forecasting remains challenging and is subject to great uncertainty partly due
to anticipating some parts of hydrologic cycle (e.g., rainfall, soil moisture, and groundwater
level). It is, therefore, desired to make single-value predictions as well as reliable uncertainty
measures, especially for long lead times. Uncertainty estimation of drought forecast can
largely improve decision making on water resources management. All researches mentioned
in the previous paragraph only focus on predicting the mean of drought stage and did not
include any analysis of uncertainty. Consideration of forecast uncertainty has been shown to
provide valuable information to decision makers who need to understand the variability of
upcoming drought status. For example, Carbone and Dow [23] resampled historical monthly
temperature and precipitation and derived an ensemble forecast of the Palmer drought
severity index (PDSI) with weighted resamples. Hwang and Carbone [24] applied the resam-
pling strategy suggested by Carbone and Dow [23] to the residuals of a predictive model
of drought indices and generate drought ensemble forecasts. They found the predictive
model based on nonparametric autoregressive models had good forecast capability of SPI
with up to 3-month lead time in terms of mean forecast. They also demonstrated that
variability of the forecast ensemble members shared probability density functions that were
similar to those of the observations.

The objective of this research is to introduce a statistical method, called Random Forest
(RF), to predict drought events together with an appropriate estimation on uncertainty
measures. The RF method does not restrict a particular relationship within the drought index
series or make any distributional assumptions on the model error. An ensemble of equally
probable realisations of drought indices is generated by the proposed model and differences
amongst the realisations can be used as a measure of uncertainty. Figure 1 illustrates how the
RF model is superior over the ARIMA model by an example. This paper is organised as fol-
lows. Section 2 describes the study region and data used in this study. The predictive model
based on the RF method is introduced in Section 3, followed by the study results reported in
Section 4. Summary and further research recommendations are presented in Section 5.
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Figure 1: Comparison of ARIMA and RF predicted SPI(12) of Beijing.

2. Study Region and Data

Flowing through many big cities including Beijing and Tianjin, the Haihe river basin is the
largest and the most important water system in northern China. However, the water usage
of the Haihe river basin has a tremendous conflict between water supply and demand. The
water shortages in this region have especially intensified due to the rapid development of the
economy and the explosion of the city population during recent years and cause many severe
environmental and ecological problems, such as drought, drying up of river systems, and
degradation of lakes and wetlands [25, 26]. The monthly precipitation observations in the
period of 1966-2004 recorded from four stations in the Haihe river basin including Beijing,
Shijiazhuang, Tangshan, and Tianjin were used in this study (Figure 2).

The SPI [27] is the drought index used in this study and it measures the severity of
drought over different time scales. It is a dimensionless index and is only defined by historical
rainfall observations. In contrast to the PDSI, the SPI is not adversely affected by topography,
but can provide indication or identification of drought a few months sooner [28]. The SPI
indicates the severity of drought in a large scale and provides little details for a particular
drought event. The critical drought duration is generally characterized by a stochastic pro-
cess, such as a second-order Markov chain [29]. The 3-month and 12-month, SPI, denoted by
SPI(3) and SPI(12), respectively, were considered in the present work. In particular, forecast-
ing using SPI(3) with a one-month lead time and SPI(12) with a six-month lead time were
made for short-term and long-term drought forecasting, respectively. Forecasting models
were developed based on the data from 1966 to 1995, and predictions one month ahead for
SPI(3) or six month ahead for SPI(12) were made from 1996 to 2004. SPI based on a month
other than 3 and 12 months can be forecasted.
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Figure 2: Locations of four selected stations in the Haihe river basin.

3. Model

Let SPL,, represent the SPI of a specific month m, and the predictive model of SPI,, can be
written as

SPLy, = f(SPLy1,SPLy 11, ...,SPLy 1 (a-1)), (3.1)

where [ is the forecast lead time and d is the order of nonparametric autoregressive model.
In this model, SPI is predicted from the SPI of previous months. If the function f is a linear
function, the model defined by (3.1) is an autoregressive model [30]. No specific functional
form of f is assumed in the proposed model and this will reduce the risk of model misspeci-
fication. We will apply the RF method to estimate f for all months. In the rest of this section,
a brief description of RF will be presented.

3.1. Regression Trees

Regression trees, often described in graphical and biological terms, use a tree structure to pre-
dict new data from training data. In contrast to linear regression, which is a global model and
applies a single predictive formula holding over the entire data space, regression trees parti-
tion space into smaller regions that have the most homogeneous collection of outcomes. The
partitioning is repeated on each derived sub-data space in a recursive manner, called recur-
sive partitioning, and an optimality criterion is used to guide each partition. This process is
often likened to the way a tree divides into smaller branches (called nodes) and eventually
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to a single leaf (called terminal node), hence the name of the method. The terminal nodes
would comprise a collection of closely matched previous observations found from recursive
partitioning, and the fitted response is the average of the observations for that node. Figure 3
provides a simple example of regress tree to predict SPI and circles denote nodes and boxes
denote terminal nodes.

The basic regression-tree-growing strategy involves in at least three fundamental
questions: splitting rules, terminal nodes, and terminal node assignment.

Splitting Rules

On what criteria are splits to be made? Creating splits is similar to variable selection in
regression. For regression problems, the variable and the location of a split are chosen by
the sum of squared error between the observations and the mean of the observations within
each node. For example, the root node SPI,,_; was split to two branches and a threshold value
2.1 was used as a splitting rule shown as Figure 3.

Terminal Nodes

When to stop a tree from growing? The simplest terminal node is the node where all training
data are from a single class or a single value of response. This choice may make a tree grow
so large that it fits all training data perfectly. This tends to overfit training data and has
potentially poor predictions on independent test data. If a tree is too small, the relationship
between predictors and predicants may not be extracted completely. Choosing an appropriate
tree size is thus of great importance. A common approach is to grow an overly large tree
so that a minimum node size is reached and prune the tree back to the optimal size by an
independent test data or cross-validation. The example regression tree in Figure 3 has four
terminal codes.

Terminal Node Assignment

Which value is to be assigned to the terminal nodes? For regression problems, values at
the terminal node are generally assigned by the mean of the observations in that node. The
assignment rules can be modified to reflect costs of explanatory variables and misspecifica-
tion, if necessary. The values for terminal codes in Figure3 are -1, 1.5, 0.2, and 0.5,
respectively.

More technical aspects regarding regression trees can be found in Hastie et al. [31],
Chapter 9, for example.

3.2. Random Forest

A simple regression tree has the disadvantage of being sensitive to training data used to
build the tree, especially when the size of training data is small. Little change in training data
may result in very different trees and predictions [32]. Ensemble trees are one solution to
improve robustness and reliability of regression trees by “randomly” growing a collection
of trees from bootstrap samples (i.e., training data randomly drawn with replacement) and
aggregating predictions. RF [32-34] is one of the most popular ensemble tress methods and
has been extensively applied in medicine, neuroscience, bioinformatics (e.g., [35-37]), and
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Figure 3: A simple example of regression tree.

operations research (e.g., [38]). The approach has been used to only a few applications in
environmental science (e.g., [39, 40]). In the following paragraphs, we briefly describe the
algorithm of RF in the context of estimating f,, in (3.1). _

~ Foragiven monfth m, denote a training data as X = (x1,x2,...,x,), where x; = (SPL,,
SPI, ,SPL, ., ,... ,SPI;n_l_( d_l)) and 7 is the total number of the training data. The function
fm in (3.1) is estimated from the following steps.

(a) Bootstrap sampling: draw B random samples of size nn: X7, X, ..., Xp, where X7 =
(xi‘,].,x;,].,...,x:,].) with replacement from the entire training set. That is P(x;.*,]. =
X)) =---= P(x;j =x,)=1/nforanyi=1,...,nandj=1,...,B.

(b) Random-forest tree growing: grow an ensemble of B random-forest trees based on
bootstrap samples X7, X3, ..., X}, by repeating the following substeps for each node
until the minimum number of nodes (called the minimum node size) is reached.

(b.1) Randomly select a subset of predictors of sizep : (SPLy-i—,, SPLu-1-k,, - - -,
SPIm_l_kp) out of the complete predictor set of size d, where k; € (0,...,d - 1)
fori=1,...,p.

(b.2) Pick the best split predictor SP1,,_;_x together with the best split value in
the sense of minimising the mean square error from the subset of predictors
selected at (b.1).

(b.3) Split the node based on SPI,,_;_x into two branches according to the best
split predictor/value selected at (b.2).

(c) Ensemble averaging: the RF tree from the jth bootstrap sample X~ provides one

prediction SPI{;, wherej=1,...,B. Weuse (SPI},;, ey SPIE: ), as an ensemble forecast
of SPI for month m and SPI;, = (1/B) Z]B:l SPL, is reported as the mean forecast.
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The confidence interval of SPL, at a nominal level of a (e.g. 0.95) is defined by
[SPIL («x),SPIy ()], where

l1-a

- (3.2)

P{SPIL’; < SPIL(a)} - P{ SPT, > SPIu(a)} -

From the algorithm described above, only two parameters p (the number of predictors
randomly selected at each node) and B (the number of ensemble trees) are required to specify
to implement the RF method. In this study, we choose p = d/3, where d is the number of total
predictors (i.e., the total number of previous SPI used in prediction) and B is chosen to be
500. An RF R package (available at http:/ /cran.r-project.org/web/packages/randomForest)
is used in this study.

4. Results

In order to demonstrate model performance, the ARIMA model is considered as a baseline
and is compared with the model based on RF. As described in Section 2, the number of the
previous SPI used in the predictive model is determined by the best fitted ARIMA model
selected from the Akaike information criterion (AIC). The performance difference between
the RF-based model and the best fitted ARIMA reflects the validity of the assumption of
the ARIMA model, such as linearity and stationarity. Three well-known error statistics were
calculated to measure the difference between the observed and predicted SPI series, including
bias, mean absolute error (MAE), and root mean-squared error (RMSE) and they are defined
by

1 N
Bias = — Y (EST; - OBS;), 4.1
ias Ng( ST; — OBS;) (4.1)
1 N
AE = — Y |EST; - OBS;], 42
M N§|s OBS| (4.2)
RMSE = li(ESTi—OBsi)2 (4.3)
Ni:l ’

where EST; and OBS; denote the ith estimated and observed values, respectively. Further-
more, according to the weather classification of McKee et al. [27], dry days are defined by the
days with SPI values falling below —1. We thus considered another two error statistics based
on dry days: RMSE at dry days and the proportion of dry days detected (i.e., SPI predictions
less than -1 at dry days). These two additional error statistics are intended to evaluate
whether the RF is a more effective and efficient drought prediction tool than the ARIMA.

All error statistics of one month ahead SPI(3) prediction and six month ahead SPI(12)
prediction for each stations are presented in Table 1. We have the following findings. (1) In
general, the RF performed consistently better than the ARIMA. In particular, all error statistics
from the RF were smaller than those from the ARIMA, except that the biases of SPI(3) predic-
tions obtained from both methods for Beijing were almost equal. (2) RMSE at dry days was
greater than overall RMSE for all predictions, indicating the difficulty of predicting drought



8 Mathematical Problems in Engineering

Table 1: Error statistics of SPI forecast based on ARMA model and the RF model.

Station Error statistics SPI(3) SPI(12)
ARMA RF ARMA RF
BIAS 0.033 0.034 0.245 0.092
MAE 0.637 0.415 0.606 0.3
Beijing RMSE 0.791 0.526 0.796 0.385
RMSE (dry days) 0.963 0.662 0.968 0.44
% dry days detected 27.3% 54.5% 31.1% 71.1%
BIAS -0.019 0.002 0.034 -0.022
MAE 0.557 0.289 0.774 0.396
Shijiazhuang RMSE 0.736 0.382 1.015 0.507
RMSE (dry days) 1.065 0.531 1.551 0.674
% dry days detected 35.0% 60.0% 7.1% 42.9%
BIAS 0.074 0.05 0.214 0.087
MAE 0.656 0.434 0.796 0.378
Tangshan RMSE 0.814 0.54 1.034 0.475
RMSE (dry days) 1.036 0.651 1.247 0.553
% dry days detected 33.3% 50.0% 17.8% 60.0%
BIAS 0.069 0.015 0.211 0.078
MAE 0.597 0.288 0.523 0.264
Tianjin RMSE 0.735 0.366 0.624 0.331
RMSE (dry days) 1.041 0.526 0.897 0.467
% dry days detected 16.7% 50.0% 0.0% 19.0%

events accurately. The difference between RMSE and RMSE at dry days of the RF-based
model was smaller than that of the ARIMA for each prediction. This suggests that the RF-
based model is more robust in predicting dry events. (3) The RF-based model is even more
robust for longer term prediction. The longer-term drought forecast typically involves more
uncertainty and thus is more challenging to predict. The ARIMA indeed lost the predictive
capability for SPI(12) prediction. For example, none of dry days in Tianjin indicated by
SPI(12) was forecasted by the ARIMA. Instead, the accuracy of SPI prediction based on the
RF was less affected by a longer lead time. In particular, at three out of four stations (except
for Shijiazhuang) the RF led to comparable and even smaller prediction errors indicated by
five error statistics.

For a graphical illustration, the SPI(3) and SPI(12) predictions by the RF method
together with the associated 95% confidence intervals are shown in Figures 4 and 5,
respectively. Most predictions of SPI agreed with observations very well. For example, from
Figure 4, a few extreme drought events with SPI(3)< -1.5 for Shijiazhuang were well
forecasted by the RF method but not ARIMA. However, a number of extreme drought events
identified by SPI < 1.5 still fell outside of the 95% confidence interval. It is evident that the
confidence intervals for the one month ahead SPI(3) prediction were more narrow than that
for the six month ahead SPI(12), because more uncertainty is expected for the forecast with a
longer lead time.
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Figure 4: Observed and predicted SPI(3) by the RF and ARIMA and the 95% confidence intervals
constructed by the RF.

5. Conclusion

In this study, a drought forecast model based on RF is proposed to predict SPI from the SPI in
previous months. Unlike traditional time series models such as the ARIMA, the forecast
model is built on a nonparametric framework and is more flexible to capture the underlying
relationship. The RF-based model has another advantage of generating ensemble of drought
forecast rather than a mean prediction. A confidence interval based on the ensemble forecast
can be served as a measure of forecast uncertainty. The performance of the proposed forecast
model has been demonstrated by its applications to four stations in the Haihe river basin,
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Figure 5: Observed and predicted SPI(12) by the RF and ARIMA and the 95% confidence intervals
constructed by the RF.

China. Compared with the ARIMA, the RF-based predictive model is more reliable and effi-
cient for both short- and long-term drought forecasting. The 95% confidence interval derived
from the ensemble forecast covers nearly all observations reasonably well, though a few
extreme drought events are identified outside the specified range. Further potential improve-
ment of the drought forecast skill may be made by introducing useful climate indices and the
outputs from climate models to the RF-based predictive model.
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