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Health management for a complex nonlinear system is becoming more important for condition-
based maintenance and minimizing the related risks and costs over its entire life. However,
a complex nonlinear system often operates under dynamically operational and environmental
conditions, and it subjects to high levels of uncertainty and unpredictability so that effective
methods for online health management are still few now. This paper combines hidden semi-
Markov model (HSMM) with sequential Monte Carlo (SMC) methods. HSMM is used to
obtain the transition probabilities among health states and health state durations of a complex
nonlinear system, while the SMC method is adopted to decrease the computational and
space complexity, and describe the probability relationships between multiple health states and
monitored observations of a complex nonlinear system. This paper proposes a novel method of
multisteps ahead health recognition based on joint probability distribution for health management
of a complex nonlinear system. Moreover, a new online health prognostic method is developed.
A real case study is used to demonstrate the implementation and potential applications of the
proposed methods for online health management of complex nonlinear systems.

1. Introduction

With the rapid development of modern economy, the manufacturing industry increasingly
needs to operate equipment at high reliability, low environmental risks, and human safety.
The technological development has resulted in increasing complexity in both industrial
machinery and production systems. It is difficult or almost impossible to identify and predict
failure conditions in a timely manner. In a complex nonlinear system, high maintenance
cost and uncertain downtime are often caused by system’s failures. Health management for
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a complex nonlinear system has a significant impact on the profitability of a business. So
system’s health diagnosis and prognosis implementing CBM (condition-based maintenance)
become a basic and desirable requirement in many application domains, where safety,
reliability, and availability of systems are considered critically [1]. Health management
involves evaluating the current system condition, observing the future system condition and
predicting the system residual useful life (RUL) before the failures.

In the system health management framework, health prognosis is a complex process
and it is particularly difficult when the system under study is operating in the real time
environment. Traditional linear methods such as ARIMA (autoregressive integrated moving
average) cannot precisely predict the system health. For this reason, the study on online
health management has attracted much attention. Some prognostic models have been
introduced and developed with various degrees of success. Usually, three categories of
nonlinear prognostic methods can be classified to obtain system health prognosis, including
physical models, data-driven models, and model-driven models.

With intelligent monitoring systems, physical models are useful to account for
different operating conditions. They integrate physical features of a system for monitoring.
Therefore, the functional mappings between the drifting parameters and the selected
prognostic features can be established. Kacprzynski et al. [2] proposed a helicopter gear
prognosis method that fused physics of failuremodeling and relevant diagnostic information.
Oppenheimer and Loparo [3] applied a physical model to estimate residual useful lifetime
based on the crack growth law. These methods applied physical modeling and advanced
parametric identification techniques, alongwith failure detection and prognosis algorithm for
estimating the time to failure of complex nonlinear systems. The limitations of these models
are their higher costs and lower accuracy. Furthermore, it is very difficult to build a good
physical model.

Data-driven methods use the monitored data to predict the health of complex
nonlinear systems. Li [4] gave a tutorial review about fractal time series that was substantially
different from the conventional time series in its statistic properties such as heavy-tailed
probability distribution functions and slowly decayed autocorrelation functions. M. Li and
J. Y. Li [5] addressed the particularity of the predictability of long-range dependence series
and presented a generalized mean square error in the domain of generalized functions to
prove the existence of long-range dependence series prediction. Li et al. [6] introduced
the concept of one-dimensional random functions with long-range dependence based on a
specific class of processes called the Cauchy-class process and presented the power spectrum
density function of the Cauchy-class process in the closed form. Li and Zhao [7] addressed the
power laws related to some physical systems and discussed that power-law-type data may be
governed by stochastically differential equations of fractional order. Chen et al. [8] proposed
a novel kernel machine-based rank-lifting regularized discriminant analysis method for
nonlinear problems. However, the slow convergence and local minimum value are main
drawbacks of these models and the computational explosion problems will occur when the
number of observations increases dramatically. All disadvantages limit these models in the
applications of online equipment health management.

Model-based prognostic methods rely on the use of a mathematical model to represent
the degradation behavior of the system. A main nonlinear time series method of model-
driven methods called hidden Markov model has been quite effective for health prognosis.
Zhou et al. [9] applied a new method for real time failure prognosis, by combining the
capabilities of the HMM and the belief rule base. However, only ordinary HMM techniques
are adopted and the inherent limitations within HMM still exist in their models. By allowing
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one state to generate a sequence of observations and have an explicit distribution for the
duration of states, the HMM is generalized to HSMM. The HSMMhas been an active research
topic since the late 1980s. It has attracted considerable research attention in some fields [10–
13]. Dong and He [14] presented an integrated framework based on HSMM for multisensors
equipment diagnosis and prognosis. And in [15], they proposed a segmental hidden semi-
Markov model for prognosis and diagnosis of the equipment. The HSMM has very rich
mathematical structures and can form the solid theoretical foundation for use. Thus, HSMM
has been effective for the health management of systems. However, the major drawback of
HSMM is that recognizing and training processes of HSMM are often time consuming which
is disadvantageous when real time prognosis is required. So HSMM is only applied to the
offline equipment health prediction. The improvement for traditional HSMM is needed for
online health management of complex nonlinear systems.

The SMC method could decrease the computational and space complexity. And if
the mathematical model or statistical model of a system is known, the filter based methods
including SMC method can predict the health by estimating states or parameters of systems.
The SMC method can also recognize the hidden failures of complex nonlinear systems.
Unfortunately, when themathematical models or the statistical models of systems are difficult
to obtain, the SMC method is not applied to predict the health of systems. However, HSMM
has very rich mathematical structures. So we combine the SMC method with HSMM in this
paper. HSMM is used to obtain the transition probabilities among health states and health
state durations of a complex nonlinear system, while the SMCmethod is adopted to decrease
the computational and space complexity and describe the probability relationships between
multiple health states and monitored observations of a complex nonlinear system. This
paper proposes a novel multistep ahead recognition algorithm based on the joint probability
distribution for health management of complex nonlinear systems. The proposed method
has a better mathematical structure and better performance for real time prognosis. It can
also decrease the computational complexity for health prognosis. Moreover, it overcomes the
offline only constraint of the HSMM Viterbi algorithm and can recognize the health states in
real time. Thus, it is effective for online health management of complex nonlinear systems.

This paper aims to develop a new method for online health management of complex
nonlinear systems. The paper is organized as follows. In Sections 2 and 3, the theories of
HSMM and SMC methods are introduced. Section 4 proposes a joint multistep ahead health
recognition algorithm based on HSMM using SMCmethods and develops the corresponding
online health prognostic algorithm for complex nonlinear systems. In Section 5, a case study
for online healthmanagement of a complex nonlinear system is provided. Finally, conclusions
are drawn in Section 6.

2. Hidden Semi-Markov Model

A HSMM is constructed by adding the state duration into the well-defined HMM structures.
Unlike a state in a standard HMM, a state in HSMM generates a segment of observations, as
opposed to a single observation in the HMM. The states in a segmental hidden semi-Markov
model are calledmacrostates (i.e., segments). Eachmacrostate consists of several single states,
which are called microstates [15]. Suppose that a macrostate sequence has n segments and
let qi be the time index of the endpoint of the ith segment (0 ≤ i ≤ n − 1). The segments are
illustrated in Figure 1.
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Figure 1: Mapping of microstates and macrostates for a general HSMM.

For the ith macrostate, the observations are oqi−1+1, . . . , oqi , respectively, and they have
the same macrostate labels as follows:

sqi−1+1 = sqi−2+1 = · · · = sqi = hi. (2.1)

In this paper, the monitored observations are continuous signals. In order to deal
with the continuous observations, instead of the discrete-state situation, the continuous-state
situation is adopted. The HSMM can establish a rational relationship between the states and
observations. For some nonlinear problems, the state space model of HSMM can be described
as follows

xn ∼ g(xn | xn−1,Λ),

yn ∼ h
(
yn | xn,Λ

)
.

(2.2)

Based on the state space model, a standard HSMM can be established as follows:

xn ∼ p(xn | xn−1, A),

yn ∼ h
(
yn | xn, B

)
,

di ∼ N(di | ui, σi), 0 ≤ d ≤ D.

(2.3)

For convenience, the above equation can be rewritten as follows:

xn ∼ p(xn | xn−1),

yn ∼ q
(
yn | xn

)
,

di ∼ N(di | ui, σi), 0 ≤ d ≤ D,

(2.4)

where Λ is the parameter set of HSMM in the state space model. di is the duration of the
state i and D is the maximum state duration. ui and σi are the duration mean and variance
of state i, respectively. xn ∈ S is a hidden state at time n (S = {s1, s2, . . . , sN} is the hidden
state set with N elements). xn ∼ gn (xn | xn−1, A) is the system model and depends on
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the state transition probability A = {aij}, (aij = P (xt = sj | xt−1 = si)). yn ∼ hn(yn | xn−1, B)
is the observation model (yn ∈ O) and O = {o1, o2, . . . , oT} is the observation sequence with
T elements. B = {bi(o), 1 ≤ i ≤ N} is the conditional probability distribution of observation
(bi(o) = p(yn | xn = si)).

Besides, there is an initial state distribution π (πi = p (x1 = si), 1 ≤ i ≤ N). It can be
seen that an HSMM can be described by λ (λ = {A, B, D, π}). In real applications, there are
three basic problems associated with an HSMM.

(1) Evaluation (Also Called Classification). Given the observation sequence O =
o1o2 · · · oT , and an HSMM λ, what is the probability of the observation sequence
given the model (i.e., P(O | λ))? The solution of this problem is obtained by using
the forward-backward algorithm.

(2) Decoding (Also Called Recognition). Given the observation sequence O = o1o2 · · · oT ,
and an HSMM λ, what sequence of hidden states S = (s1, s2, . . . , sN)most probably
generates the given sequence of observations? This problem is solved by using the
Viterbi algorithm. Here, a novel algorithm is used to solve this problem.

(3) Learning (Also Called Training). How to adjust the model parameters λ =
{A, B, D, π} to maximize P(O | λ)? This problem is solved by using the Baum-
Welch algorithm.

Different algorithms have been developed for the above three problems. The details
of three problems and the corresponding algorithms can be found in Rabiner [16] and Dong
and He [15].

3. Sequential Monte Carlo Methods

Sequential Monte Carlo method has been introduced in the 1960s, and it is a significant and
powerful methodology for coping with difficult nonlinear problems. The key idea of the
SMC method is to represent the posterior density function by a set of random samples with
associated weights and compute recognition probability based on these samples.

Let {xi
n−1, w

i
n−1}

Ns

i=1 denote the sample from importance function, and let wi
n−1 denote

the weights of particles (xi
n−1 (i = 1, 2, . . . ,Ns)), and Ns is the number of particles for the

computation. Then, p (xn−1 | y0:n−1) can be approximated as follows:

p
(
xn−1 | y0:n−1

) ≈
N∑

i=1

wi
n−1δ

(
xn−1 − xi

n−1
)
, (3.1)

where wi
n−1 ∝ p (xi

0:n−1 | y0:n−1)/q (xi
0:n−1 | y0:n−1),

∑N
i=1 w

i
n−1 = 1, q(xi

0:n−1 | y0:n−1) is the impor-
tance probability density, and the δ(·) is Dirac delta function [17].

With the increase of new observation data, in order to obtain the new sample (xi
0:n ∼

q(x0:n | y0:n)), the new data (xi
n ∼ q(xn | xi

0:n−1, y0:n)) can be added into the old sample
(xi

0:n−1 ∼ q(x0:n−1 | y0:n−1)). And, the weights of particles xi
n can be obtained as follows:

w̃i
n =

p
(
xi
n | xi

n−1
)
p
(
yn | xi

n

)

q
(
xi
n | xi

0:n−1, y0:n
) wi

n−1. (3.2)
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So the posterior probability density of xn can be written as follows:

p
(
xn | y0:n

)
=

N∑

i=1

wi
nδ
(
xn − xi

n

)
. (3.3)

However, the choice of the importance density function is critical for the performance
of the SMC method. In the paper, the a priori probability density function is chosen as the
importance density function and it is written as follows:

q
(
xi
n | xi

0:n−1, y0:n

)
= p
(
xi
k | xi

k−1
)
. (3.4)

From (3.2) and (3.4), we can obtain

w̃i
n = p

(
yn | x(i)

n

)
w

(i)
n−1, w

(i)
n =

w̃i
n

∑N
i=1 w̃

i
n

. (3.5)

In the sequential importance sampling implementation of SMC methods, since most
particles have negligible weights after a few iterations, the main difficulty is the degeneracy
problem [18]. Several researchers have developed methods to overcome the degeneracy in
the particle population N̂eff, which is an estimation of the effective sample size Neff [18, 19].
Neff and N̂eff can be approximated as follows:

Neff = N ∗
(
1 + var

(
w

(i)
n

)−1)
, N̂eff =

(
Ns∑

i=1

(
w

(i)
n

)2
)−1

. (3.6)

In (3.6), if the valid sample Neff becomes smaller, the degeneracy of SMC methods
becomes more serious. But, whenever N̂eff is smaller than Nthres, a resampling algorithm
will be applied to eliminate the particles with small weights, and it also reserves the compu-
tational impacts on the optimal results in those having large weights [18].

After the resampling procedure, the new particle population ({x̃(i)
0:n}i=1,...,N) is an

independent and identically distributed sample of the empirical distribution; thus, the
weights are reset to w̃i

n = N−1 and we have

p
(
xn | y0:n

)
=

N∑

i=1

wi
nδ
(
xn − xi

n

)
=

1
N

N∑

i=1

δ
(
xn − xi

n

)
. (3.7)

4. Online Prognosis Model for Complex Nonlinear Systems

The health management for complex nonlinear systems uses both state transition relations
and duration information to predict the evolving trend or estimate the remaining useful
life. In the previous sections, the HSMM given by (2.4) is considered and its parameters are
obtained through the training algorithm in which state duration probabilities are estimated
on the trellis of observations and states. In this section, the framework for online health
management of a system is described.

Firstly, a novel algorithm for online health recognition of a system based on HSMM
is proposed by using SMC method and its computational framework is given. Then,
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the collected sensor data is used as the input of the proposed model. With the state
information obtained from the proposed method, an online health prognostic model for
a system is proposed. The intention is to apply SMC method to make joint multisteps
ahead health recognition with all available information. The principle of SMC-based HSMM
involves twomain phases, as shown in Figure 2. For a complex nonlinear system, the learning
phase will generate an appropriate model and an exploitation phase will recognize its current
health condition and predict its RUL. In the first phase, which is achieved offline, the raw
data provided by the sensors is processed for HSMM training. The second phase, which is an
online one, exploits the trained models for recognizing the current system state (by using the
following proposed method) and computing the corresponding RUL.

In the following, the data processing algorithm is described first. Then, a novel HSMM-
based algorithm for online health recognition of complex nonlinear systems using SMC
methods is proposed, and the computational framework is given. Finally, with the state
information obtained from the proposed method, the online health prognostic model for
complex nonlinear systems is proposed.

4.1. Data Processing Algorithm

The data processing algorithm includes feature extraction using wavelets and vector
quantization. The feature extraction is described first. Since the structures of each part are
different, when a system fails, it often generates a large number of nonstationary signals. The
performance of output signals in each frequency band is different. The wavelet analytical
method can automatically decompose different frequency signals into different frequency
bands, which can increase the time-frequency resolution and realize failure feature extraction.
The failure feature extraction algorithm using wavelet can be described as follows.

Step 1. The vibration signals can be decomposed into V -layers wavelet, and coefficients
(Xj (j = 1, 2, . . . , 2V )) of 2V frequency bands from low frequency to high frequency of the
V -layers are extracted, respectively.

Step 2. Reconstruct the wavelet package coefficients and extract each frequency band signal
Sj (j = 1, 2, . . . , 2V ).

Step 3. The total energy of each frequency band signal is computed by the following equation:

Ej =
∫
∣∣Sj(t)

∣∣2dt =
n∑

k=1

∣∣xjk

∣∣2, (4.1)

where xjk (j = 1, 2, . . . , 2V , k = 1, 2, . . . , n) is the amplitude of discrete points for
reconstructing signals.

Step 4. Construct and normalize feature vector as follows:

E =

⎛

⎝
2V∑

j=1

∣∣Ej

∣∣2
⎞

⎠

1/2

. (4.2)

So the feature vector F equals F ′ (i.e., F ′ = (E1, E2, . . . , E
V
2 )/E).
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Figure 2: Fault prognosis scheme of HSMM-based SMC method.
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The feature vector must be quantized before the wavelet fault feature vector is
used for HSMM training. The self-organizing feature maps (SOMs) are often used for
vector quantization. The SOMs simulates self-organizing feature maps function of the
brain’s nervous system, it is a competitive learning network, and the learning process is
unsupervised and self-organized [20].

4.2. Joint Multisteps Ahead Health Recognition for
Systems Using SMC in HSMM

One purpose of the paper is to offer the appropriate methods for real time recognition of
health states and RUL prognosis as a continuous function of time. A new HSMM-based SMC
method is applied to address the recognition problems of HSMM. Currently, the primary
concerns in HSMM are two aspects: one-step ahead health recognition of states by estimating
the probability distribution p(xn | y1:n−1) and multistep ahead health recognition of states
by estimating the probability distribution p(xn+h | y1:n−1) [18]. However, the recognizing
trajectories of p(xn | y1:n−1) and p(xn+h | y1:n−1) may be incredible due to neglecting the
consistency principle of HSMM. The consistency is very important and required for many
cases. Therefore, a novel method of multistep ahead state health recognition based on joint
probability distribution p(xn:n+h | y1:n−1), which provides the most possible recognition
for the recognizing trajectory, is proposed. In order to illustrate the superiority of the
proposed method, the proposed joint multisteps ahead algorithm will be compared with the
general multistep ahead algorithm and one-step ahead algorithm on the aspect of prognostic
accuracy.

In the following, the SMC method is used for joint multistep ahead health recognition
given all available information up to time n − 1. The joint multistep ahead health recognition
method is capable of capturing the relationship between hidden states and observations of a
system. By combining the capabilities of HSMM and SMC method, a new health recognition
algorithm is proposed here to recognize the hidden failure online. And HSMM can provide
rich mathematical structures for health management of complex nonlinear systems.

This health recognition algorithm is related to the one-step ahead health recognition.
The state probability density function of the one-step ahead health recognition can be
obtained by a recursive manner based on Algorithm 4.1. Suppose that the state pdf p(xn−1 |
y1:n−1) can be approximated by {x(i)

0:n−1, w
i
n−1}

Ns

i=1, as it is shown as follows:

p
(
xn−1 | y1:n−1

)
=

Ns∑

i=1

wi
n−1δ

(
xn−1 − xi

n−1
)
. (4.3)

The state probability density p(x̂n | y1:n−1) can be approximated with new samples
evolved from {xi

0:n−1, w
i
n−1}

Ns

i=1 (the symbol ̂ represents the recognized value). The procedure
of the one-step ahead health recognition is described as follows.

Algorithm 4.1. Online one-step ahead health recognition is as follows

Step 1. Let x̂i
n ∼ p(x̂n | xi

n−1), then

p
(
x̂n | y1:n−1

) ≈
Ns∑

i=1

wi
n−1δ

(
x̂n − x̂i

n

)
. (4.4)
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Step 2. Update the weights ŵi
n = p(yn | x̂i

n)w
i
n−1, then

wi
n =

ŵi
n

∑Ns

i=1 ŵ
i
n

. (4.5)

Step 3. Compute the state pdf as follows:

p
(
x̂n | y1:n

) ≈
Ns∑

i=1

wi
nδ
(
x̂n − x̂i

n

)
. (4.6)

Then, we extend to the joint multistep ahead health recognition. Based on (2.4) and
the current state recognition Algorithm 4.1, p(xn−1 | y1:n−1) can be obtained. According to the
conditional probability and chain rule of probability, we can obtain

p
(
x̂n:n+h−1 | y1:n−1

)
=

h−1∏

j=0

p
(
x̂n+j | y1:n−1, x̂n:n+j−1

)
. (4.7)

In the above equation, p(x̂n+j | y1:n−1, x̂n:n+j−1), j = 0, 1, . . . , h − 1 is just one-
step ahead health recognition probability and can be approximated by Algorithm 4.1 with
{x̂i

n+hx
i
0:n−1, w

i
n+h−1}

Ns

i=1 such that

p
(
xn+j | y1:n, xn:n+j−1

)
=

Ns∑

i=1

wi
n+hδ

(
x̂n+h − x̂i

n+h

)
. (4.8)

The joint h-step ahead health recognition can be approximated by the particles with
corresponding weights:

{(
x̂i0
n , . . . , x̂

ih−1
n+h−1

)
,
(
ŵi0

n−1, . . . , ŵ
ih−1
n+h−2

)}Ns

i0,...,ih−1=1
. (4.9)

And we have

p
(
x̂n:n+h−1 | y1:n−1

)
=

Ns∑

i0=1

· · ·
Ns∑

ih−1=1

(
ŵi0

n−1, . . . , ŵ
ih−1
n+h−2

)
δ
(
x̂n − x̂i0

n , . . . , x̂n+h−1 − x̂ih−1
n+h−1

)
. (4.10)

So the overall online joint multistep ahead health recognition algorithm can be
described as follows.

Algorithm 4.2. Online joint multistep (h-steps) ahead health recognition is as follows.

Step 1. Based on Step 1 in Algorithm 4.1, we can obtain

p
(
x̂n | y1:n−1

) ≈
Ns∑

i=1

wi
n−1δ

(
x̂n − x̂i

n

)
. (4.11)
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Step 2. If h = 1, then go to Step 3, otherwise set k = 1.

Substep 1. Use the prognosis value {x̂i
n+k−1}

Ns

i=1 to update weights {wi
n+k−2}

Ns

i=1, according to
wi

n+k−1 = p(ŷi
n+k−1 | x̂i

n+k−1)w
i
n+k−2, then we have

p
(
x̂n+k−1 | y1:n−1

) ≈
Ns∑

i=1

wi
n+k−1δ

(
x̂n+k−1 − x̂i

n+k−1
)
. (4.12)

Substep 2. Let x̂i
n+k ∼ p(x̂n+k | x̂i

n+k−1), then

p
(
x̂n+k | y1:n−1

) ≈
Ns∑

i=1

wi
n+k−1δ

(
x̂n+k − x̂i

n+k

)
. (4.13)

Substep 3. Let k = k + 1. If k = h, then the joint h-step ahead prognosis can be obtained based
on (4.10), and go to Step 3, otherwise return to Substep 1.

Step 3. When the online monitoring measurement yn is available, update the weights ŵi
n =

p(yn | x̂i
n)w

i
n−1, and

p
(
x̂n | y1:n

) ≈
Ns∑

i=1

wi
nδ
(
x̂n − x̂i

n

)
. (4.14)

Based on Algorithm 4.2, for a given new sequence of continuously observed data,
the state recognition probability of the current time can be obtained. Based on the state
recognition probability, the RUL values of a complex nonlinear system at the current time
can be predicted based on the prognostic algorithm.

Obviously, the relationship between joint multistep ahead health recognition and
simple multistep ahead recognition is given as follows:

p
(
x̂n+h−1 | y1:n−1

)
=
∑

x̂n

· · ·
∑

x̂n+h−1

p
(
x̂n:n+h−1 | y1:n−1

)
. (4.15)

In the above equation, p(x̂n+h−1 | y1:n−1) is the marginal distribution of p(x̂n:n+h−1 |
y1:n−1). The simple multistep ahead recognition is suitable for the situation where the health
management of a system needs to be obtained at given time with lower accuracy. However,
the joint multistep ahead health recognition algorithm is much better for online health
management of a system due to the ability of keeping the Markov consistency in HSMM.

After obtaining the state recognition probability of a system, the health state change
point needs to be determined. The health state change point is defined as the point at which
the system changes from health state xl to health state xl+1. Through the health state change
point detection, the time from the system’s current condition to the health state change point
can be estimated, as the health state change point corresponds to the switching from health
state xl to health state xl+1 in the model and the determination of health state change point
can be obtained in the following way: apply the joint multistep ahead health recognition
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Figure 3: The recognized state sequences for a system having two health states.

algorithm online when new observations are obtained. If the value of p(Sl = xl+1 | y1:l−1) is
increasing up to time l and becomes the maximum at time l, then l will be the health state
change point.

For new observations y1y2 · · ·yT and two system health states, the recognized state
sequences of a system for computing RUL are shown in Figure 3. From Figure 3, it can be
seen that each state sequence will provide the location recognition of the health state change
point. Moreover, the probability of a system staying in the state based on Algorithm 4.2 can
be recognized and the RUL values of a system can be computed.

4.3. Online Health Prognosis Model for Complex Nonlinear Systems

For the health prognosis of a system, its purpose is to predict the progression of a failure
condition in order to estimate the RUL of a system. Assuming that the systemwill go through
health states si (i = 1, 2, . . . , n − 1) before entering the failure state F(sn). And letD(si) denote
the expected duration of a system at health state si. Once the system enters health state si, its
RUL will equal the summation of the residual useful duration of a system staying at health
state si and the residual useful duration of system staying in the future health states before
failure. This type of prognostic structure is shown in Figure 4. Let D̂(s(l)i ) denote the residual
duration of a system staying in health state si at the lth observation time point. Then, we can
obtain

D(si) = μ(si) + ρσ2(si),

ρ =

(
life time −∑N

i=1 μ(si)
)

∑N
i=1 σ

2(si)
,

D̂
(
s
(l)
i

)
= p
(
Sl = si | y1:l

)
D(si),

(4.16)

where μ(si) is the mean of duration probability function pi(d) of state si and σ2(si) is
the variance of duration probability function pi(d) of state si. l represents the step length.
p(Sl = si | y1:l) denotes the state probability of si at the lth observation time point based on
observation y1:l.
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Figure 4: Prognostic structure based on HSMM using SMC method. Life time of a component = D(s1) +
D(s2)+ D(s3)+ · · ·+D(sN).D(si): duration of a component staying at state si. s1: health state 1 (baseline),
s2: health state 2 (contamination 1), . . ., sN : health state N (failure), aij : transition probability.

Based on (4.16), the RUL at the lth observation time point since a system stays at the
health state si can be computed as follows:

RUL(l) = D̂
(
s
(l)
i

)
+

n−1∑

j=i+1

D
(
sj
)
. (4.17)

By integrating (4.16) with (4.17), the RUL at the lth observation time point since a
system enters health state si can be obtained.

4.4. Prognosis Algorithm

The proposed methods are used during the online phase in order to recognize health states
and estimate the RUL values. In terms of the HSMM-based SMC method, the online health
management procedure of a system can be described as follows.

Step 1. This step consists of learning the appropriate HSMM that best fits and represents
the online observed sequence. Indeed, the observations are continuously fed into the set of
learned (completely defined)models and a likelihood value is calculated in order to learn the
appropriate model that will be used for the computation of the expected state duration and
the initial state transition probability.

Step 2. This step is related to the recognition of the current state. Based on Algorithm 4.2, the
pdf of state si at the lth observation time since a system enters state si can be computed with
the online monitored data using joint multistep ahead health recognition algorithm. And the
health state change point of a system can also be obtained.

Step 3. Based on Step 2, the residual duration of a system keeping the health state si at the lth
observation time point can be computed based on (4.16).

Step 4. Based on (4.17), the RUL at the lth observation time point since a system enters health
state si can be obtained.
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Figure 5: Schematic diagram of the experimental setup.

5. Case Study

To evaluate the performance of the HSMM-based SMCmethod for online healthmanagement
of complex nonlinear systems, a real hydraulic pump health monitored application is used.

In the case study, the long-term wear test experiments were conducted at a research
laboratory facility. In the test experiments, three pumps (pump 6, pump 24, and pump 82)
were worn by running them using oil-containing dust. In other words, it is a seeding fault
experiment and the deterioration of the three pumps does not follow a nature process. Each
pump experienced four states: baseline (normal state), contamination 1 (5mg of 20-um dust
injected into the oil reservoir), contamination 2 (10mg of 20-um dust injected into the oil
reservoir), and failure (15mg of 20-um dust injected into the oil reservoir). The contamination
stages in this hydraulic pump wear test case study correspond to different stages of flow
loss in the pumps. As the flow rate of a pump clearly indicates pump’s health state, the
contamination stages corresponding to different degrees of flow loss in a pump were defined
as the health states of the pump in the test [15, 21].

Vibration signals were collected from a pump accelerometer that was positioned
parallel to the axis of swash plate swivel axis and data was continuously sampled. Figure 5
shows the schematic diagram of the experimental setup. The pump used for testing in the
experiments was a Back Hoe Loader: a 74 cc/rev variable displacement pump. The data was
collected at a sample rate of 60 kHz with antialiasing filters from accelerometers designed to
have a usable range of 10 kHz. In many cases, the most distinguished information is hidden
in the frequency content of signals. So the time-frequency representation of signals is needed.
In this case, the signals were processed using wavelet packet with Daubechies wavelet 10
(db10) and five decomposition levels as the db10 wavelet provide the most effective way to
capture the fault information in the pump vibration data. The coefficients obtained by the
wavelet packet decomposition were used as the inputs.

5.1. Hidden States and Probability Density of Parameters

For prognosis, the health changing mechanisms of a system usually involve several degraded
states. From normal to failure, a system goes through a series of different degraded states
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Figure 6: A HSMM scheme describing failure mechanism of a system.

and the certain transition relation among states is existed. There are four hidden states in
this case study which are defined as baseline, contamination 1, contamination 2, and failure,
respectively. The state transition process for the experiment is described by Figure 6.

There should be three probability distributions which will be modeled by the
following sections, including the probability of state transition, the probability of state
duration, and the probability of observation.

5.1.1. Probability of State Transitions

Assuming that Aij is the jth element of the ith row of the transition matrix A, then the
transition probability can be computed as follows:

Aij =

(
(1 − λ)mij + λAij

)

∑N
i=1

(
(1 − λ)mij + λAij

) , i, j = 1, 2, 3, 4, (5.1)

where the values of Aij come from the expert knowledge, mij denotes the number of
transitions from state xj to xi (mi0 is the count of occurrences of the state xi). λ is used to
control the weights between the expert knowledge and observation evidence.

5.1.2. Probability of State Duration

The duration probability distribution pi(d) can bemodeled using the half-normal distribution
and expressed as follows:

pi(d) =
1
σi

√
2
π

exp
(
−1
2

(
d − μi

σi

))
, i = 1, 2, 3, 4, (5.2)

where σ2(si) is the variance for the ith state and μ(si) is the mean for the ith state.
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Figure 7: One sequence of the historical health data for a failure event.

5.1.3. Probability of Observations

For the observation sequences, two Gaussian mixtures for each state are chosen. Thus, the
following probability density can be obtained:

bi(ot) =
2∑

k=1

ωikN(ot, uik,Uik), i = 1, 2, 3, 4, k = 1, 2, (5.3)

where N(ot, uik,U
2
ik) is the kth mixture Gaussian distribution at state si. uik, U2

ik, and ωik

are the mean, variance, and mixture weight of the kth Gaussian distribution at state si,
respectively. However, the weights must satisfy the following constraints:

2∑

k=1

wik = 1 wik ≥ 0, i = 1, 2, 3, 4, k = 1, 2. (5.4)

Based on Sections 2, 5.1.1 and 5.1.2, the parameters of HSMM can be described as
follows:

{A,B,D, π} =
{
aij , uik,U

2
ik, wik, μi, σi, πi, 1 ≤ i, j ≤ 4, 1 ≤ k ≤ 2

}
. (5.5)

5.2. Results and Discussion

For the health prognosis, the lifetime training data from three hydraulic pumps is used.
An HSMM with four health states (baseline, contamination 1, contamination 2, and failure)
can be trained. The initial transition probabilities among four health states are transition
probabilities at the beginning of pump’s running. And the expected values of the duration
time in each state are also available through the training process. The results are given in
Tables 1 and 2.

In this case study, we denote baseline state as s1, contamination 1 state as s2,
contamination 2 state as s3, failure state as s4, and the states set as S (Sl ∈ S, and Sl denotes the
health state at observation time point l). Historical health data for pumps, at each observation
time point in one of the failure events, is shown in Figure 7. y-axis indicates the health state
of a pump, where 1 means s1, 2 means s2, 3 means s3, and 4 means s4. It can be seen from
Figure 7 that the health states for pumps are rigidly degrading over time.
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Table 1: Transition probabilities among four health states.

State Baseline Contamination 1 Contamination 2 Failure
Baseline 0.9056 0.0879 0.0063 0.0002
Contamination 1 0 0.8491 0.1506 0.0003
Contamination 2 0 0 0.9129 0.0871
Failure 0 0 0 1

Table 2: Expected values of duration time for each health state.

State Baseline Contamination 1 Contamination 2 Failure
Exp. of duration 10.4549 9.7923 11.3375 —

Table 3: State density of 5 observation time points.

Observation time point (l) State probability Health state
1 0.8821

s1

2 0.8556
3 0.7908
4 0.7744
5 0.6379

For testing the proposed methods, after the pumps enter baseline state, firstly, the 5
observation time points are used to compute the RUL and test the effectiveness. Based on
Section 4.2, the state recognition probability of the pumps staying at health state “baseline”
(i.e., p(Sl = s1 | y1:l−1), l = 1, . . . , 5) can be computed and the results are given in Table 3.

Then, based on (4.16) and (4.17), the RUL values of 5 observation time points for
pumps can be obtained. The comparison of the prognostic and actual RULs and their relative
errors are provided in Table 4. It can be seen that the proposed methods are effective for
online failure prognosis of pumps. The relative error is computed as follows:

Error = 100% ×
∣∣Actual RUL − Prognostic RUL

∣∣

Actual RUL
. (5.6)

In order to determine whether the proposed methods have a better performance for
online failure prognosis of pumps, the sample size is enlarged from 5 observation time points
to 29 observation time points.

First, based on Algorithm 4.2, the observation step is set as 4 (i.e., h = 4, h is the
observation steps) and the state is recognized after 4 observation time points.

Then, the state recognition probability is computed. The health state change point is
obtained and the changing trends of the state probability with the observation time points
are shown in Figure 8. Figures 8(a), 8(b), and 8(c) are the probability changing trends of
states s1, s2, and s3, respectively. Each health state of pumps is assumed to begin from the
observation time point when the corresponding health state probability has the largest value.
From Figure 8, it can be seen that the health state of pumps stays at state s1 from the 6th
observation time point to the 12th observation time point (see Figure 8(a)), the health state
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Table 4: Prognostic and actual RUL (5 observation time points).

Actual RUL Computed RUL Relative error (%)
32.0000 30.3521 5.1498
31.0000 30.0746 2.9851
30.0000 29.3980 2.0067
29.0000 29.2262 0.7801
28.0000 27.7989 0.7181
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Figure 8: Changing trends of the state probability.

of pumps stays at state s2 from the 13th observation time point to the 22nd observation
time point (see Figure 8(b)), and the health state of pumps stays at state s3 from the 23rd
observation time point to the 29th observation time point (see Figure 8(c)). Each health state
probability for the corresponding observation time points can be found in Table 5.

From Table 5 and Figure 8(a), it can be seen when the observation time point is 5, the
failure prognosis probability p(Sl+4 = s1 | y0:l) suddenly begins to increase its values and
when the observation time point is 6, the failure prognosis probability obtains the maximum
value. And it progressively becomes stable from the 6th observation time point, so it indicates
that the pumps have more failure possibility at about 6th observation time point. In fact,
at the 6th observation time point, the health state of the pumps begins to change from the
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Table 5: State prognosis probability.

Observation time point State probability Health state
3 0.0711

s1

4 0.0703
5 0.0895
6 0.5186
7 0.3907
8 0.3413
9 0.2379
10 0.2092
11 0.1327
12 0.1203
13 0.8792

s2

14 0.7982
15 0.7328
16 0.6307
17 0.5961
18 0.4841
19 0.3384
20 0.2306
21 0.1864
22 0.1664
23 0.8935

s3

24 0.8632
25 0.8014
26 0.6902
27 0.6187
28 0.5341
29 0.3062

baseline. From Figure 8(b), it can be seen when the observation time point is 6, the failure
prognosis probability p(Sl+4 = s2 | y0:l) obviously begins to increase its values. When the
observation time point is 7, the failure prognosis probability exceeds 0.5. It is shown that the
failure mode of the pumps begins to shift into the second failure mode (contamination 1).
In fact, the failure mode of the pumps lies in the contamination 1 at the 13th observation
time point. From Figure 8(c), it can be seen when the observation time point is 13, the failure
prognosis probability p(Sl+4 = s3 | y0:l) obviously begins to increase its values. When the
observation time point is 18, the failure prognosis probability exceeds 0.5. It is shown that
the failure mode of the pumps begins to shift into the third fault mode (contamination 2). In
fact, the failure mode of the pumps lies in the contamination 2 at the 23rd observation time
point. It can also be seen that the simulation results are consistent with the actual states and
the proposed methods of HSMM-based SMC method can be used to predict the evolution of
the system.

Based on (4.16), each D̂(s(l)i ) (l represents the observation time point and i = 1, 2, 3) can
be computed. And the expected residual duration of the pumps staying at each health state
can be obtained. According to (4.17) and the values of each D̂(s(l)i ), the RUL can be obtained
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Table 6: RUL prognostic comparison with 4 methods.

Actual
RUL

HSMM
(joint

multisteps)

Relative
error

HSMM
(multisteps)

Relative
error

HSMM
(one-step)

Relative
error HSMM Relative

error

30.00 29.398 2.0067 29.3980 2.0067 29.3980 2.0067 30.2558 0.8527
26.00 25.2142 3.0224 28.5854 9.9438 27.8536 7.1291 29.9643 15.2473
22.00 22.5172 2.3507 26.0616 18.4618 25.3297 15.1352 29.7954 35.4336
17.00 17.5134 3.0199 15.3897 9.4721 18.3274 7.8085 19.4981 14.6947
15.00 16.0776 7.1837 13.7082 8.6119 17.6251 17.5009 19.2081 28.054
12.00 13.1625 9.6878 13.4892 12.4097 15.4476 28.7302 18.8666 57.2217
11.00 12.9667 17.879 13.3303 25.2653 14.3096 30.0869 10.2471 6.8445
9.00 9.7866 8.7401 13.2352 19.4156 13.5290 50.3224 10.0291 11.4344
5.00 6.0558 21.1166 8.0292 35.8459 7.0224 40.4490 9.7675 95.35

MAPE 8.3341 (%) 15.7147 (%) 22.1298 (%) 29.4592 (%)

and the results of HSMM, multistep ahead and one-step ahead health recognition methods
can be compared. The comparison between the prognostic and actual RUL is given in Table 6,
and the comparison scheme is illustrated in Figure 9. The mean absolute percentage error
(MAPE) is set as follows:

MAPE =
(
1
n

) n∑

i=1

εi, (5.7)

where i is the observation time point and n is the total observation time points.
Based on Table 6, the relative error of the proposed methods between the prognostic

RUL and actual RUL is quite small. So it indicates that the proposed method has a better
performance for online failure prognosis of the pumps. And the MAPE of the proposed
methods is smaller than that of HSMM [14], multistep ahead, and one-step ahead health
recognition methods, respectively. So the prognostic accuracy of the proposed method is
higher than that of the HSMM, multisteps ahead, and one-step ahead health recognition
methods, respectively.

Through the overall case study, the sample of the pumps is modeled based on
HSMM using SMCmethods and the failure prognosis is implemented based on the available
observations. The results show that the proposed methods have a better performance for
online health management of a system, including prognostic effectiveness and accuracy.
Furthermore, the computational complexity of the proposed methods is decreased compared
with HSMM-based method [15] the prognostic accuracy is better than both multisteps ahead
and one-step ahead health recognition methods. The proposed methods also reduce the
computing storage space. This indicates that the proposed methods are more effective for
online health management of complex nonlinear systems and could be used in the real time
applications with large data sets.

6. Conclusions

Currently, prognosis is still in its infancy and the literature is yet to present a working model
for effective prognosis, but a new trend is that more combination models are designed to
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deal with data extraction, data processing, and modeling for prognosis. In this paper, in
order to obtain the health management of a system, the detailed models and algorithm of
HSMM-based SMC method are proposed. Because it is difficult for a single method to obtain
satisfied results online health management of a system, the novel online prognostic methods
for a system are developed based on both the mathematical structure of HSMM and online
features of SMCmethod, including online health recognition algorithm and online prognostic
model. The methods can eliminate the disadvantages of each method, increase the prognostic
accuracy, and utilize the advantages of each method. A case study is used to illustrate
the superiority of the proposed methods. Through the comparisons among the proposed
methods, HSMM, multisteps ahead, and one-step ahead health recognition algorithm, the
results show that the proposed methods have a better performance and are more effective for
online health management of complex nonlinear systems.
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