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We present a geometric buildup algorithm for solving the sensor network localization problem
with either accurate or noisy distance data. The algorithm determines the locations of the sensors,
one at a time, by using the distances between the determined sensors and the undetermined ones.
Each time, only a small system of distance equations needs to be solved and therefore, in an ideal
case when the required distances are available for every sensor to be determined, the computation
can be completed in n steps if n sensors are to be determined. An algorithmwith two buildup phas-
es is also implemented to handle not only noisy but also sparse distance data with for example only
a few distant anchors. We show our test results and compare them with other approaches.

1. Introduction

Ad hoc wireless sensor networks consist of a large number of spatially distributed sensor
nodes that communicate with their nearby sensors within a radio range [1, 2]. The sensor data
are relevant only if the sensors’ locations are known. The expensive GPS (Global Positioning
System)may locate only some of the sensors (called anchors). Most sensors can be located by
means of some distance information obtained from the radio signals that the sensors receive
[1]. The problem of finding the locations of the sensors given a few anchors and some local
distance information among the sensors is called the sensor network localization problem.

Sensor network localization has been applied to many application fields, including
environmental studies such as monitoring environmental conditions [3, 4], health cares such
as patient tracking [5], and military applications such, as battlefield surveillance [6]. For ex-
ample, [2, 7] mention that Southern California Edisons Nuclear Generating Station in San
Onofre, Calif, USA has deployed wireless mesh-networked sensors from Dust Networks Inc.
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to obtain real-time trend data. These data are used to predict which motors are about to fail,
so they could be preemptively rebuilt or replaced during scheduled maintenance periods.
Implementation of a sensor localization algorithm could provide a service that eliminates the
need to record every sensor’s location and its associated ID number in the network [2].

Mathematically, the sensor network localization problem can be described as follows.
Assume that there are m anchors whose locations denoted by ak ∈ R2, k = 1, . . . , m, are
known and n − m sensors whose locations denoted by xj ∈ R2, j = m + 1, . . . , n need to
be decided. For a pair of sensors xi and xj , let their Euclidean distance be denoted by di,j .
Similarly, let di,k denote the Euclidean distance between an anchor ak and a sensor xi. LetNx

and Na be two sets of node pairs,

Nx =
{(

i, j
)
:
∥
∥xi − xj

∥
∥ = di,j < rd

}
,

Na = {(i, k) : ‖xi − ak‖ = di,k < rd},
(1.1)

where ‖ · ‖ represents the Euclidean norm and rd is a fixed parameter called radio range. The
sensor network localization problem can be formulated as a 2D distance geometry problem,
to find the vectors xi ∈ R2 for all i = m + 1, . . . , n such that

∥∥xi − xj

∥∥2 = d2
i,j ∀(i, j) ∈ Nx,

‖xi − ak‖2 = d2
i,k ∀(i, k) ∈ Na.

(1.2)

In practice, the distance information is available only if the distance of two nodes is within a
certain radio range. Therefore, the available distances are usually sparse, that is, only a small
subset of all distances among the nodes is available. The distance data contains errors as well
due to the accuracy of the measurements, the power of the sensors, and some other envi-
ronmental factors. A distance geometry problem with sparse and inexact distances has been
proved to be difficult to solve in general [8–10].

More specifically, if exact distances for all pairs of nodes are available, a distance geom-
etry problem can be solved in polynomial time by using for example a singular value de-
composition algorithm in O(n2) [9] or a geometric buildup algorithm in O(n) [11], where n
is the number of nodes to be determined and O(·) is the conventional expression for time
complexity. If only a sparse set of distances is given, the problem is NP-hard in general [8],
even if small distance errors are allowed [10].

Much work has been done on the sensor network localization problem. Biswas et al.
[1, 12] proposed an SDP (semidefinite programming) approach to the problem. Wang et al.
[13]made further SDP relaxations and developed NSDP (node-based SDP) and ESDP (edge-
based SDP) algorithms for large-scale applications. Nie [14] presented an SOS (sum of
squares) approach by formulating the problem as a minimization problem for a sum of
squares. Tseng [15] developed an SOCP (second-order cone programming) relaxation meth-
od. Recent works also include Carter et al. [2], the SFSDP (sparse variant of FSDP [1]) ap-
proach by Kim et al. [16], Zhu et al. [17], the LPCGD (log-barrier penalty coordinate gradient
descent) approach by Pong and Tseng [18], and the SNLSDPclique approach by Krislock and
Wolkowicz [19, 20].

We investigate the solution of the sensor network localization problem within a geo-
metric buildup framework. A basic geometric buildup algorithm [11] was proposed for the
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solution of a 3D distance geometry problem with exact distances. The work was later extend-
ed to problems with sparse distances [21–23], inexact distances [24], and distance bounds
[25]. All these works were applied to protein structure determination problems, which are to
determine a set of points given a set of distances between the points. The idea of geometric
buildup is to determine the points, one at a time, using the distances between the determined
points and the undetermined ones. The algorithm can be applied to distance geometry prob-
lems in any finite dimensional Euclidean space including the sensor network localization in
2D.

In every buildup step, for determining a point, a small system of distance equations
needs to be solved. However, the point may be overdetermined for there may be more equa-
tions than the coordinates for the point. On the other hand, the distances may have errors
and the equations are most likely to be inconsistent. To overcome this difficulty, a least-
squares approximation method has been developed for solving the distance equations [24].
The method employs a low-rank matrix approximation scheme [26], which requires the sin-
gular value decomposition for a small distance matrix. Here, our algorithm is different from
[24] in the approximation scheme. We implement a low-rank positive semidefinite approxi-
mation scheme [27], which requires a spectral decomposition and guarantees a best-possible
approximation to the solution of the distance equations in a least-squares sense.

The availability of an initial set of determined points can be important for a geometric
buildup algorithm to start and succeed. Fortunately, for sensor network localization, there is
usually a set of anchor nodes that can be used as an initial set of nodes. However, if there
are only a few anchors scattered widely in space, the chance is that there may not be many
sensors with (at least three) distances to these anchors and the algorithm may be able to de-
termine only a small set of sensors. For this reason, we have also implemented a two-phase
buildup algorithm. In the first phase, we determine as many sensors as possible starting with
the initial anchors. In the second phase, from the undermined sensors, if there are any, we
find a clique of sensors, that is, a subset of sensors with all distances among them available.
We position the sensors in the clique in space (which is possible using their distances) and
start from them to determine the remaining sensors. In this way, we can have more sensors
determined than a single phase algorithm.

This paper is organized as follows. In Section 2, we present several possible versions
of geometric buildup algorithms for sensor network localization. In Section 3, we present the
numerical results for a set of simulated sensor network localization problems with exact and
inexact sparse distances. We conclude the paper and make some remarks in Section 4.

2. The Geometric Buildup Algorithms

In this section, we present three versions of geometric buildup algorithms for sensor network
localization. Three cases of problems are concerned (1)when exact distances are available, (2)
when distances have errors, and (3) when there are only a few distant anchors. A geometric
buildup algorithm, named as basic, extended, and two-phase geometric buildup algorithms,
respectively, is described for each of the three cases.

2.1. The Basic Geometric Buildup Algorithm

When a set of exact distances is given, that is, the distances in (1.1) is accurate, a basic geo-
metric buildup algorithm can be applied. The algorithm works as follows. It first takes the
anchors as the initial set of determined sensors. Then, for any undetermined sensor j, it
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Input: The positions of the anchors, the distances di,j , (i, j) ∈ Nx ∪Na.
Output: The positions of a set of determined sensors.
Step 1: Let the anchors be the initial set of determined sensors.
Step 2: Repeat:

For each undetermined sensor j:
If a basis set of determined sensors is found for sensor j,

determine sensor j by solving the linear system (2.2).
End

End
If no sensor can be determined in the loop, stop.
If all sensors are determined, stop.

Algorithm 1: The basic geometric buildup algorithm.

tries to find three determined sensors that are not collinear but have distances to sensor j.
We call these three determined sensors a basis set of sensors for sensor j. Let xi =
(xi,1, xi,2)

T (i = 1, 2, 3) be the coordinate vectors of the three determined sensors. Given the
distances di,j (i = 1, 2, 3), the coordinate vector xj = (xj,1, xj,2)

T of sensor j can be determined
by using the following system of equations:

‖xi‖2 − 2xT
i xj +

∥∥xj

∥∥2 = d2
i,j , i = 1, 2, 3. (2.1)

Subtracting equation i from equation i + 1 (i = 1, 2) results in a linear system of equations

Axj = b, (2.2)

where

A = −2
[
(x2 − x1)

T

(x3 − x2)T

]

, b =

⎡

⎢
⎣

(
d2
2,j − d2

1,j

)
−
(
‖x2‖2 − ‖x1‖2

)

(
d2
3,j − d2

2,j

)
−
(
‖x3‖2 − ‖x2‖2

)

⎤

⎥
⎦. (2.3)

The points x1, x2, x3 are not collinear, so the coefficient matrixA is nonsingular and the
linear system (2.2) has a unique solution. An outline of the basic geometric buildup algorithm
is given in Algorithm 1. Note that if there are at least three anchors in the network and the
distances are exact, and if in every step, an undetermined sensor and a basis set of determined
sensors associated with it can be found, then the basic geometric buildup algorithm can
solve the problem in O(n) computation time, where n is the total number of sensors to be
determined.

2.2. The Extended Geometric Buildup Algorithm

Note that for every undetermined sensor, there may be more than three determined sensors
that have distances to it. Therefore, there may be more than three distance equations in (2.1)
for the sensor to satisfy. Of course, if the distances are accurate, or in other words, are exact,
only three equations need to be solved as done in the basic algorithm, while all other
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equations are satisfied automatically. However, in practice, the distances may have errors and
therefore, the distance equations may not be consistent, and satisfying three of them does not
necessarily satisfy all the equations. Besides, (2.1) cannot be reduced to (2.2) any more be-
cause there may not be a solution to the equations in (2.1) or, in other words, the equations
may never hold and hence cannot add or subtract. The extended geometric buildup algorithm
is developed to overcome these difficulties.

An extended geometric buildup algorithmworks as follows. It again takes the anchors
as the initial set of determined sensor. Then, for each undetermined sensor, it finds all the
determined sensors that have distances to the undetermined sensor. If there are at least three
such determined sensors and if they are not collinear, then the algorithm tries to find the coor-
dinates for the undetermined sensor by solving a system of distance equations corresponding
to all these determined sensors. In particular, since the equations may not be consistent, they
are solved approximately in a least-squares sense as described in the following.

Let x�+1 = (x�+1,1, x�+1,2)
T be the coordinate vector of the sensor to be determined. Let

xi = (xi,1, xi,2)
T (i = 1, . . . , �) be the coordinate vectors of the determined sensors to be used

for the determination of x�+1. Let di,�+1 be the distances from xi to x�+1, i = 1, . . . , �. Then the
distance equations to be solved are

‖xi‖2 − 2xT
i x�+1 + ‖x�+1‖2 = d2

i,�+1, i = 1, . . . , �. (2.4)

The equations can be solved by using for example a standard nonlinear least-squares method,
but we implement a method similar to that proposed in [24] and obtain a more direct solution
to the equations. Instead of working on the system in (2.4), we expand it to the following
system:

‖xi‖2 − 2xT
i xj +

∥∥xj

∥∥2 = d2
i,j , i, j = 1, . . . , � + 1. (2.5)

Note that di,j , i, j = 1, . . . , � in the added equations may or may not be available in the given
distance data, but they can be computed if some of them are not because xi, i = 1, . . . , � are
already known. We then consider all xi, i = 1, . . . , � + 1 as unknowns and determine them all
by solving the system of equations in (2.5). Since the relative positions of these sensors are
invariant under any translation and orthogonal transformation, we can set a reference system
so that the sensor to be determined is located at the origin or, in other words, x�+1 = (0, 0)T . It
follows that ‖xi‖ = di,�+1, ‖xj‖ = dj,�+1 and

d2
i,�+1 − 2xT

i xj + d2
j,�+1 = d2

i,j , i, j = 1, . . . , �. (2.6)

Define a coordinate matrix X and an induced distance matrix D as follows:

X = {xi,k : i = 1, . . . , �, k = 1, 2},

D =

⎧
⎨

⎩

(
d2
i,�+1 − d2

i,j + d2
j,�+1

)

2
: i, j = 1, . . . , �

⎫
⎬

⎭
.

(2.7)
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It is easy to verify that XXT = D, which has been widely studied in the classical multidimen-
sional scaling or “MDS” [27–29]. If the distances have errors, the system XXT = D may not
be consistent. It is natural to consider a least-squares problem

min
X∈R�×2

∥
∥
∥D −XXT

∥
∥
∥
F
, (2.8)

where ‖ · ‖F is the matrix Frobenius norm. [24] applied the best rank r matrix approximation
coming from the classical Eckart-Young Theorem [26], which involves the singular value de-
composition. Here, we apply a best positive semidefinite approximation which involves
the spectral decomposition. The solution to the problem in (2.8) can be obtained from the
following theorem.

Theorem 2.1 (see [19, 27]). Let M = Σn
i=1λiuiu

T
i be the spectral decomposition of the symmetric

matrix M, where λ1 ≥ · · · ≥ λn. Then M̃ = Σr
i=1λ

+
i uiu

T
i , where λ

+
i = max{0, λi}, is the best positive

semidefinite approximation to the following problem,

min
M̃

∥∥∥M − M̃
∥∥∥
F
,

subj. to rank
(
M̃
)
≤ r, M̃ � 0.

(2.9)

Now suppose that the spectral decomposition of D is UΛUT , where the diagonal en-
tries of Λ are in a decreasing order. Let V = U(:, 1 : 2) and Σ be the diagonal matrix with
Σii = max{0,Λii}, where i = 1, 2. Then X = VΣ1/2 solves the problem in (2.8), and the
coordinates of all the sensors are obtained, with the sensor to be determined located at (0, 0)T .
To obtain the coordinates of this sensor in the original reference system, it can be transformed
along with other � sensors so that the recalculated coordinates of those sensors agree with
their old ones as much as possible. The latter can be done by minimizing the so-called RMSD
(root-mean-square deviation) of the coordinates (details at the end of this subsection).

It seems that the system of equations in (2.4) is simpler and easier to solve than that
in (2.5), and the coordinates of xi, i = 1, . . . , � are also recalculated in (2.5). It turns out that
solving (2.5) instead of (2.4) is critical for the stability of the buildup algorithm. The solution
to the system in (2.4) depends on previously calculated coordinates xi, i = 1, . . . , � and, there-
fore, may inherit errors from previous calculations. If such errors are continuously passed
down to later calculations, the buildup algorithm is most likely to end up with an incorrect
set of coordinates for the sensors. In contrast, the solution to the system in (2.5) depends only
on the distances among the sensors, most of which are given in the original distance data.
The recalculation of the coordinates xi, i = 1, . . . , � also “cutoffs” possible propagations of
calculation errors, making the algorithm much more stable [24].

As we have mentioned above, the coordinates of xi, i = 1, . . . , � + 1 are determined
in an independent reference system. In order to move the coordinates back to their original
reference system, we need to make a proper translation and orthogonal transformation for
the coordinates. Let X ∈ R�×2 and Y ∈ R�×2 be the previously calculated and recalculated
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coordinate matrices of the � determined sensors, respectively. We first calculate the geometric
centers of X and Y ,

Xc =
1
�

�∑

i=1

X(i, :), Yc =
1
�

�∑

i=1

Y (i, :), (2.10)

and then update X and Y :

X := X − I�,1Xc,

Y := Y − I�,1Yc,
(2.11)

where I�,1 is an � × 1 vector with all elements 1s. After such a translation, the geometric centers
of X and Y coincide at the origin. We then implement an orthogonal transformation on Y so
that Y is aligned with X as much as possible. This can be done by choosing an appropriate
orthogonal transform Q so that the root-mean-square deviation of X and YQ are minimized,
that is,

min
Q:QQT=I

RMSD(X,Y ) =
‖X − YQ‖F√

�
, (2.12)

where Q ∈ R2 × 2 is an orthogonal matrix. Let C = YTX, and let UΣV T be the singular value
decomposition of C. It follows that Qopt = UVT is the optimal matrix of the above problem
[30]. The coordinates of the � determined sensors can then be obtained by setting

X := YQopt + I�,1Xc, (2.13)

and the coordinates of the sensor � + 1 by

xT
�+1 := ((0, 0) − Yc) ×Qopt +Xc. (2.14)

An outline of the extended geometric buildup algorithm is given in Algorithm 2.

2.3. The Two-Phase Geometric Buildup Algorithm

The basic and extended geometric buildup algorithms both start building up from the an-
chors. If only a few anchors are available and if the distance data is also very sparse, the
algorithms may not be able to determine any sensors since they may not be able to find an
undetermined sensor that has at least three given distances to the anchors. Even if the algo-
rithms can proceed, they may not be able to determine all the sensors if some undetermined
sensors do not have enough required distances to the determined sensors. Here, we present
a two-phase geometric buildup algorithm to deal with these situations.

In Phase 1, we proceed with the extended geometric buildup algorithm until no sen-
sors can be determined. In Phase 2, we find, in the undetermined sensors, a subset of at least
three sensors where the distances between every pair of sensors are given (details are in
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Input: The positions of the anchors, the distances di,j , (i, j) ∈ Nx ∪Na.
Output: The positions of a set of determined sensors.
Step 1: Set the anchors to be the initial set of determined sensors.
Step 2: Repeat:

For each undetermined sensor:
If the sensor has distances to � (� ≥ 3) required determined sensors,

determine the positions of all � + 1 sensors by solving (2.8),
and update the coordinates of all � + 1 sensors by proper
translation and orthogonal transformation.

End
End
If no sensor can be determined in the loop, stop.
If all the sensors are determined, stop.

Algorithm 2: The extended geometric buildup algorithm.

Input: The set of undetermined sensors (I2) in Phase 1.
Output: An initial set of sensors (I1)with distances between each other
known.
Step 1: Choose the first element in I2 to be the first element in I1.
Step 2: Repeat:

For each element in I2:
If it has given distances to all the elements in I1,

add it into I1.
End

End

Algorithm 3: Choose an initial set in Phase 2.

Algorithm 3 “choose an initial set in Phase 2”). More discussions on finding a clique can be
found in [31, 32], and so forth. If such a set of sensors, say � + 1 sensors, are found, a system
of distance equations as in (2.5) can be formed, and the positions of the sensors can be
determined by solving these equations in the same way as we described in the previous
subsection: we first set x�+1 = (0, 0)T . We then define X and D as in (2.7). Let the spectral
decomposition of D be UΛUT , where the diagonal entries of Λ are in a decreasing order. Let
V = U(:, 1 : 2) and Σ be the diagonal matrix with Σii = max{0,Λii}, where i = 1, 2. Then
X = VΣ1/2 gives the positions of the rest of the sensors. Once the positions of these sensors
are determined, we can use them as an initial set of sensors to start the extended geometric
buildup algorithm again. Upon finishing, another set of determined sensors is obtained.

Hopefully, the two sets of sensors determined in Phases 1 and 2 have an overlapping
subset of at least three sensors, say k sensors. Let X ∈ Rk×2 and Y ∈ Rk×2 be the coordinate
matrices of these sensors obtained in Phases 1 and 2, respectively. We can then make a proper
translation and orthogonal transformation so that the root-mean-square deviation of X and
Y are minimized. An outline of the two-phase buildup algorithm is given in Algorithm 4.
Note that the parameter TH is a threshold used in the algorithm. If the percentage of the
undetermined sensors in Phase 1 is greater than TH, the algorithm enters Phase 2, otherwise
it stops, leaving a few sensors undecided. In principle, if there are a few sensors without
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Input: The positions of the anchors, the distances di,j , (i, j) ∈ Nx ∪Na.
Output: The positions of a set of determined sensors.
Step 1: Phase 1:

Set the anchors to be the initial set of sensors.
Apply the extended geometric buildup algorithm.

Step 2: If the percentage of the undetermined sensors is greater than TH.
Phase 2:

Find and determine an initial set of sensors.
Apply the extended geometric buildup algorithm.

Step 3: Align the sensors determined in the two phases.

Algorithm 4: The two-phase geometric buildup algorithm.

enough distance constraints (e.g., each with fewer than three distances), they are considered
to be undecidable.

3. Numerical Results

In this section, we present some numerical results from applying the two-phase geometric
buildup algorithm (abbreviated as BU) to a set of test problems for sensor network localiza-
tion. The test problems were generated in a similar way as used in [1]. We randomly generate
n points with a uniform distribution in a square of size 1 × 1 centered at the origin. Without
loss of generality we choose the first m points to be the anchors. We compute the distances
di,j between every pair of sensors, but select only those less than the given radio range rd. We
also add a multiplicative random noise to every selected distance,

di,j = di,j(1 + nf · randn(1)), (3.1)

where nf is a specified noisy factor, and randn(1) is a standard Gaussian random variable. We
set the threshold TH = 0.1. The 10% threshold for starting Phase II is indeed arbitrary. It was
used for our testing purposes. In real applications, it may be set to a practically acceptable
value. That is, if the percentage is lower than that value, the algorithm can terminate.

The output includes three parameters and all of our outputs are the average results
from five independent test problems. One parameter is T , the average CPU time in seconds
over five cases except the time to generate the test problems. The buildup algorithm tries to
determine all the points, but may terminate with only a subset of points as determined. In
the latter case, we use another parameter NumUndet to report the average number of un-
determined sensors. This is reasonable because there could be cases that some points are not
determinable uniquely, for example, when a point has only one or two distances. If the un-
determined points do have more than two distances, we would suggest using a general opti-
mization algorithm to followup. However, in this paper, we have not included follow-
up optimization, for we want to evaluate the performance of the buildup algorithm only.
The last parameter is the RMSD value, measuring the average root-mean-square deviation of
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Table 1: Input and output of the two-phase geometric buildup algorithm.

Input:
m :number of anchors.
n :number of all the sensors, including anchors.
PPn×2: original coordinates matrix of all sensors.
rd: radio range.
nf :noise factor: di,j = di,j(1 + nf · randn(1)).

Output:
T : average CPU time in seconds over five cases except the time to generate the test problems.
NumUndet: average number of undetermined sensors.
RMSD: average root-mean-square deviation defined in (3.2).

Table 2: Example 3.1: problems with exact distances.

Approach n m rd NumUndet RMSD T (sec.)
BU 500 50 0.1 1 3.7e − 16 0.25
SFSDP 500 50 0.1 0 4.7e − 3 13.1
SFSDP 500 50 0.3 0 2.9e − 7 7.6
SNLSDPclique 500 50 0.1 0.4 1e − 14 0.4
BU 1000 100 0.1 0 4.6e − 16 0.6
SFSDP 1000 100 0.1 0 3.4e − 4 22.7
SFSDP 1000 100 0.3 0 2.2e − 7 16.0
SNLSDPclique 1000 100 0.1 0 4e − 15 0.7
BU 2000 100 0.1 0 1.3e − 15 7.0
SFSDP 2000 100 0.1 0 7.7e − 5 42.3
SFSDP 2000 100 0.3 0 5.2e − 7 34.9
SNLSDPclique 2000 100 0.1 0 1e − 14 1.8
BU 4000 100 0.06 0 7.5e − 16 9.4
SFSDP 4000 100 0.06 0 2.1e − 3 317.8
SFSDP 4000 100 0.1 0 1.9e − 4 109.2
SNLSDPclique 4000 100 0.06 0 3e − 14 3.1

the calculated and actual locations of the determined sensors:

RMSD =

(
1
p

p∑

i=1

‖xi − xi‖2
)1/2

, (3.2)

where p is the number of the determined sensors, xi and xi are the true and calculated loca-
tions of the determined sensors, respectively. For convenience, we list all the input and output
parameters in Table 1. Note that as an input the original coordinates matrix of all sensors
(i.e., “PPn×2”) is used only to generate distances we need and evaluate the accuracy of the
algorithms in numerical simulations.

All our calculations are done in MATLAB 7.9.0 (R2009b) on a Dell xps M1330 laptop
with 2.00GHz CPU and 3.00GB memory.
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Table 3: Large-scale problems with exact distances.

Approach n m rd NumUndet RMSD T (sec.)

BU

5000 100 0.06 0 1.1e − 15 18.0
6000 200 0.05 0 7.3e − 16 17.9
7000 200 0.05 0 9.9e − 16 28.4
8000 300 0.04 0 7.2e − 16 32.1
9000 300 0.04 0 7.2e − 16 43.7
10000 300 0.04 0 8.1e − 16 51.9

SNLSDPclique 10000 300 0.04 0 5e − 14 16.3

−0.5 0 0.5
−0.5

0

0.5

Figure 1: A network determined by the geometric buildup algorithm. n = 1000, m = 100, rd = 0.1, nf = 0.
The (blue) diamonds refer to the positions of the anchors; the (green) circles to the original locations of the
unknown sensors; the (red) asterisks to their estimated positions from the geometric buildup algorithm.

3.1. Problems with Exact Distances

Example 3.1. Wehave generated a set of sensor networks with 500, 1000, 2000, and 4000 nodes,
respectively. We downloaded the code “SFSDP V111” of the SFSDP approach [16] from
http://www.is.titech.ac.jp/∼kojima/SFSDP/SFSDP.html. In Table 2, the “RMSD” of SFSDP
are the average results over five cases without post-refinement of locations of sensors by the
MATLAB function “lsqnonlin”. The “T” of SFSDP is the average CPU time consumed by
SeDuMi with the same accuracy parameter pars.eps = 1.0e − 5 as [16]. The numerical results
in Table 2 show that for these problems with exact distances, the SFSDP approach performs
well when rd is relatively larger, while the BU algorithm can find solutions to the problems
with smaller RMSD values in shorter running time with fewer distance data (i.e., smaller rd).
Figure 1 shows a graph of 1000 node network determined by the geometric buildup algorithm
and all the sensors are accurately positioned.

We have also tested some larger-scale problems with exact distances. The results for
each problem size are obtained and shown in Table 2. Note that in particular, a sensor net-
work of 10000 nodes was solved by the geometric buildup algorithm in less than 1 minute.
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Table 4: Example 3.2.

n m rd nf NumUndet RMSD T (sec.)
50 3 0.3 0 7.4 6.0e − 16 0.04
50 3 0.35 0 3.8 4.5e − 16 0.05

Table 5: Example 3.3.

Approach n m rd nf NumUndet RMSD Timea

BUb

500 4 0.3 0
12.2 8.0e − 16 1 sec

SOSc 0 2.9e − 6 85min
ESDPd 0 1e − 6 30 sec
aThis time indicates all the running time including that to generate problems.
bBU was implemented on a laptop with 3.00GB memory and 2.00GHz CPU.
cSOS [14]was implemented on a Linux machine with 0.98 GB RAM and 1.46 GHz CPU. The “RMSD” and “Time” of SOS
come from [14].
dESDP [13]was implemented on a laptop with 1.99GB RAM and 1.06 GHz CPU. The “RMSD” and “Time” of ESDP come
from [13].

Recently Krislock and Wolkowicz [19, 20] proposed an SNLSDPclique approach which is
very efficient for noiseless problems. We also ran “SNLSDPclique-0.2” downloaded from
http://orion.math.uwaterloo.ca/∼hwolkowicz/henry/software/EDM.shtml and present
the results in Tables 2 and 3. We find that in these cases when the sensor network is relatively
small (e.g., n = 500, 1000), the two algorithms perform very closely and the BU algorithm
is a little more accurate than the SNLSDPclique algorithm (note that these results of
SNLSDPclique have been very accurate); when the sensor network is relatively big (e.g., n ≥
2000), the SNLSDPclique algorithm runs faster than the BU algorithm and the BU algorithm
is still a little more accurate. We will further demonstrate the performance behaviors of these
two algorithms on the noisy problems in Table 7.

3.2. Problems with a Few Anchors

Example 3.2. We have also tested a special network generated by [1, 12]. This network consists
of 50 sensors, including 3 anchors. Exact distances are assumed and therefore nf = 0. The
radio range rd takes values from 0.2 to 0.35. The average performance results for rd = 0.3, 0.35
are listed in Table 4. We can see that the problems were solved in less than 1 second. Note
that for each rd in these tests, in two runs only Phase 1 was executed, while in the other three
runs Phase 2 was also invoked. It showed that sometimes Phase 2 was necessary for sparse
distance data. However, when we reduced rd to 0.25 or 0.2, the distances became very sparse,
and even in Phase 2, only a few sensors could be determined.

Example 3.3. Another problemwe have tested comes from [14]. We have randomly generated
500 sensors x∗

1, x
∗
2, . . . , x

∗
500 and the anchors were chosen to be the four points at (± 0.45,± 0.45).

The distance set Awas generated as follows. Initially, setA = ∅. Then for each i from 1 to 500,
compute the set Ii = {j : ‖x∗

i − x∗
j ‖2 ≤ 0.3, j ≥ i}; if |Ii| ≥ 10, letAi be the subset of Ii consisting

of the 10 smallest integers; otherwise, letAi = Ii; then letA = A∪{(i, j) : j ∈ Ai}. The distance
set B is chosen such that B = {(i, k) : ‖x∗

i − a∗
k‖2 ≤ 0.3}, that is, every anchor is connected to

all the sensors that are within distance 0.3. The whole distance set is A ∪ B. Since there are no
noises, nf = 0.
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Table 6: Example 3.4.

n m rd nf NumUndet RMSD of BUa T (sec.) RMSD of ESDPa

1000 100 0.06 0 38.6 3.2e − 16 2.2 2e − 3
1000 100 0.06 0.001 26.2 4.7e − 3 2.1 3e − 3
1000 100 0.06 0.01 36.8 3.3e − 2 2.5 2e − 2
4000 400 0.035 0 5.6 3.2e − 16 41.3 1e − 3
4000 400 0.035 0.001 4 3.9e − 3 40.7 8e − 4
4000 400 0.035 0.01 3.2 1.2e − 2 40.8 3e − 2
aRMSD of ESDP is obtained by implementing the steepest descent local search refinement for noisy sensor network
problems. RMSD of BU is obtained without postrefinement. The RMSD values of ESDP come from [13].

−0.5 0 0.5
−0.5

0

0.5

Figure 2: Graphical display of a sensor network with n = 1000, m = 100, rd = 0.06, nf = 0.001. The (blue)
diamonds refer to the positions of the anchors; the (green) circles to the original locations of the unknown
sensors; the (red) asterisks to their estimated positions by BU. The discrepancies between the original and
the estimated points are indicated by the solid lines. RMSD = 5.9e − 3.

In this problem, the four anchors are far away from each other. If one unknown sensor
has distances to at least three of them, the radio range has to be at least the distance from one
of them to the origin ( 0.6364), which is not possible. Therefore, the geometric buildup
algorithm has to go to Phase 2 to solve the problem. The average performance results are
listed in Table 5. We also list the results of the SOS approach [14] and the ESDP approach
[13] in Table 5. Since the SOS code is not published online and the published ESDP code
implements the steepest descent local search refinement, while the BU algorithm does not
implement any postrefinement, we decided to directly cite their original results. From Table 5
we see that on this test problem the BU algorithm outperforms the SOS approach in the
accuracy and running time and it outperforms the ESDP approach in the accuracy at least.

3.3. Problems with Noisy Distances

Example 3.4. We have also tested a set of problems with a large fraction of anchors but
low distance noises (e.g., m = 0.1n and nf ≤ 0.01). These problems are mid- to large-
scale, tested by SOCP [15], ESDP [13], and LPCGD [18]. The parameters are set as follows:
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nf = 0, 0.001, 0.01, rd = 0.06 for n = 1000, rd = 0.035 for n = 4000. For each set of parameters,
the average results are in Table 6. We see that the numbers of undetermined sensors are
relatively small (less than 5% of the total number of sensors). In particular, for the problem
with 4000 sensors, there are only a few sensors undetermined. The average RMSD values
of the BU algorithm without postrefinement are close to those of ESDP with postrefinement
on noisy problems. Figure 2 shows one example of 1000 sensors with nf = 0.001 in which
the locations of sensors are fairly accurate. Note that in the five cases of 4000 nodes with
nf = 0.001, although the average RMSD is 3.9e − 3, the best RMSD value is 9.1e − 5 actually
without any postrefinement.

We also compared the running time of the BU algorithm with the ESDP [13],
SOCP1(SeDuMi) [15], SOCP2(SCGD) [15], and LPCGD [18] approaches. Based on their pub-
lished results and our running results, we think on these problems the BU algorithm is most
likely to run faster than ESDP, SOCP1(Se DuMi), SOCP2(SCGD), and LPCGDmay run faster
than BU. Since the running environments are quite different and only the ESDP code with a
post-refinement is published online, it is hard to compare these approaches exactly in terms
of running time, which makes us not list their running time here. Interested readers can refer
to the above papers.

We have also tested some problems with larger noises, for example, nf = 0.1. The
average results are shown in Table 7. As in Example 3.1, the running time of SFSDP is
the average CPU time in seconds over five cases consumed by SeDuMi with the accuracy
parameter pars.eps = 1.0e−5. Kim et al. [16] used three different values of rd for each problem
and we chose the rd with the best result. We also ran “SNLSDPclique-0.2” [19, 20] and show
the average results over five cases in Table 7. We can see that although the SFSDP approach
is a little more accurate than the BU algorithm, BU obtains similar accuracy with SFSDP (i.e.,
their RMSD values have the same orders) in shorter running time with fewer distance data.
The SNLSDPclique approach runs faster than the BU algorithm, but BU needs fewer distance
data with large noises than SNLSDPclique to obtain same orders of RMSD values. We also
see that the RMSD values of the BU algorithm become larger than those of problems with low
noises. This may be due to the fact that the buildup algorithm is an iterative algorithm and
large noises affect the accuracy of calculations. However, we see from Table 7 that the errors
of the BU algorithm may be improved by increasing the number of anchors.

Note that for SFSDP, larger rd values result in smaller RMSDs, but for BU, larger rd
values may result in larger RMSD, as shown in Table 8. We can see that for the network of
2000 nodes with nf = 0.1, when rd varies from 0.05 to 0.11, RMSD increases from 6.9e − 2
to 3.7e + 1. For the network of 1000 nodes with nf = 0.001, as rd varies from 0.06 to 0.22,
RMSD decreases first, then increases. The reason is that for an undetermined sensor, larger rd
may result in more neighboring determined sensors and thus a larger-size noisy least-squares
problem, the solution to which may involve larger errors.

3.4. Impact of Noise, the Number of Anchors, and the Radio Range

We now summarize in the following on how the distance noise, the number of anchors, and
the radio range affect the performance of the geometric buildup algorithm.

First, as shown in Table 6, the RMSD value of a network determined by the geometric
buildup algorithm increases as nf increases. For example, for a network of 4000 nodes, when
the noise factor nf increases from 0.001 to 0.01, the RMSD value increases from around 1e − 3
to 1e − 2.
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Table 7: Examples with nf = 0.1.

Approach n m rd NumUndet RMSD T (sec.)
BU 1000 100 0.08 0 4.1e − 2 0.53
SFSDP 1000 100 0.2 0 2.6e − 2 44.0
SNLSDPclique 1000 100 0.2 0 2e − 2 1
SNLSDPclique 1000 100 0.08 0.2 5e − 1 0.7
BU 2000 100 0.05 3.4 7.9e − 2 8.9
SFSDP 2000 100 0.2 0 2.6e − 2 134.6
SNLSDPclique 2000 100 0.2 0 4e − 2 2.7
SNLSDPclique 2000 100 0.05 1.8 2e + 1 1.4
BU 2000 200 0.05 3 3.6e − 2 6.0
BU 4000 100 0.035 6 9.99e − 2 75.7
SFSDP 4000 100 0.1 0 1.6e − 2 269.4
SNLSDPclique 4000 100 0.1 0 2e − 1 5.6
SNLSDPclique 4000 100 0.035 11.4 9e + 2 3.9
BU 4000 200 0.035 8.8 4.7e − 2 65.6
BU 4000 300 0.035 5.8 3.2e − 2 52.4
BU 4000 400 0.035 5.8 2.6e − 2 43.0

Table 8: Effect of varying radio ranges.

n m rd nf NumUndet RMSD
1000 100 0.06 0.001 20.8 4.2e − 3
1000 100 0.08 0.001 0.6 1.3e − 3
1000 100 0.12 0.001 0 2.5e − 4
1000 100 0.15 0.001 0 8.9e − 4
1000 100 0.18 0.001 0 6.7e − 2
1000 100 0.2 0.001 0 1.3e − 1
1000 100 0.22 0.001 0 1.3e + 1
2000 100 0.05 0.1 5.4 6.9e − 2
2000 100 0.07 0.1 0 7.0e − 2
2000 100 0.08 0.1 0 1.2e − 1
2000 100 0.1 0.1 0 7.3e − 1
2000 100 0.11 0.1 0 3.7e + 1

Second, as shown in Table 7, increasing the number of anchors increases the accuracy
of localization. It may reduce the time to find the required determined sensors for an un-
determined sensor as well. For example, for a network of 4000 nodes, whenm increases from
100 to 400, the RMSD value decreases from 9.99e−2 to 2.6e−2 and the running time decreases
from 75.7 s to 43.0 s.

Third, as further demonstrated in Table 8, the impact of the radio range depends on the
noise. As mentioned in Example 3.4, for an undetermined sensor, larger rd values may result
in more neighboring determined sensors and thus a larger-size noisy least-squares problem
whose optimal solution may involve larger errors. For example, if nf is small, increasing rd in
an appropriate range can improve the accuracy of localization, while if nf is large, increasing
rd may increase the RMSD value.
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4. Conclusion

In this paper, we have investigated a geometric buildup approach to the sensor network local-
ization problem. We follow the buildup scheme [24] which was applied to protein structure
determination problems. The main difference between our algorithm and [24] is that we
employ a low-rank positive semidefinite approximation scheme, which requires a spectral
decomposition for a small distance matrix and guarantees a best-possible approximation to
the solution of the distance equations in a least-squares sense. We have also implemented a
two-phase buildup algorithm to handle problems with a few anchors and sparse distances. In
principle, the initial clique in Phase II may find only several points while there are still larger
cliques in the graph. We would like to consider some efficient clique searching algorithms in
our future efforts.

We have tested the geometric buildup algorithm on a set of simulated sensor network
localization problems with sparse and exact or inexact distances. The results showed that the
algorithm runs fast on the test problems with acceptable accuracy. The algorithm is easy to
follow and implement, and if further developed, may particularly be suitable for large-scale
applications. The algorithm still needs to be improved to handle problems with large distance
noises and problems with extremely sparse distances, which we will work on in our future
efforts.
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