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The study on the human grip has inspired to the robotics over the past decades, which has resulted
in performance improvements of robotic hands. However, current robotic hands do not have the
enough dexterity to execute complex tasks. Recognizing this fact, the soft fingertips with hemi-
spherical shape and deformation models have renewed attention of roboticists. A high-friction
contact to prevent slipping and the rolling contribution between the object and fingers are some
characteristics of the soft fingertips which are useful to improve the grasping stability. In this paper,
the parallel distributed deformation model is used to present the dynamical model of the soft tip
fingers with n-degrees of freedom. Based on the joint angular positions of the fingers, a control
scheme that fuses a stable grasping and the object manipulation into a unique control signal is
proposed. The force-closure conditions are defined to guarantee a stable grasping and the bound-
edness of the closed-loop signals is proved. Furthermore, the convergence of the contact force to its
desired value is guaranteed, without any information about the radius of the fingertip. Simulation
results are provided to visualize the stable grasping and the object manipulation, avoiding the
gravity effect.

1. Introduction

From physiological point of view, the human hands are considered as a powerful tool
whereby the human brain interacts with the world, that is, how it perceives and acts with the
environment [1]. In order to increase the dexterity in robotic hands, some intelligent human-
like functions have been imitated.

In general, the dexterous manipulation in robotics, to emulate pinching motions, have
been formulated in terms of the object, that is, the forces/torques exerted on it to produce the
desired movements and how they behave [2]. The grasping and the object manipulation are
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based on the assumption that the contact between the object and fingers is frictionless, so the
finger can only exert a force along the common normal axis at the contact point [3]. Then, to
grasp the object without slipping the standard friction cone is used, generating a complex
motion control since their evolution is governed by the laws of Coulomb friction, which is
nonlinear and imposes constraints on the system. On the other hand, some authors have
considered fingers with a very sharp curvature assuming that the contact point between the
fingers and object does not change significantly. Although, some manipulation tasks are
executed by robotic fingers successfully, this assumption is not valid for several manipulation
tasks because the rolling between object and fingers is essential in the human manipulation
tasks. Moreover, some attempts to determine the best grasp configuration and manipulation
tasks are presented in 2D and 3D [4–11]. Unfortunately, a lot of them require an exact knowl-
edge of the system parameters and the object localization [12–15]. Some authors, to reproduce
more characteristics of the human fingertips, have considered the use of deformation models
with hemispherical soft tips. Many hemispherical soft tip fingers have been designed and
constructed to execute several manipulation tasks [16–19] where a high-contact friction to
prevent slipping and the rolling of the finger tip on the object surface are some characteristics
[3, 20, 21]. Nevertheless, in these approaches the contribution of the fingertip deformation
on the manipulation tasks in a dynamic sense is not evident, considering that the rolling
constraint is defined in kinematic or semidynamics sense [21–24].

On the basis that human hands have fingers with soft tips, in this paper the grasping
and the object manipulation is presented, using a pair of robotic fingers with n-degree of free-
doms and deformable tips. The parallel deformation model is based on a virtual spring with
infinitesimal section, where the normal and tangential deformations are taking into account
[25]. So, a tangential movement of the object without slipping and a dependency of the
relative orientation between the object and the finger are considered. Inclusion of the normal
and tangential deformations in the deformation model, contribute to reproduce some intrin-
sic characteristics of the deformable material and a better grip. The key of our approach is
to introduce the parallel deformation model to grasp an object using a pair of robotic fingers
with n-degrees of freedom. Moreover, the grasping controller guaranteed that the contact
force converges to the desired value, avoiding a direct dependence with the radius of the
tip [26, 27]. An approximation of the object angle based on the joint angular position of the
fingers is used to control orientation of the object. Finally, a control signal for translation of
the object is defined. To carry out the grasping and the object manipulation, the superposition
principle is used [28, 29], which allows us to separate a complex task into a set of basic
tasks, where each task has a unique stationary point which represents the desired action [27].
Boundedness of all closed-loop signals is proved, while the asymptotic stability is guaranteed
using the stability on the manifold [27, 28, 30]. It is important to notice that forces-closure
conditions, to grasp firmly an object, are satisfied dynamically during manipulation task
execution, rather than a static equilibrium. The proposed approach is validated by numerical
simulations through a pair of robotic fingers with soft tips in the horizontal plane.

This paper is organized as follows. Section 2 presents dynamical equations of the
fingers-object system. The blind control law is proposed in Section 3. Simulation results to
confirm the validity of our approach are presented in Section 4. Finally, the conclusions are
presented in Section 5.

2. Dynamical Equations

Consider a pair of soft tip fingers, with three degree of freedom each one, grasping an object
in the horizontal plane, as shown in Figure 1. In the fingers-object system O is the origin for
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Figure 1: Rigid object grasped by a pair soft tip fingers.

the left finger and it is considered as the reference frame, O′ is the origin for the right finger,
and L is the distance between the origins of each finger. In addition, qi = [qi1, qi2, qi3]

T is the
joint angular positions of the finger i, ri is the radius of the soft tip finger i, l is the length of
the object, lij is the length of the link j for the finger i,Oi = (xi, yi) is the center position of the
deformable fingertips i with i = 1, 2, Oc.m. = (x, y) is the center of mass of the object, and θ is
the orientation of the object. Unlike deformation model proposed by [22, 28], where the force
applied to the object produce a distribute pressure and it is parametrized as a normal force
fi with respect to the object surface. In this paper we use the deformation model proposed
in [25], where a virtual spring inside the soft tip finger allows us to known the normal and
tangential movements in the deformable material. In such a way, the elastic energy induced
by the soft fingertip i is given as

Pi
(
dni, dti, φi

)
= πE

[
d3
ni

3 cos2
(
φi
) + d2

nidti tan
(
φi
)
+ dnid2

ti

]

, (2.1)

where dni is the maximum radial deformation, φi is the object relative orientation angle, dti
is the contact tangential displacement of the object, and E is the Young’s modulus of the
finger tip material, as shown in Figure 2. Thus, the total potential energy of the deformable
fingertips is expressed as

P = P1
(
dn1, dt1, φ1

)
+ P2

(
dn2, dt2, φ2

)
. (2.2)

The constraint between the radial deformation of the fingertip i and the object is given as

Cni = −
[
(ri − dni) + li + (−1)i((x − xi) cos(θ) −

(
y − yi

)
sin(θ)

)]
= 0, (2.3)

which guarantees that exists a distance that limits the grasping on the object in normal
direction. A particular case of (2.3) is considered when dni = 0 which represents the normal
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Figure 2: Deformation Model proposed by [25].

constraint for a rigid fingertip as reported in [30]. Accordingly, the normal constrained for
the fingers-object system is defined as

Cn =
∑

i

fiCni, (2.4)

where fi is the Lagrange multiplier and represents the contact force i.
On the other hand, taking into account the curvature effects of the fingertip, the rolling

of the object on the soft tip finger will be defined as movement of the contact area, where the
relative velocity of the contact area between the finger tips and the object is zero. Assuming
that the normal deformation dni is smaller than the radius of the tip i [25], the angular dis-
placement of the contact area and the projection displacement of the center of mass of the
object is defined as

Ẏi = −rφ̇i, (2.5)

where

Yi = (xi − x) sin(θ) +
(
yi − y

)
cos(θ),

φi = π − (−1)iθ − eTi qi,
(2.6)
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and ei = [1, . . . , 1]T of the same size as the vector qi, for i = 1, 2. Moreover, according to the
deformation model, a tangential displacement dti on the deformable fingertip i arises when
the object is rolling on the fingertip. Then, the rolling constraint between finger tip i and the
object surface is given as

Cti = Yi − cSi + riφi + dti = 0, (2.7)

where cSi is the integration constant with respect to the initial conditions of contact. To avoid
initial conditions in (2.7) a velocity constraint is defined as [25]

Ċti = Ẏi + riφ̇i + ḋti = 0. (2.8)

The Lagrangian of the system with holonomic constraint is described by

L = K − P + Cn, (2.9)

where P and Cn are defined in (2.2) and (2.4), respectively, and K is the kinetic energy of the
system defined as

K = Σi
1
2

[
q̇Ti Hi

(
qi
)
q̇i +mniḋ

2
ni +mtiḋ

2
ti

]
+
1
2
ṗTH0ṗ, (2.10)

with Hi(qi) is the inertia matrix of the finger i, H0 = diag(m,m, I), p = [x, y, θ]T , and mni,
mti are the normal and tangential mass deformations, respectively. Applying the Lagrangian
variational principle, incorporating the rolling velocity constraint, the equations of motion
are expressed for each component of the vector as follows:

d

dt

(
∂L

∂ż

)
− ∂L

∂z
=

∂

∂ż

(
λ1Ċt1 + λ2Ċt2

)
(2.11)

where z = [qT1 , q
T
2 , x, y, θ, dn1, dn2, dt1, dt2]

T is the vector of generalized coordinates and λi
is the Lagrange multiplier which represents the tangential force exerted for the finger i on
the object surface. Note that treatment of the velocity constraint should not be done in the
Lagrangian (2.9), but rather in the equations of motion [31].

Thus, the equations of motion for the fingers are given as

Hi

(
qi
)
q̈i +

1
2
Ḣi

(
qi
)
q̇i + Si

(
qi, q̇i

)
q̇i − (−1)ifiJTi rX − λi

(
JTi rY − rei

)

− πEd2
ni

cos2
(
φi
)
(
dti +

2
3
dni tan

(
φi
)
)
ei = ui,

(2.12)

where rX = [cos(θ), sin(θ)]T , rY = [sin(θ), cos(θ)]T , Ji is the Jacobian of the point (xi, yi)with
respect to the joint variables qij , ei = [1, 1, 1]T , (1/2)Ḣi(qi) + Si(qi, q̇i) represent the matrix of
Coriolis and centripetal forces, and ui stands for the torque input. It is important to notice that
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themoments induced by the tangential and normal forces contribute to grasp andmanipulate
an object more securely. In addition, the terms of deformation model give us information
about the behavior of the deformable material. Furthermore, the movement equations of the
object are given as

mẍ − (f1 − f2
)
cos(θ) + (λ1 + λ2) sin(θ) = 0, (2.13)

mÿ +
(
f1 − f2

)
sin(θ) + (λ1 + λ2) cos(θ) = 0, (2.14)

Iθ̈ − Y1f1 + Y2f2 − λ1(dn1 − l1) + λ2(dn2 − l2) +
πEd2

n1

cos2
(
φ1
)
(
dt1 +

2
3
dn1 tan

(
φ1
)
)

− πEd2
n2

cos2
(
φ2
)
(
dt2 +

2
3
dn2 tan

(
φ2
)
)

= 0.

(2.15)

The last two terms of (2.15) represent the contribution of the deformable fingertips to assure
a stable grasping through induced forces/moments. Finally, dynamical equations related to
the normal dni and tangential dti movements on the fingertips are defined as

mnid̈ni + πE

(
d2
ni

cos2
(
φi
) + 2dnidti tan

(
φi
)
+ d2

ti

)

− fi = 0, (2.16)

mtid̈ti + πE
(
d2
ni tan

(
φi
)
+ 2dnidti

)
− λi = 0. (2.17)

Summing the products between q̇Ti with (2.12), ẋ with (2.13), ẏ with (2.14), θ̇ with
(2.15), ḋni with (2.16), and ḋti with (2.17) yields

∑

i=1,2

∫ t

0

(
q̇Ti ui

)
dτ = E(t) − E(0) ≥ −E(0), (2.18)

where E = K + P corresponds to the total energy of the system.

3. Controller Design

3.1. Immobilization on the Object

As first step before to execute manipulation tasks, a stable grasping must be established.
To grasp stably an object, the force-closure is used to guarantee that the object should be
held securely by the fingers. This mean that maintaining the contact between the fingers and
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the object, that is, f1 > 0 and f2 > 0 for any t > 0, the forces and torques applied on the object
should immobilize it. Let the forces and torques applied on the object be defined as

−(f1 − f2
)
cos(θ) + (λ1 + λ2) sin(θ) = 0,

(
f1 − f2

)
sin(θ) + (λ1 + λ2) cos(θ) = 0,

− Y1f1 + Y2f2 + λ1(dn1 − l1) − λ2(dn2 − l2) +
πEd2

n1

cos2
(
φ1
)
(
dt1 +

2
3
dn1 tan

(
φ1
)
)

− πEd2
n2

cos2
(
φ2
)
(
dt2 +

2
3
dn2 tan

(
φ2
)
)

= 0.

(3.1)

Then, if we choose that

f1 = f2 = fd, λ1 + λ2 = 0, (3.2)

the first two equations are equal to zero, while the third equation is given as

− fd(Y1 − Y2) + λ1(dn1 − l1 + dn2 − l2) +
πEd2

n1

cos2
(
φ1
)
(
dt1 +

2
3
dn1 tan

(
φ1
)
)

− πEd2
n2

cos2
(
φ2
)
(
dt2 +

2
3
dn2 tan

(
φ2
)
)

= 0.

(3.3)

Thus, a force-closure can be established, if the forces acting on the object are defined as,

fi −→ fd, Y1 − Y2 −→ 0, λi −→ 0,

πEd2
n1

cos2
(
φ1
)
(
dt1 +

2
3
dn1 tan

(
φ1
)
)
− πEd2

n2

cos2
(
φ2
)
(
dt2 +

2
3
dn2 tan

(
φ2
)
)

−→ 0 for i = 1, 2,
(3.4)

where fd is the desired normal force. Once fingers grasp an object and hold it securely, we are
in conditions to execute manipulation tasks on the object as orientation and move it at x − y
coordinates.

Inspired that humans can execute some manipulation tasks without any object infor-
mation, in this paper a stable grasping and the object manipulation based only on the center
position of the soft tip finger (xi, yi) are presented, so that the orientation θ and the object
parameters are avoided. Using the superposition principle, the joint torque ui applied to each
finger can be defined as

ui = ufci + uθci

= −ciq̇i + (−1)i fd
l
JTi

(
x1 − x2
y1 − y2

)
+ (−1)i βΔtan(θ)

x2 − x1 J
T
i

(
tan(θ)

1

)

, i = 1, 2,
(3.5)
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where ci is a diagonal symmetric positive definite matrix, β > 0, fd > 0 is the desired contact
force, Δtan(θ) = tan(θ) − tan(θd), θd is the desired angle of rotation, and

tan(θ) =
y1 − y2
x2 − x1 ,

l
2
= (x1 − x2)2 +

(
y1 − y2

)2 = l2w + (Y1 − Y2)2 where lw = r1 + r2 + l − dn1 − dn2.
(3.6)

Notice that ufci refers to the stable grasp exerted on the object, while uθci indicates the orienta-
tion control of the object. In the former case, a stable grasp is achieved minimizing the dis-
tance between the centers of the fingertips through the normal and tangential forces, which
guarantee the control objectives Δfi → 0, ΔY → 0. In the latter case, to avoid the measure-
ment of θ, an approximation of θ is proposed by the trigonometric tangent function tan(θ).
This approximation has the feature that the convergence of tan(θ) to tan(θ) is guaranteed
once ΔY → 0 is satisfied. This implies that the conditions of the stable grasping Δfi →
0, ΔY → 0, and tan(θ) should be satisfied.

To start the analysis and to ensure a stable grasping, it is considered that the joint
torque is defined as ui = ufci. Substituting ui in (2.12), the closed-loop system equations are
defined as

Hi

(
qi
)
q̈i +

1
2
Ḣi

(
qi
)
q̇i + Si

(
qi, q̇i

)
q̇i − (−1)iΔfiJTi rx −Δλi

(
JTi ry − riei

)

− πEd2
ni

cos2
(
φi
)
(
dti +

2
3
dni tan

(
φi
)
)
ei − (−1)i fd

l
ΔYriei = −ciq̇i,

mẍ − (Δf1 −Δf2
)
cos(θ) + (Δλ1 + Δλ2) sin(θ) = 0,

mÿ +
(
Δf1 −Δf2

)
sin(θ) + (Δλ1 + Δλ2) cos(θ) = 0,

Iθ̈ −Δf1Y1 + Δf2Y2 −Δλ1(dn1 − l1) + Δλ2(dn2 − l2)

+
2∑

i=1

(−1)i πEd
2
ni

cos2
(
φi
)
(
dti +

2
3
dni tan

(
φi
)
)
− fd

l
ΔY (r1 + r2) = 0,

mnid̈ni + πE

(
d2
ni

cos2
(
φi
) + 2dnidti tan

(
φi
)
+ d2

ti

)

−Δfi − lw

l
fd = 0,

mtid̈ti + πE
(
d2
ni tan

(
φi
)
+ 2dnidti

)
−Δλi + (−1)i fd

l
ΔY = 0,

(3.7)

where Δf = fi − fd lw
l
, ΔY = Y1 − Y2, and Δλi = λi + (−1)i fd

l
ΔY .

Expressing the closed-loop system equations (3.7) in a vector-matrix equation we have
that

Hz̈ + Cż + P(z) −AΔλ −DΔY + Fż = 0, (3.8)
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where

H = diag
(
H1
(
q1
)
,H2
(
q2
)
, m,m, I,mn1, mn2, mt1, mt2

)
,

C = diag
(
1
2
Ḣ1
(
q1
)
+ S1

(
q1, q̇1

)
,
1
2
Ḣ2
(
q2
)
+ S2

(
q2, q̇2

)
, 0, 0, 0, 0, 0, 0, 0

)
,

F = diag(c1, c2, 0, 0, 0, 0, 0, 0, 0),

D =
[
−fd
l
r1e1,

fd

l
r2e2, 0, 0,

fd

l
(r1 + r2),

lw

lΔY
fd,

lw

lΔY
fd,

fd

l
,−fd

l

]T
,

Δλ =
[
Δf1,Δf2,Δλ1,Δλ2

]T
,

P(z) =

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

− πEd2
n1

cos2
(
φ1
)
(
dt1 +

2
3
dn1 tan

(
φ1
)
)
e1

− πEd2
n2

cos2
(
φ2
)
(
dt2 +

2
3
dn2 tan

(
φ2
)
)
e2

0

0

∑2
i=1 (−1)i

πEd2
ni

cos2
(
φi
)
(
dti +

2
3
dni tan

(
φi
)
)

πE

(
d2
n1

cos2
(
φ1
) + 2dn1dt1 tan

(
φ1
)
+ d2

t1

)

πE

(
d2
n2

cos2
(
φ2
) + 2dn2dt2 tan

(
φ2
)
+ d2

t2

)

πE
(
d2
n1 tan

(
φ1
)
+ 2dn1dt1

)

πE
(
d2
n2 tan

(
φ2
)
+ 2dn2dt2

)

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−JT1 rX 03×1 JSq1 03×1

03×1 JT2 rX 03×1 JSq2

cos(θ) − cos(θ) − sin(θ) − sin(θ)

− sin(θ) sin(θ) − cos(θ) − cos(θ)

Y1 −Y2 (dn1 − l1) −(dn2 − l2)
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(3.9)

with JSqi = J
T
i rY − riei, for i = 1, 2.
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Taking the inner product between ż and (3.8) yields

d

dt
(K(z, ż) + P(z) + Part(z)) = −żTFż,

d

dt
ET (z, ż) = −

∑

i=1,2

(
q̇Ti ciq̇i

)
,

(3.10)

where Part(z) = (fd/2l)ΔY 2 − ∑i

∫dni
0 fdd(ξ) is called artificial potential energy. Then, the

system satisfys the passivity condition in closed loop.
Although ĖT (z, ż) is negative definite along the solution trajectories of fingers-object

system, E(z, ż) cannot play a role of a Lyapunov function for the closed-loop system. Because
it is neither define positive in the 26-dimensional state space (z, ż) nor in 18-dimensional
constrained manifoldM18 defined by

M18 =
{
(z, ż) : Cti = 0, Ċti = 0, Cni = 0, Ċni = 0

}
, for i = 1, 2. (3.11)

In order to define a constrained manifold where the trajectories of the system
guarantees a stable grasping; a first step is to show the boundedness of solutions in the closed
loop. Considering that Cni = 0 and Cti = 0 we have that (d/dt)Cni = żT (∂/∂z)Cni = 0 and
(d/dt)Cti = żT (∂/∂z)Cti = 0, respectively. In fact, if the matrix A = [(∂/∂z)Cn1, (∂/∂z)Cn2,
(∂/∂z)Ct1, (∂/∂z)Ct2] from previous expressions we have that 0 = ATż. Then,

0 =
d

dt

(
ATż

)
= ATz̈ + ȦT ż. (3.12)

Now, if we multiply (3.8) by ATH−1 we obtain that

Δλ =
(
ATH−1A

)−1[
−ȦT ż +ATH−1(Cż + P(z) −DΔY + Fż)

]
, (3.13)

where ATz̈ = −ȦT ż from (3.12). Taking into account that ż, ΔY , dni, dti, and φi are bounded
due to ET (z, ż) ≤ 0; we have that Δλ is bounded under assumption that the matrix A in
nondegenerate. Then, from (3.8) we have that z̈ is uniformly bounded which implies that ż
is uniformly continuous. Now, given that q̇ ∈ L2 from (3.10) by Barbalat lemma [32]we have
that q̇ → 0 as t → 0 which implies that ż → 0 as t → 0. Due to ż and ΔY are uniformly
continuous, we have that z̈ is uniformly continuous too. This in turn implies that z̈ → 0 at
t → ∞ and (3.8)will be defined as

P(z) = [A,D]
[
Δλ
ΔY

]
. (3.14)

Assuming that the matrix [A,D] is nondegenerate, a point that minimizes the right side of
the (3.14) on M18 exists. The unique critical point (z∗) that minimizes (3.14) can be defined
as

Δλ = 04×1, ΔY = 0. (3.15)
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This means that the closed-loop trajectories converge to critical point in the equilibrium point
manifold (EP) defined as

M4 =
{
(z) : Cti = 0, Cni = 0, ΔY → 0, Δfi → 0, Δλi → 0

}
, for i = 1, 2. (3.16)

Hence, the total potential energy is minimizing and the object is held securely. It is important
to notice that initial conditions of the system and the length of the object are very important
parameters to guarantee the convergence on M4. Furthermore, the matrix [A,D] is non-
degenerate if J1 and J2 are full rank matrices, that is, the matrix is degenerate if qi2 = qi3 = 0
or qi2 = qi3 = π for i = 1, 2. These joint values represent a special configuration of the fingers
which can be excluded as a possible configuration in the manipulation tasks. At the same
time, it is possible to show that the matrix A is nondegenerate if the J1 and J2 are full rank
matrices.

Now, we are in conditions to define the following.

(i) Let the neighborhoodN26(z∗, r0) singularity-free be with a radius r0 > 0 around the
critical point (z∗, 0) defined as

N26(z∗, r0) =

{

(z, ż) :
1
2
ΔpTH0Δp +

∑

i=1,2

1
2
ΔqTi Hi

(
qi
)
Δqi, ≤ r20

}

, (3.17)

where Δp = p − pd, Δq = qi − qd. That is, singular configurations of the soft finger
tips are avoided inside the neighborhoodN26(z∗, r0) provide that r0 is chosen ade-
quately.

(ii) Let the neighborhoodN18(z∗, r0) around the critical point be where the closed-loop
trajectories remain with δ > 0, that is,

N18(z∗, r0) = {(z, ż) : ET ≤ δ, (z, ż) ∈M18}. (3.18)

(iii) Definition (see [26]) If for any given ε > 0 there exists δ(ε) > 0 and another constant
r1 > 0 being less than r0 and independent of ε such that the solution tracking tra-
jectories starting from any initial condition (z(0), ż(0)) lying onN18(δ(ε))∩N26(r1)
remains on N18(ε) ∩N26(r0) and converges asymptotically to the set M4 ∩N18(ε)
as t → ∞, then it is called that the state (z∗, 0) is stable.

Finally, we have the following result.

Theorem 3.1. Considering that the desired reference state (z∗, 0) and initial state (z(0), ż(0)) lying
onM4. The trajectories in the closed-loop system remains onN18(ε)∩N26(r0) and converges asymp-
totically to the setM4∩N26(ε) as t → ∞ under assumption that the matrix [A,DΘ] is nondegenerate
in a neighborhoodN26(r0). Thus, is assured that Δfi → 0, Y1 − Y2 → 0, Δλi → 0 as t → ∞.



12 Mathematical Problems in Engineering

Remark 3.2. Once the forces applied to the object have been compensated to hold it stably, the
object can be rotated to the desired angle using the superposition principle, that is, the control
law now is defined as

ui = ufci + uθci. (3.19)

Premultiplying q̇Ti by uθci we have that

2∑

i=1

q̇Ti uθci =
d

dt
(E0), (3.20)

where E0 = (1/2)β(Δ tan(θ))2. This means that there exists a constant η such that

∫ t

0

(
2∑

i=1

q̇Ti uθci

)

dψ = E0(t) − E0(0) ≥ η, (3.21)

where η = −E0(0).
Now, taking the inner product between ż and the closed-loop system equations with

ui defined in (3.19) we have that

d

dt
ET1 = −

∑

i=1,2

(
q̇Ti ciq̇i

)
, (3.22)

where ET1 = K + P + Part1 and Part1 = Part + (1/2)β(Δ tan(θ))2. As in stable grasping, the
closed-loop trajectories converge to critical point on a constrained manifold where Δλi → 0,
Δfi → 0, ΔY → 0 and Δ tan(θ) → 0 as t → ∞.

Remark 3.3. Now, when the stable grasping and object orientation tasks has been established,
the objective will be to move the object to desired coordinates xd by the following control law

uxi = −γx
2
(x − xd)∂xi

∂qi
, (3.23)

where γx > 0, xd > 0, xi is the Cartesian coordinates and x is the estimated position of the
object which is defined as an average distance between center positions of the deformable
fingertips, that is,

x =
x1 + x2

2
. (3.24)

Using the superposition principle, the control law for the stable grasping and object mani-
pulation is defined as

ui = ufci + uθci + uxi for i = 1, 2. (3.25)
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As in the previous case, if we multiplying uxi by q̇T we have that

2∑

i=1

q̇Ti uxi =
d

dt
(E1), (3.26)

where E1 = (1/2)γx(x − xd)2 is the shifting energy to move the object in x-coordinates. Con-
sequently, exists a constant η1 such that

∫ t

0

(
2∑

i=1

q̇Ti uxi

)

dψ = E1(t) − E1(0) ≥ η1, (3.27)

where η1 = −E1(0).

Now, taking the inner product between ż and the closed-loop system equations with
ui defined in (3.25) we have

d

dt
ET2 = −

∑

i=1,2

(
q̇Ti ciq̇i

)
, (3.28)

where ET2 = K + P + Part2 and Part2 = Part1 + (1/2)γx(x − xd)2. Then, the passivity condition is
satisfy in the closed-loop. Hence, the closed-loop system trajectories converge to critical point
on a constrained manifold where Δλi → 0, Δfi → 0, ΔY → 0, Δ tan(θ) → 0, and x → xd
as t → ∞.

4. Simulation Results

In order to demonstrate usefulness of our scheme for stable grasping and object orientation,
numerical simulations were carried out on a pair of deformable fingertips in the horizontal
plane, see Figure 1. The simulations were implemented on stiff numerical solver on Matlab
R2007b, under 1ms sampling time. Additionally, to approximate the holonomic constraints
was used the Constrained Stabilization Method (CSM) [33].

The physical parameters of the fingers and object are shown in Table 1 where lij , mij

and Iij are the length, mass and moment of inertia of the link j = 1, 2, 3 for the finger i = 1, 2,
andM, I, l are the mass, moment of inertia and the length of the object, respectively (Table 2).
Moreover, L = 0.64 [m] is the distance between fingers, E = 50000 [N/m2] is the Young’s
modulus of the fingertips and ri = 0.01 [m] is the radius of the hemispherical finger tip for
i = 1, 2.

The simulation study is divided in three steps. As first step before any manipulation
task is necessary to guarantee that the stable grasp is achieved through the control law
defined as ui = ufci. The initial conditions used in the simulations are q1(0) = (30, 91.61,
71.24)T , q2(0) = (30, 91.61, 71.24)T , (x(0), y(0)) = (0.032, 0.047) [m], θ(0) = 0, and (dn1, dn2,
dt1, dt2) = (0.0025, 0.0025, 0, 0) [m] which establish the following conditions: f1(0) = 1.1 [N],
f2(0) = 1.1 [N]ΔY (0) = 0 [m]. For reference, these initial conditions are called normal initial
conditions (CIN).
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Table 1: Physical parameters.

Parameter Value

l11 = l21 0.05 (m)
l12 = l22 0.04 (m)
l13 = l23 0.03 (m)
m11 = m21 0.05 (kg)
m12 = m22 0.03 (kg)
m13 = m23 0.02 (kg)
I11 = I21 1.4167 × 10−5 (kgm2)
I12 = I22 6.25 × 10−6 (kgm2)
I13 = I23 3 × 10−6 (kgm2)

Table 2: Parameters of the object.

Parameter Value

M 0.02 (kg)
I 5.67 × 10−6 (kgm2)
l 0.03 (m)

In Figure 3 we observe that the forces on the object Δfi and Δλi converge rapidly to
the desired values using the normal initial conditions defined previously. At the same time,
the fast convergence of ΔY to zero is shown in Figure 3. On the other hand, the Figures 4, 5,
and 6 show the performance of Δfi, Δλi, and ΔY for different values of damping gains ci.
Notice that the damping gains are related with the convergence velocity towards equilibrium
point that minimizes the potential energy of the system. However, the system takes longer
to converge and several oscillations arise when the damping gains are small. The control
parameters used in this step are fd = 1 [N] and c1 = c2 = 0.01 [Nms/rad].

Finally, the Figures 7, 8, and 9 show the convergence of Δfi and ΔY to zero under
more extreme initial conditions. The initial conditions used in these simulations are CI1 and
CI2 which are defined as q1(0) = (30, 95.65, 64.93)T , q2(0) = (30, 100.45, 76.09)T , ΔY (0) =
0.01 [m], and q1(0) = (30, 93.73, 68.32)T , q2(0) = (30, 102.16, 72.78)T , (dn1, dn2, dt1, dt2) =
(0.0013, 0.0037, 0, 0) [m], ΔY (0) = 0.01 [m], respectively.

Notice that the convergence to zero of Δfi and ΔY present a transient responses
for different initial conditions, but still converge to the desired values in few seconds.
Additionally, the control objectives converge in different times. Specially, the convergence
of ΔY takes more time for establishing a stable grasping when the initial conditions are more
extreme, CI2. Thus, it is possible to describe the stable grasping in two phases. In the first
phase, the stabilization of the normal and tangential forces on object is performed while the
stabilization of the rotational moments to stop the angular motion of the object is carried out
in a second phase.

Once the all forces applied to the object have been compensated, it is possible to
execute any manipulation task. In this case the rotation of the object, to a desired angle θd,
will be realized. Using the superposition principle the control law is given as ui = ufci + uθci.
The convergence to zero ofΔfi,Δλi,ΔY , andΔθ using the CIN initial conditions are shown in
Figures 10 and 11. It is important to notice the special role of Y1−Y2 as a parameter to increase
the dexterity. In this case, the convergence of ΔY is closely associated to object orientation
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through tan(θ). The control parameters using in this second step are fd = 1 [N], c1 = c2 =
0.01 [Nms/rad], β = 0.1 [N/rad], and θd = −10(π/180) [rad].

As the final step of this study, a stable grasping and object manipulation which include
the orientation and translation of the object to a desired reference is presented. Using a super-
position principle, the control law for this step is defined as u = ufci + uθci + utras.
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The Figures 12, 13, and 14 show the convergence of Δfi, Δλi, ΔY , and Δθ to zero
using CIN initial conditions. The control parameters used in this step are fd = 1 [N], c1 =
c2 = 0.01 [Nms/rad], β = 0.1 [N/rad], θd = −10(π/180) [rad], γx = 50 [N/m], and xd =
x0 + 0.01 [m].
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5. Conclusions

A scheme to grasp and manipulate an object using soft tip fingers is presented. In order
to include more characteristics of the human fingertips a parallel deformation model is
used. The control law proposed ensures stability on a constrained manifold. Furthermore,
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the control law avoids information of the radius of the tips and the convergence to the desired
force value is guaranteed.

Numerical simulations, on a pair of deformable fingertips in horizontal plane, allow us
to visualize the convergence of the closed-loop trajectories to the desired point. In addition,
the special role of ΔY in the manipulation task and the effects of the superposition principle
that have been observed.
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