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In many real scheduling environments, a job processed later needs longer time than the same
job when it starts earlier. This phenomenon is known as scheduling with deteriorating jobs to
many industrial applications. In this paper, we study a scheduling problem of minimizing the
total completion time on identical parallel machines where the processing time of a job is a
step function of its starting time and a deteriorating date that is individual to all jobs. Firstly, a
mixed integer programming model is presented for the problem. And then, a modified weight-
combination search algorithm and a variable neighborhood search are employed to yield optimal
or near-optimal schedule. To evaluate the performance of the proposed algorithms, computational
experiments are performed on randomly generated test instances. Finally, computational results
show that the proposed approaches obtain near-optimal solutions in a reasonable computational
time even for large-sized problems.

1. Introduction

Scheduling is a form of decision making that plays a crucial role in manufacturing and
service systems. It began to be taken seriously in manufacturing at the beginning of 20th
century, and since then has been received the attention of many researchers for years. In
the traditional scheduling problems, most research in the literature was usually conducted
under the assumption that the processing time of a job is known in advance and remains
constant throughout the whole decision process. However, there are many practical situations
where the processing times of jobs are not constant but increasing overtime such that the
later a job starts, the longer it takes to process. This phenomenon is known as scheduling
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with deteriorating jobs to many industrial applications, such as equipment maintenance,
steel production, medical emergency, firefighting, and other problems. In these cases, the
corresponding scheduling problem was first studied by Browne and Yechiali [1] and J. N. D.
Gupta and S. K. Gupta [2]. They assumed that the processing time of all jobs is a function
of their starting point (pi = ai + αi × si), where ai is the normal processing time, αi is
a deterioration rate, and si is the starting time of job i. From then onwards, more papers
considering scheduling jobs with deterioration effects have been published recently [3–
19]. Comprehensive reviews and discussions of different models and problems with time-
dependent processing times were given by [20, 21].

Most of the current researches in deteriorating jobs scheduling problems assume that
the job processing times are linear functions of their starting times. However, in many
practical situations, if some jobs fail to be processed prior to a prespecified deteriorating
date, then the jobs will require extra time for successful completion. As a result, the original
schedule may become inapplicable under the new environment. This motivates the research
of the scheduling problem with piecewise-deteriorating jobs. There are often two types of
scheduling problems relevant to the piecewise-deteriorating model in the literature. The
first one is step-deterioration scheduling problem [22]. Another one is piecewise-linear-
deteriorating scheduling problem [23]. In this paper, we study the first kind of scheduling
problem. Considering a set of n jobs with deteriorating date di for job Ji, the processing time
pi for job Ji is ai if it is started before the deteriorating date and ai + bi if the starting time
si > di, where ai is the normal processing time, bi is a deteriorating penalty. The objective is
to schedule the n jobs on parallel machines to minimize the sum of job completion times. The
scheduling problem with step-deterioration jobs is NP-complete even if in single machine
environment [24]. As for such a problem over a certain size, it is handicapped to render an
optimal schedule within a reasonable run time, depending on exact methods. Hence, some
approximate solution techniques are employed to yield an optimal or near-optimal schedule
for such problems.

In this paper, a modified weighted combination search algorithm (MWCSA) is firstly
proposed to obtain near optimal solution. Subsequently, variable neighborhood search (VNS)
algorithm is employed to yield the better schedule for the problem under consideration.
VNS is one of the modern metaheuristic techniques that use systematic changes of the
neighborhood structure within a local search to solve optimization problem [25, 26].
Owing to incorporating a lot desirable properties for a metaheuristics such as simplicity,
efficiency, effectiveness, generality, and so forth, VNS has been widely used to combinatorial
optimization problems in recent years. In addition, to improve the performance of VNS,
the proposed heuristic MWCSA is utilized to produce initial solution for the VNS. The
effectiveness of the proposed approaches is demonstrated by computational results based
on a large set of randomly generated test instances.

This paper is organized as follows: Section 2 reviews the relevant literature in this
area of scheduling. Section 3 gives a brief description of the problem under consideration
and formulates the corresponding mixed integer programming model. A detailed description
of the heuristic MWCSA and VNS algorithm are elaborated in Section 4. The performances
of the VNS and the heuristic algorithms are shown in Section 5. Conclusions are given in
Section 6.

2. Literature Review

We discuss related work with respect to the scheduling problem with piecewise-deteriorating
jobs and with regard to VNS methods in scheduling, especially for parallel machines.
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Since many different problems are encountered in production and service envi-
ronments where the processing time of jobs or tasks can be modeled as the piecewise-
deteriorating function, many active researchers in the field of scheduling have perceived
the promising advantages of considering the piecewise-deteriorating jobs in scheduling
problems. Kunnathur and Gupta [27] firstly assumed that job processing times are piecewise-
linear function of their starting times with two pieces and addressed five heuristics and two
optimizing algorithms based on dynamic programming and branch and bound techniques.
However, Sundararaghavan and Kunnathur [22] considered that the processing time can
be modeled by step function and gave some solvable cases for minimizing the sum of the
weighted completion times in single machine scheduling. In addition, Mosheiov [28] studied
the problem of stepwise deteriorating jobs for minimizing makespan, proved that the case of
single machine step-deterioration is NP-complete, and suggested heuristic methods in single
and multimachine scheduling environments.

Cheng and Ding [24] studied a piecewise model where the job processing time
deteriorates as a step function if its starting time exceeds a given threshold, and presented
NP-complete proofs for minimizing makespan, flow time, and weighted flow time in
single machine scheduling. Jeng and Lin [29] presented a pseudopolynomial time dynamic
programming algorithm for a single-machine scheduling problem. Then, they described an
efficient branch and bound algorithm based on two dominance rules and a lower bound for
deriving optimal solution. Subsequently, a single machine scheduling problem of minimizing
the total completion time was solved by branch and bound algorithms [30]. Owing to the
complexity of the problem, He et al. [31] proposed a weight combination search algorithm
to yield a near-optimal solution. They also developed a branch and bound algorithm
incorporated with several properties and a lower bound to obtain the optimal solution.
Afterwards, Layegh et al. [32] applied a memetic algorithm based on three dominance
properties to minimize the total weighted completion time on a single machine under step-
deterioration.

With regards to the piecewise-linear-deterioration model, Kovalyov and Kubiak [33]
investigated that the job processing time can be expressed by a piecewise-linear-increasing
function with three pieces and presented a fully polynomial approximation scheme for
minimizing makespan of single machine scheduling problem. Then Kubiak and van de Velde
[23] proved that the problem is NP-hard, and proposed a branch and bound algorithm
that solves instances with up to 100 jobs in a reasonable amount of time. Alternatively, the
processing job times was expressed in a piecewise-linear-decreasing function of their start
times. The single machine scheduling problem was researched by Cheng et al. [34]. Moslehi
and Jafari [35] dealt with the same problem proposed by [33] with the minimization of the
number of tardy jobs. Owing to the complexity of the studied problem, they proposed a
heuristic algorithm with O(n2) and a branch and bound algorithm.

As far as reviewed, there are some literature focused on single machine scheduling
problem with piecewise-deteriorating jobs. However, to the best of our knowledge, parallel
machines scheduling problem with piecewise deteriorating jobs has not been considered in
the existing literature. And it still lacks some effective approaches to solve the intractable
problem, especially metaheuristics. Therefore, we intend to propose a VNS approach for
parallel machines scheduling problem with step-deteriorating jobs.

VNS approaches have successfully applied to solve several scheduling problems.
Gupta and Smith [36] described a new hybrid of VNS for single machine total tardiness
scheduling with sequence-dependence setups. Paula et al. [37] applied a VNS algorithm to
solve large instances of parallel machines scheduling problems with sequence-dependent
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times. Anghinolfi and Paolucci [38] contributed to the design of a hybrid meta-heuristic
approach which integrates several features from tabu search (TS), simulated annealing (SA),
and VNS for a generalized parallel machine total tardiness scheduling problem. Moreover,
Driessel and Mönch [39] proposed several variants of VNS schemes for the same problem
considered precedence constraints to minimize the total weighted tardiness of all jobs.
Behnamian et al. [40] proposed a hybrid meta-heuristic method which combines some
advantages of ant colony optimization, SA and VNS for the minimization of makespan in
parallel machine scheduling problem with sequence-dependent times. C.-L. Chen and C.-L.
Chen [41] proposed several hybrid metaheuristics for unrelated parallel machine scheduling
with sequence dependent setup times by integrating VNS and TS principles. Furthermore,
some job shop scheduling problems were solved by VNS [42–45]. A latest systemic survey of
state-of-the-art development of VNS can be found in [46].

3. Problem Formulation

The problem under consideration is to schedule n independent jobs with step-deterioration
effects, noncommon deadlines and varying processing times on m identical parallel
machines. The jobs are available for processing at time zero and the machines are available
in the whole process. No job preemption is permitted. For each job Ji, there is a normal
processing time ai and associated with a deteriorating date di. If the starting point of its
process is less than or equal to its deteriorating date, then it only requires a normal processing
time ai. Otherwise, it requires an extra processing time bi, which is called the deteriorating
penalty. Thus, the actual processing time pi of job Ji depends on its starting time si and
deteriorating date di, and can be defined as a step-function: pi = ai if si ≤ di; pi = ai +
bi, otherwise. Without loss of generality, it is assumed that parameters ai, bi, and di are all
integers. Let Ci denote the completion time of job Ji. The goal of the problem is to find a
schedule such that the total completion time, or the sum of completion times, of all jobs
is minimized. This problem is denoted as Pm/pi = ai or ai + bi, di/

∑
Ci by adopting the

standard three-field notation.
For convenience, a job is called early if its starting time is before or at its deteriorating

date; tardy, otherwise. For schedule S, the objective value is denoted by Z(S). In addition,
let M be a sufficiently large positive number. Before formulating the proposed mixed integer
programming model, the following variables have to be defined.

xijk: Binary, set to 1 if job i is immediately followed by job j in sequence on machine
k; 0, otherwise (1 ≤ i, j ≤ n, 1 ≤ k ≤ m)

yik: Binary, set to 1 if job i is assigned to machine k; 0, otherwise (1 ≤ i ≤ n, 1 ≤ k ≤
m).

Based on the definitions and notation described above, the considered problem can
now be formulated as 0-1 mixed integer programming model, as shown below.

Minimize Z(S) =
n∑

i=1

Ci. (3.1)
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Subject to:

pi =

{
ai, si ≤ di

ai + bi, otherwise
∀i = 1, . . . , n, (3.2)

n∑

i=1

x0ik = 1 ∀k = 1, . . . , m, (3.3)

n∑

i=1

xi(n+1)k = 1 ∀k = 1, . . . , m, (3.4)

n∑

i=0,i /= j

xijk = yjk ∀j = 1, . . . , n, ∀k = 1, . . . , m, (3.5)

n+1∑

j=1,i /= j

xijk = yik ∀i = 1, . . . , n, ∀k = 1, . . . , m, (3.6)

Ci ≥ pi +M(x0ik − 1) ∀i = 1, . . . , n, ∀k = 1, . . . , m, (3.7)

Cj ≥ Ci + pj +M
(
xijk − 1

) ∀i = 1, . . . , n, ∀j = 1, . . . , n, ∀k = 1, . . . , m, (3.8)

si ≥ M(x0ik − 1) ∀i = 1, . . . , n, ∀k = 1, . . . , m, (3.9)

sj ≥ Ci +M
(
xijk − 1

) ∀i = 1, . . . , n, ∀j = 1, . . . , n, ∀k = 1, . . . , m, (3.10)

m∑

k=1

yik = 1, ∀i = 1, . . . , n, (3.11)

xijk, yik ∈ {0, 1}, ∀i = 1, . . . , n, ∀j = 1, . . . , n, ∀k = 1, . . . , m. (3.12)

In the above mathematical model, the objective (3.1) minimizes the total completion
time. Constraints (3.2) depict the processing time of the step-deteriorating jobs. Constraints
(3.3) and (3.4) ensure that only one job can be processed at the first and the last position
on each machine. Constraints (3.5) and (3.6) guarantee that each job is scheduled only once
and processed by at most one machine. Constraints (3.7) define the completion time of the
first job assigned to a machine. Constraints (3.8) represent that the completion time of a job
in sequence on each machine will be at least equal to the sum of the completion time of the
preceding job and the processing time of the present job, if the job is immediately schedule
after the previous job. Constraints (3.9) define the starting time of the first job assigned to a
machine. Constraints (3.10) state that the starting time of a job in sequence on each machine is
greater than or equal to the completion time of the preceding job. Constraints (3.11) confirm
that each job is only processed to exactly one machine. Constraints (3.12) specify that the
decision variable x and y is binary over all domains.

This described problem is NP-complete because the single machine problem 1/pi = ai

or ai + bi, di/
∑

Ci has proven to be NP-complete by [24]. There exists no polynomial time
algorithm for the exact solution of the considered problem. Therefore, we have to look for
some efficient heuristic or meta-heuristic algorithms to yield near optimal solutions of large-
sized problems in a reasonable computational time.
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4. Heuristic Solution Approaches

In this section, we start with presenting one property. Then we modify a heuristic proposed
in a literature. Subsequently, some detailed descriptions of VNS meta-heuristic are given.

Since the identical parallel machines scheduling problem Pm//
∑

Ci is solvable in
O(NlogN) time using the generalized shortest processing time (GSPT) rule [47]. Therefore,
we can also use the same method to determine the sequence of early jobs and tardy jobs
assigned to a given machine for minimizing the total completion time. Based on the GSPT,
we obtain the following property directly.

Property 1. On each machine of an optimal solution for the considered problem, early jobs
and tardy jobs are sequenced in the nondecreasing order of ai and ai + bi, respectively.

Proof. The proof is straightforward from the SPT rule on ai and ai + bi, respectively.

4.1. Modified Weight Combination Search Approach

He et al. [31] proposed weight combination search approach (WCSA) to solve single machine
total completion time scheduling problem with step-deteriorating jobs. The performance of
the WCSA is relatively excellent compared to the proposed branch and bound algorithm
within 24 jobs. Based on the good performance of the algorithm, it is modified to adapt the
parallel machine model by incorporating Property 1. But the ranges of the weights in the
literature are not suitable for parallel machine scheduling. For specifying the suitable ranges
of the weights we carried out the preliminary tests of 30 10-job instances and found that the
linear combination of ai, di, and bi will acquire better results if ω1 ∈ [0.4, 0.75], ω2 ∈ [0.2, 0.5]
and ω3 = 1 − ω1 − ω2. The procedure of the modified WCSA (MWCSA) is designed as show
in Algorithm 1.

From Algorithm 1, all jobs are sorted in non-decreasing order of their normal
processing times ai. The first m jobs are assigned to m machines, respectively. Then the last
n−m jobs are arranged in a non-decreasing order of the weight combination of processing
time, deteriorating date and deterioration penalty. Of course, if the completion time of the
last scheduled job is greater than the maximal deteriorating date of the unscheduled jobs,
then the remaining jobs are indexed in the order of sum of their normal processing times and
deterioration penalties.

4.2. Variable Neighborhood Search Metaheuristic

VNS, a new local search technique, attempts to escape from local optimum by exploring more
than one type of neighborhood search structure (NSS) during the course of the algorithm.
In practice, VNS is very similar to iterated local search (ILS). Owing to iterating over one
constant type of neighborhood structure, ILS is easy to stick in local optima: the single move
required to improve the solution cannot escape from the found local optima, and even lead
to a deterioration of the solution quality. The disadvantage is also existed in some other
metaheuristics, such as simulated annealing, and tabu search. However, VNS makes full use
of some NSSs until some stopping criterion is met. By exploring various NSSs, we expect
VNS to enjoy a systematic diversification mechanism. Besides this diversification mechanism,
the other reasons to high acceptability and popularity of VNS among researchers are due
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Procedure: the modified WCSA for the parallel machine scheduling problem
Inputs: n, m, ai, di, bi for i = 1,. . ., n
Output: the near optimal scheme S opt and the associated total completion time TC
Begin

let N0 = {J1, J2, . . . , Jn} be the sequence that sorts all the jobs by ascending order of their
normal time ai,
set TC = infinity, and S optk = Φ for k = 1, . . . , m % initialize the TC and S opt
set var = max{2, �n/m�} % initialize the ranges of l1 and l2
for (l1 = 1; l1 ≤ var; l1++)

ω1 = 0.4 + (0.75 − 0.4) × ((l1 − 1)/(var − 1))
for (l2 = 1; l2 ≤ var; l2++)

ω2 = 0.2 + (0.5 − 0.2) × ((l2 − 1)/(var − 1))
ω3 = 1 −ω1 −ω2
set N = N0
set S = Φ for k = 1, . . . , m % initialize the scheme S
set Cmac(k) = 0, for k = 1, . . . , m % initialize the completion

time of all machines
set Cjob(i) = 0, for i = 1, . . . , n % initialize the completion

time of all jobs
for (i = 1; i ≤ m; i++)

select the machine h that has the least completion time in all machines
select the job Jh that has the least normal time from N
Sh = Sh ∪ {Jh}
Cmac(h) = Cmac(h) + a(Jh)
Cjob(Jh) = Cmac(h)
delete job Jh from N

end for
for (j = m + 1; j ≤ n; j++)

select the machine f that has the least completion time in all machines
if(Cmac(f) > max{d(Jr), (Jr ∈ N)} % tardy jobs are sequenced in the

nondecreasing order of ai + bi
select the job Jf with the smallest a(Jf ) + b(Jf ) from N
Sf = Sf ∪ {Jf}
Cmac(f) = Cmac(f) + a(Jf ) + b(Jf )
Cjob(Jf ) = Cmac(f)
delete job Jf from N

else % arrange the jobs in a ascending
order of the weight of combination

set N ′ = {d(Jr) ≥ Cmac(f), (Jr ∈ N)}
select job Jf with the smallest ω1 × a(Jf ) +ω2 × d(Jf ) −ω3 × b(Jf ) from N ′

Sf = Sf ∪ {Jf}
Cmac(f) = Cmac(f) + a(Jf )
Cjob(Jf ) = Cmac(f)
delete job Jf from N

end if
end for
TC temp = sum{Cjob(i) = 0, for i = 1, . . . , n}
if TC temp < TC % update the scheme S opt and the

assisted completion time TC
TC = TC temp
S opt = S

end if
end for

end for
End

Algorithm 1: Procedure of MWCSA.
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Figure 1: Sequence in one solution and its schedule.

to conceptual simplicity to understand and implement and the high flexibility and brilliant
adaptability to different problems. Consequently, we intend to use it to solve our problem.

Since the VNS was proposed in 1997, some variants of VNS are developed by Hansen
and Mladenović [25]. Variable neighborhood descent (VND), as one of these variants of VNS,
performs change of neighborhoods in a deterministic way and adopts the first improvement
rather than the best improvement. In the subsequent subsection, we are going to employ a
VNS with five powerful NSSs based on insertion, swap, and inversion under the framework
of VND.

4.2.1. Encoding, Decoding, and Initialization Schemes

Encoding scheme is a procedure to make a solution recognizable for an algorithm.
Permutation list is a common used encoding scheme for combinatorial optimization
problems. Since the parallel machines scheduling problem is a combination of machine
assignment and operation sequencing decisions, we construct five neighborhood structures
that expediently use insertion, swap, and inversion operations based on permutation list. A
good initial solution can reduce considerably the computational time. According to observing
the processing sequence of jobs, we find that a job with the smallest normal processing time
should be processed at first, and a job with the largest penalty should be processed at last.
Therefore, we can obtain the initial solution by arranging jobs in the non-decreasing order
of the ratio of ai/bi. The sample sequencing method is called smallest rate first (SRF). A
permutation with all jobs sequence can express the order in which the jobs are processed. To
decode a permutation list into a schedule, we use LIST method. For one solution sequence,
whenever a machine is freed the job that is chosen from the sequence in succession is put on
the machine.

The procedures of encoding and decoding a candidate solution are illustrated
according to an example. Consider a problem with 8 jobs and 2 machines. The parameters
of all jobs are given in Table 1. The initial solution is obtained by using SRF, as shown in
Figure 1. The job that is selected from the solution sequence one by one is processed by the
machine with the smallest completion time. The schedule is also depicted in Figure 1. We
calculated that the total completion processing time is 1113.

4.2.2. Neighborhood Search Structures

The main purpose of applying a neighborhood structure is to produce a neighboring solution
from the current solution via making some changes in it. A variety of neighborhood structures
have been applied to scheduling problems. Most of these neighborhood structures are based
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Table 1: The parameters of all jobs in the example under consideration.

Parameter Job number
J1 J2 J3 J4 J5 J6 J7 J8

ai 10 13 28 55 63 81 90 95
di 14 48 21 52 55 60 36 7
bi 14 3 5 41 35 16 47 2

Procedure: NSS1
improvement = yes
while (improvement = yes) do

improvement = no
i = 1

while i ≤ n do (n is the number of jobs)
select randomly one job p without repletion from the current solution x
x′ = swap job i and job p on their positions.
if Z(x′) < Z(x) do

x = x′

i = n
improvement = yes

end if
i = i + 1

end while
end while

Algorithm 2: Procedure of neighborhood structure NSS1.

on insertion or swap operations. In addition, the inversion operation has been reported
to be significantly surpassing all the modified forms of crossover of genetic algorithm
especially tailored to deal with combinational problems [48]. Therefore, we define five types
of neighborhood search structures based on insertion, swap, and inversion.

To generate a neighboring solution, NSS1 makes some slight changes in the candidate
solution by swapping the positions of all jobs in the sequence with one selected job at
random and without repetition. All jobs are selected one after another without repetition
in a random order. If we observe the first improvement, the associated sequence is accepted
and the procedure restarts. According to the NSS1, some available neighboring searches are
found and used to improve the candidate solution. The whole procedure repeats so long
as no improvement is obtained through swap all jobs with another randomly selected job.
The procedure of NSS1 is described in Algorithm 2 in detail. After implementing all swap
operations, we believe that there is little hope for further improvement just by swapping
two jobs on their positions. Hence, it necessitates consider another neighborhood structure to
escape from this local optimum of the NSS1. Subsequently, we need to introduce another NSS
to search potential improvement based on insertion moves.

In our NSS2, the procedure is similar to the NSS1. The only difference between
them is their move pattern that NSS2 changes the position of one job based on insertion
neighborhood. A job is removed from the sequence at random and without repetition, and
then relocated another random selected position. The other procedure is the same as the
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Procedure: NSS3
i = 1
while i ≤ n do

j = j + 1
while j ≤ n do

select randomly two jobs p and q from the current solution x
x′= swap the two selected jobs on their positions
if Z(x′) < Z(x) do

x = x′

j = n
i = n

end if
j = j + 1

end while
i = i + 1

end while

Algorithm 3: Procedure of neighborhood structure NSS3.

NSS1. To avoid duplicated description, it is unnecessary to go into these details here. After
relocating all jobs, we feel that the algorithm cannot rely solely on single move to improve
the quality of the current solution. Hence, we need to introduce other neighborhood search
structure to generate more complex neighbors than the above two structures.

In the NSS3, the number of randomly selected jobs is 2. The manner of choosing these 2
jobs is all the combinations of two-out-of-n jobs. Swap the selected jobs on their positions and
observe if the solution is improved. Once observing the first improvement, the associated
solution is accepted and the procedure restarts. If not, this search strategy repeats for the
subsequent combinations. Algorithm 3 illustrated the whole procedure of the NSS3. By the
same way of switching from NSS1 to NSS2, the double insertions are employed in the fourth
neighborhood structure NSS4. In the NSS4, the number of removed jobs is set equal to 2.
To relocate them, the two jobs are reinserted into two new randomly selected positions. The
other procedure is the same to the NSS3.

To improve further the search performance of the proposed VNS, an inversion
operator is embedded into the NSS5 when the foregoing neighborhood search methods
terminate. In the NSS5, it randomly selects two positions, known as the points of inversion,
and inverts the sequence between these positions. The inversion procedure is repeated
ϕ times for producing a new job sequence. Owing to the impact of the parameter ϕ on
neighborhood search, it must be tuned. The inversion operation is unidirectional, that is,
only the inverted sequence is improved, the corresponding solution is accepted to replace the
incumbent one. The procedure of is described in Algorithm 4.

The general outline of the proposed VNS is shown in Algorithm 5. According to using
the above neighborhood search structures, the proposed VNS can be quick to yield the near
optimal solution. If the neighborhood search structure continues to increase the number of
selected jobs, the quality of the algorithm will be not improved according to our primary
experiments.
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Procedure: NSS5
for i = 1 to ϕ do

select two jobs p and q at random from the current solution x
x′ = invert partial jobs between job p and job q
if Z(x′) < Z(x) do

x = x′

end if
end for

Algorithm 4: Procedure of neighborhood structure NSS5.

Procedure: the proposed VNS algorithm
Initialization: Define the set of neighborhood structures NSSk , for k = 1,. . ., kmax;

find a initial solution x by SRF heuristic;
choose a stopping criterion.

k = 1
while the stopping criterion is not met do

perform the neighborhood search structure NSSk

if x is improved do
continue the search with NSSk

else
k = kmod kmax + 1

end if
end while

Algorithm 5: Procedure of the proposed VNS algorithm.

5. Computational Analysis

To test the performance of our approaches, computational experiments were carried out
for the Pm/pi = ai or ai + bi, di/

∑
Ci problem. More specifically, we also carried out

comprehensive computational and statistical tests to assess the performance of MWCSA,
and VNS. Firstly, we gave a detailed description of the different instance sets that we have
employed. After reporting the results, we carried out comprehensive statistical analyses in
order to soundly test the significance of the reported results.

Because there is not a widely available set of benchmark instances for the problem
under study, data for the test instances are generated randomly. The normal processing
times (ai) are randomly generated from an integer uniform distribution on U[1, 100]. The
deterioration penalties (bi) are randomly picked from an integer uniform distribution on
U[1, 100 × β], where β = 0.5. Let Df =

∑f×n
i=1 ai/m, 0 ≤ f ≤ 1. The deteriorating dates di are

randomly selected from three intervals U(0, D0.5], U[D0.5, D], and U(0, D]. In this paper, we
have divided the benchmark instances into 2 different types according to the number of jobs.
For small-sized instances, we test all combinations of n = {6, 8, 10} and m = {2, 3}. For large-
sized instances, we use the combinations of n = {20, 40, 60, 80, 100} and m = {2, 4, 6, 8, 10} to
evaluate the proposed algorithms. Since the deteriorating date may be generated from three
different intervals, we totally have 6 × 3 + 25 × 3 = 93 instances.
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In order to validate the performance of the proposed approaches, attempts are made
to solve the MIP model presented in Section 3 using the software IBM-ILOG CPLEX 12.3
solvers. The software is run on a PC with Intel Pentium Dual-Core 2.60 GHz CPU and 2 GB
RAM. Because the problem under consideration is NP-complete, it is impossible to obtain
optimal solutions by using some polynomial time algorithms. Therefore, only small-sized
instances can be solved to optimality using CPLEX. For the small-sized instances, we use
relative percentage deviation (RPD) as a performance measure to compare those results of
the CPLEX software, the MWCSA and the VNS. RPD is obtained by given formula below:

RPD =
Z
(
Alg

) − Z(OPL)
Z(OPL)

× 100, (5.1)

where Z(Alg) is the total completion time of the solution obtained by a given algorithm
and instance and Z(OPL) is the total completion time of the optimal schedule given by
CPLEX. The SRF (small rate first) of Section 4 is also brought into the large-sized instances
for comparison. Our purpose to utilize SRF is to use its result as upper bound for a given
instance to evaluate the VNS. In addition, the MWCSA is used to obtain the initial solution
of the VNS for improving the quality of solutions. The hybrid algorithm, denoted by VNS +
MWCSA, is employed for the large-sized instances.

All proposed algorithms in the previous sections were coded in MATLAB 7.11 and
implement on the same PC. According to the preliminary tests, the stopping criterion used
when testing all instances with the proposed algorithms is set to the maximum iterations
time fixed to 200. Thus, there is only one parameter (ϕ) is tuned in our proposed VNS.
The considered candidate levels are 10, 30, 50, and 70. A set of 15 large-sized instances are
randomly generated when the number of jobs is fixed to 100. All the 15 instances are solved
by these VNSs with different parameter candidate levels. The results were analyzed by the
one-way ANOVA test. The means plot and Fisher LSD intervals for the 4 levels of parameter
ϕ are shown in Figure 2. As we can see, ϕ of 50 and 70 provide the better results among
all levels. However, it needs more computational time when ϕ is 70. Therefore, the most
reasonable value of parameter ϕ is 50.

CPLEX, SRF, and MWCSA are deterministic and only one run is necessary. The VNS
and VNS + MWCSA are stochastic and we need to run some replicates in order to better assess
the results. We run each algorithm five times. The listed objective value and computational
time are the means of five reported results.

Table 2 provides a comparison of the solutions to the mixed integer programming
model generated by the CPLEX and those solutions provided by execution of the proposed
MWCSA and VNS algorithms. All small-sized instances were solved to optimality by CPLEX
as shown in Table 1. The computational time of the CPLEX increases rapidly as the instance
become larger. When the number of jobs is equal to 10, solutions to MIP models require far
longer than 1 hour. From Table 1, the longest computational time of CPLEX is 144761.59
seconds (40.21 hours). It is impractical in scheduling for such a long time. In addition,
we found that CPLEX is not greatly affected by the distribution of the deteriorating dates
almost. While the deteriorating dates are randomly picked from the interval U[D0.5, D], all
corresponding instances are relatively easy. This is because the number of deteriorating jobs
is less. It is worthwhile to note that the MWCSA behaves well for all small-sized instances
and gives an average result of 0.62% deviation from the optimal solution. Specially, eleven
of these instances can be solved optimally by the proposed heuristic. Its execution time is far
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Table 2: Comparison of CPLEX results with the proposed algorithms for small-sized instances.

n m

CPLEX MWCSA VNS
Objective Time Objective RPD Objective RPD Time

value (gap) (sec) value value (sec)
6 2 582 1.48 582 0.00% 582 0.00% 0.36

3 360 2.47 370 2.78% 360 0.00% 0.30
8 2 859 103.55 859 0.00% 859 0.00% 0.52

3 513 122.20 513 0.00% 513 0.00% 0.46
10 2 1284 24632.09 1308 1.87% 1284 0.00% 0.72

3 1190 144761.59 1216 1.59% 1190 0.00% 0.72
∗the deteriorating date with the interval U(0, D0.5]
6 2 430 1.50 430 0.00% 430 0.00% 0.30

3 392 2.05 392 0.00% 392 0.00% 0.30
8 2 835 80.70 835 0.00% 835 0.00% 0.46

3 590 233.25 590 0.00% 590 0.00% 0.47
10 2 1186 17676.28 1186 0.00% 1186 0.00% 0.71

3 794 62828.11 799 0.63% 794 0.00% 0.72
∗the deteriorating date with the interval U[D0.5, D]

6 2 446 1.63 446 0.00% 446 0.00% 0.30
3 335 1.92 335 0.00% 335 0.00% 0.31

8 2 934 102.61 939 0.54% 934 0.00% 0.47
3 486 205.08 491 1.03% 486 0.00% 0.47

10 2 1161 22216.36 1193 2.76% 1161 0.00% 0.72
3 638 51367.00 638 0.00% 638 0.00% 0.70

∗the deteriorating date with the interval U(0, D]
Average 0.62% 0.00%

M
ea

n

0.9

0.88

0.86

0.84

0.82

0.8

0.78

0.76

0.74

0.72
10 30 50 70

ϕ

Figure 2: Means plot and Fisher LSD intervals for the different levels of parameter ϕ (the significance level
α is 0.05).
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Table 3: Test results of the algorithms on the instances with the interval U(0, D0.5].

Problem
number

n m

SRF MWCSA VNS VNS + MWCSA
Objective Objective (B)/(A) Objective (C)/(A) Time Objective (D)/(A) Time
value (A) value (B) value (C) (sec) value (D) (sec)

1 20 2 5859 5062 86.40% 5001 85.36% 3.71 5001 85.36% 3.90

2 4 3274 2589 79.08% 2587 79.02% 3.58 2583 78.89% 3.77

3 6 1792 1676 93.53% 1655 92.35% 3.65 1655 92.35% 3.71

4 8 1299 1247 96.00% 1199 92.30% 3.68 1199 92.30% 3.73

5 10 1324 1309 98.87% 1269 95.85% 3.71 1267 95.69% 3.76

6 40 2 17056 14013 82.16% 13361 78.34% 23.00 13307 78.02% 23.73

7 4 11530 9614 83.38% 9513 82.51% 23.57 9508 82.46% 24.38

8 6 7833 6890 87.96% 6800 86.81% 23.05 6797 86.77% 23.56

9 8 4684 4299 91.78% 4201 89.69% 23.60 4198 89.62% 23.67

10 10 3858 3465 89.81% 3434 89.01% 24.15 3428 88.85% 24.71

11 60 2 47917 41030 85.63% 39204 81.82% 73.04 39149 81.70% 71.14

12 4 28547 22651 79.35% 22234 77.89% 72.34 22184 77.71% 67.62

13 6 17378 13616 78.35% 13504 77.71% 70.08 13474 77.53% 70.38

14 8 12577 10288 81.80% 10122 80.48% 69.37 10121 80.47% 72.68

15 10 10346 8695 84.04% 8573 82.86% 71.59 8548 82.62% 68.72

16 80 2 73047 66321 90.79% 58736 80.41% 157.50 58392 79.94% 181.86

17 4 41378 33779 81.64% 32734 79.11% 160.57 32687 79.00% 132.71

18 6 27955 22144 79.21% 21679 77.55% 152.83 21671 77.52% 142.25

19 8 20569 16200 78.76% 16055 78.05% 157.20 16013 77.85% 136.14

20 10 15479 12720 82.18% 12569 81.20% 160.32 12516 80.86% 152.90

21 100 2 126101 108828 86.30% 98779 78.33% 288.47 98026 77.74% 290.95

22 4 58800 46684 79.39% 45214 76.89% 295.09 44858 76.29% 277.00

23 6 46629 35717 76.60% 34678 74.37% 307.01 34466 73.92% 240.82

24 8 35233 27602 78.34% 27275 77.41% 286.20 27143 77.04% 263.09

25 10 29084 22906 78.76% 22753 78.23% 299.92 22629 77.81% 303.41

Average 84.40% 82.14% 81.93%

less than 1 second so that its log is not necessary. It can also be noticed that the solutions from
the VNS algorithm are optimal for these small-sized instances. Meanwhile, the computational
time of these instances given by VNS are not more than 1 second. This means that the VNS
algorithm is effective in solving the scheduling problem under study and has significantly
better optimization performance than the others.

Tables 3, 4, and 5 show the results of large-sized instances where the deteriorating
dates are generated from three different intervals. In order to compare the performance of
the proposed algorithms, the ratios of the results of a given algorithm to the values obtained
by SRF were calculated out. For the instances with the deteriorating dates generated from
interval U(0, D0.5], VNS behaves slightly better than MWCSA. The difference in average
rate between two algorithms is only 2.26%. For other two types of instances with intervals
U[D0.5, D] and U(0, D], the VNS and VNS + MWCSA strikingly outperformed the MWCSA
heuristic because of its larger search space. As a rule of thumb, a given algorithm takes
possession of the better initial solution and should yield better result. However, the hybrid



Mathematical Problems in Engineering 15

Table 4: Test results of the algorithms on the instances with the interval U[D0.5, D].

Problem
number

n m

SRF MWCSA VNS VNS + MWCSA
Objective Objective (B)/(A) Objective (C)/(A) Time Objective (D)/(A) Time
value (A) value (B) value (C) (sec) value (D) (sec)

1 20 2 5065 4936 97.45% 4576 90.35% 3.68 4576 90.35% 3.81

2 4 2405 2186 90.89% 2145 89.19% 3.66 2145 89.19% 3.70

3 6 1420 1298 91.41% 1296 91.27% 3.67 1296 91.27% 3.76

4 8 1172 1146 97.78% 1146 97.78% 3.73 1146 97.78% 3.75

5 10 1567 1528 97.51% 1528 97.51% 3.74 1528 97.51% 3.73

6 40 2 17081 18299 107.13% 15326 89.73% 23.57 15316 89.67% 26.33

7 4 10157 9559 94.11% 9133 89.92% 24.56 9133 89.92% 24.69

8 6 5847 5040 86.20% 4944 84.56% 24.00 4943 84.54% 23.70

9 8 3708 3376 91.05% 3334 89.91% 23.87 3334 89.91% 24.17

10 10 4141 3772 91.09% 3733 90.15% 24.67 3733 90.15% 24.67

11 60 2 37202 40606 109.15% 32409 87.12% 74.86 32406 87.11% 85.56

12 4 18904 18275 96.67% 16831 89.03% 73.84 16830 89.03% 76.31

13 6 14321 13618 95.09% 13122 91.63% 72.86 13113 91.56% 74.14

14 8 9488 8980 94.65% 8792 92.66% 77.12 8792 92.66% 75.39

15 10 10032 9203 91.74% 8991 89.62% 77.29 8988 89.59% 78.05

16 80 2 61930 68725 110.97% 54652 88.25% 163.31 54651 88.25% 205.40

17 4 27137 28577 105.31% 24790 91.35% 167.83 24776 91.30% 169.78

18 6 29003 26914 92.80% 25022 86.27% 175.63 25021 86.27% 177.12

19 8 17291 15715 90.89% 15037 86.96% 162.31 15032 86.94% 164.65

20 10 12900 12215 94.69% 11860 91.94% 168.39 11855 91.90% 169.90

21 100 2 110757 128605 116.11% 98384 88.83% 286.03 98358 88.81% 386.87

22 4 50773 49696 97.88% 44153 86.96% 310.59 44152 86.96% 315.32

23 6 30745 31697 103.10% 27834 90.53% 319.17 27833 90.53% 319.76

24 8 26562 25254 95.08% 23576 88.76% 320.56 23573 88.75% 288.13

25 10 24330 22469 92.35% 21508 88.40% 318.57 21506 88.39% 327.75

Average 97.24% 89.95% 89.93%

algorithm, with longer run times, does not perform noticeably better than the VNS. It is
chiefly because the VNS carries out enough neighborhood searches before the stopping
criterion meets. The rates of three different types of instances were plotted into smooth
curves shown in Figures 3, 4, and 5. It can be seen from those figures that the performance
of MWCSA heuristic is not particularly robust as regards the distribution of the deteriorating
date. Alternatively, VNS and VNS + MWCSA are statistically better than MWCSA for three
types of instances.

6. Conclusions

This paper considers the identical parallel machines scheduling problem with step-
deteriorating jobs. The processing time of each job is a step function of its starting time and
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Table 5: Test results of the algorithms on the instances with the interval U(0, D].

Problem
number

n m

SRF MWCSA VNS VNS + MWCSA
Objective Objective (B)/(A) Objective (C)/(A) Time Objective (D)/(A) Time
value (A) value (B) value (C) (sec) value (D) (sec)

1 20 2 4670 4681 100.24% 4103 87.86% 3.65 4100 87.79% 3.75

2 4 3762 3034 80.65% 2981 79.24% 3.70 2980 79.21% 3.69

3 6 2179 2077 95.32% 2048 93.99% 3.69 2048 93.99% 3.77

4 8 1166 1126 96.57% 1070 91.77% 3.66 1067 91.51% 3.62

5 10 1056 1037 98.20% 1037 98.20% 3.73 1037 98.20% 3.74

6 40 2 19603 19675 100.37% 17212 87.80% 23.44 17174 87.61% 25.33

7 4 9990 9373 93.82% 8871 88.80% 23.67 8866 88.75% 23.89

8 6 7720 6942 89.92% 6786 87.90% 24.45 6786 87.90% 24.49

9 8 6087 5481 90.04% 5442 89.40% 23.81 5433 89.26% 24.45

10 10 5067 4356 85.97% 4321 85.28% 24.70 4321 85.28% 24.33

11 60 2 40513 40049 98.85% 33051 81.58% 69.64 33014 81.49% 80.71

12 4 19380 17741 91.54% 15364 79.28% 69.82 15358 79.25% 75.96

13 6 15350 12530 81.63% 11737 76.46% 75.05 11722 76.36% 72.58

14 8 11725 10139 86.47% 9889 84.34% 74.55 9874 84.21% 73.80

15 10 9949 8786 88.31% 8699 87.44% 73.75 8685 87.30% 72.12

16 80 2 74532 75705 101.57% 61269 82.20% 152.41 61263 82.20% 199.07

17 4 41890 37588 89.73% 32807 78.32% 171.50 32798 78.30% 170.17

18 6 27990 23587 84.27% 21803 77.90% 155.46 21754 77.72% 160.16

19 8 19278 16845 87.38% 16162 83.84% 161.03 16117 83.60% 158.46

20 10 16916 14285 84.45% 13804 81.60% 169.19 13802 81.59% 170.30

21 100 2 108067 107291 99.28% 81743 75.64% 281.41 81426 75.35% 373.51

22 4 59031 56349 95.46% 48136 81.54% 294.00 48135 81.54% 325.10

23 6 43204 38473 89.05% 34873 80.72% 297.22 34774 80.49% 323.49

24 8 30485 26263 86.15% 23977 78.65% 295.55 23957 78.59% 308.85

25 10 19559 17986 91.96% 16919 86.50% 305.73 16853 86.16% 304.20

Average 91.49% 84.25% 84.15%

a deteriorating date that is individual to all jobs. The problem is to determine the allocation
of jobs to machines as well as the sequence of the jobs assigned to each machine for the
criteria of minimizing the total completion time. A mathematical model for this problem
has been formulated. Since the problem under study is NP-complete, it is impossible to
solve large-sized instances to optimality. To solve the tackled problem, a heuristic MWCSA
and a VNS are proposed to obtain the near optimal solutions. In order to further improve
the quality of solution, the heuristic MWCSA has been hybridized with the VNS algorithm
and implemented to provide a good initial solution. Numerical experiments are conducted
on small- and large-sized instances. Computational results show that MWCSA produces
some good solutions compared to CPLEX, but the performance is greatly affected by the
distribution of the deteriorating date. In contrast, VNS and VNS + WMCSA are robust as
regards three types of instances. Therefore, fairly good solutions can be obtained by the
proposed methods within reasonable amount of time.
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Figure 3: Comparison of rates between the three algorithms for the case with the interval U(0, D0.5].
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Figure 4: Comparison of rates between the three algorithms for the case with the interval U[D0.5, D].

For further study, it is worth considering the setup times between jobs for the
problem of scheduling jobs with piecewise-deterioration on multimachine. In addition, other
efficient constructive heuristics and neighborhood properties are worthwhile to investigate
for improving the quality of solutions.
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Figure 5: Comparison of rates between the three algorithms for the case with the interval U(0, D].
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