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The aim of this work is to test an algorithm to estimate, in real time, the attitude of an artificial
satellite using real data supplied by attitude sensors that are on board of the CBERS-2 satellite
(China Brazil Earth Resources Satellite). The real-time estimator used in this work for attitude
determination is the Unscented Kalman Filter. This filter is a new alternative to the extended
Kalman filter usually applied to the estimation and control problems of attitude and orbit.
This algorithm is capable of carrying out estimation of the states of nonlinear systems, without
the necessity of linearization of the nonlinear functions present in the model. This estimation
is possible due to a transformation that generates a set of vectors that, suffering a nonlinear
transformation, preserves the same mean and covariance of the random variables before the
transformation. The performance will be evaluated and analyzed through the comparison between
the Unscented Kalman filter and the extended Kalman filter results, by using real onboard data.

1. Introduction

The attitude of a spacecraft is defined by its orientation in space related to some reference
system. The importance of determining the attitude is related not only to the performance
of attitude control but also to the precise usage of information obtained by payload
experiments performed by the satellite. The attitude estimation is the process of calculating
the orientation of the spacecraft in relation to a reference system from data supplied by
attitude sensors. Chosen the vector of reference, an attitude sensor measures the orientation
of these vectors with respect to the satellite reference system [1]. Once these one or more
vectors measurements are known, it is possible to compute the orientation of the satellite
processing these vectors, using methods of attitude estimation. There are several methods
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for determining the attitude of a satellite. Each method is appropriate to a particular type of
application and meets the needs such as available time for processing and accuracy to be
attained. However, all methods need observations that are obtained by means of sensors
installed on the satellite. The sensors are essential for attitude estimation, because they
measure its orientation relative to some referential, for example, the Earth, the sun, or a star.
In this work, the satellite attitude is described by Euler angles, due to its easy geometric
interpretation, and the method to estimate the attitude used is the Unscented Kalman Filter.
This method is capable of performing state estimation in nonlinear systems, besides taking
into account measurements provided by different attitude sensors. In this work there were
considered real data supplied by gyroscopes, infrared Earth sensors, and digital sun sensors.
These sensors are on board of the CBERS-2 satellite (China-Brazil Earth Resources Satellite),
and the measurements were collected by the Satellite Control Centre of INPE (Brazilian
Institute for Space Research).

2. Representation of Attitude by Euler Angles

The attitude of an artificial satellite is directly related to its orientation in space. Through
the attitude one can know the spatial orientation of the satellite, since in most cases it can
be considered as a rigid body, where the attitude is expressed by the relationship between
two coordinate systems, one fixed on the satellite and another associated with a reference
system, for example, inertial system [2]. For a good performance of a mission it is essential
that the satellite be stabilized in relation to a specified attitude. The attitude stabilization is
achieved by the on-board attitude control, which is designed to acquire and maintain the
satellite in a predefined attitude. The CBERS-2 attitude is stabilized in three axes nominally
geo-pointed and can be described with respect to the orbital system. In this reference system,
themovement around the direction of the orbital velocity is called roll. Themovement around
the direction normal to the orbit is called pitch, and finally the movement around the direction
Nadir/Zenith is called yaw. To transform a vector represented in a given reference to another
it is necessary to define a matrix of direction cosines (R), where its elements are written in
terms of Euler angles (φ, θ, ψ) [3]. The rotation sequence used in this work for the Euler
angles was the 3-2-1, where the coordinate system fixed in the body of the satellite (x, y,
z) is related to the orbital coordinate system (xo, yo, zo) through the following sequence of
rotations:

(i) 1st rotation of an angle ψ (yaw angle) around the zo axis,

(ii) 2nd rotation of an angle θ (roll angle) around an intermediate axis y′,

(iii) 3rd rotation of an angle φ (pitch angle) around the x-axis.

The matrix obtained through the 3-2-1 rotation sequence is given by
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where R is the matrix of direction cosines with S = sin, C = cos, and T = tan.
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By representing the attitude of a satellite with Euler angles, the set of kinematic
equations are given by [4]
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whereω0 is the orbital angular velocity and ŵx, ŵy, and ŵz are the components of the angular
velocity on the satellite system.

3. The Measurements System of Satellite

In order to estimate the satellite attitude accurately, several types of sensors, including gyros,
earth sensors, and solar sensors, are used in the attitude determination system. The equations
of these sensors are introduced here.

3.1. The Model for Gyros

The advantage of a gyro is that it can provide the angular displacement and/or angular
velocity of the satellite directly. However, gyros have an error due to drifting, meaning that
their measurement error increases with time. In this work, the rate-integration gyros (RIGs)
are used to measure the angular velocities of the roll, pitch, and yaw of the satellite. The
mathematical model of the RIGs is [4]

ΔΘi =
∫Δt

0
(ωi + εi)dt

(
i = x, y, z

)
, (3.1)

where ΔΘ are the angular displacement of the satellite in a time interval Δt, and εi are
components of bias of the gyroscope.

Thus, the measured components of the angular velocity of the satellite are given by

�̂ω =

(
Δ�Θ
Δt

)
− �̂ε − �η1 = �g − �ε − �ηatt, (3.2)

where �g(t) is the output vector of the gyroscope, and �η1(t) represents a Gaussian white noise
process covering all the remaining unmodelled effects:

E
[
ηattη

T
att

]
= σ2

att. (3.3)

3.2. The Measurement Model for Infrared Earth Sensors (IRESs)

One way to compensate for the drifting errors present in gyros is to use the earth sensors.
These sensors are located on the satellite and aligned with their axes of roll and pitch. In the
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work, two earth sensors are used, with one measuring the roll angle and the other measuring
the pitch angle. In principle, an earth sensor cannot measure the yaw angle. The measurement
equations for the earth sensors are given as [5]

φH = φ + ηφH ,

θH = θ + ηθH ,
(3.4)

where ηφH and ηθH are the white noise representing the small remaining misalignment,
installation, and/or assembly errors assumed to be gaussian:

E
[
ηφHη

T
φH

]
= E
[
ηθHη

T
θH

]
= σ2

IRES. (3.5)

3.3. The Measurement Model for Digital Solar Sensors (DSSs)

Since an earth sensor is not able to measure the yaw angle, the solar sensors are used by the
Attitude Control System in order to overcome this problem. However, these sensors do not
provide direct measurements but coupled angle of pitch (αθ) and yaw (αψ). The measurement
equations for the solar sensor are obtained as follows [5]:

αψ = tan−1
( −Sy
Sx cos(60◦) + Sz cos(150◦)

)
+ ηαψ (3.6)

when |Sx cos(60◦) + Sz cos(150◦)| ≥ cos(60◦), and

αθ = 24◦ − tan−1
(
Sx
Sz

)
+ ηαθ (3.7)

when |24◦ − tan−1(Sx/Sz)| < 60◦, where ηαψ and ηαθ are the white noise representing the small
remaining misalignment, installation, and/or assembly errors assumed Gaussian:

E
[
ηαψη

T
αψ

]
= E
[
ηαθη

T
αθ

]
= σ2

DSS. (3.8)

The conditions are such that the solar vector is in the field of view of the sensor, and Sx,
Sy, and Sz are the components of the unit vector associated to the sun vector in the satellite
system and given by

Sx = S0x + ψ̂S0y − θ̂S0z,

Sy = S0y − ψ̂S0x + φ̂S0z,

Sz = S0z − φ̂S0y + θ̂S0z,

(3.9)

where S0x, S0y, and S0z are the components of the sun vector in the orbital coordinate system
and φ̂, θ̂, and ψ̂ are the Euler angles-estimated attitude.
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4. Attitude Estimation Methods

The goal of an estimator is to calculate the state vector (attitude) based on a set of observations
(sensors) [6]. In other words, it is an algorithm capable of processing measurements to
produce, according with a given criterium, a minimum error estimate of the state of a system.
In this paper, the real-time estimator used to estimate the satellite attitude is a variant of the
Kalman filter, applied to problems that present some nonlinearity. This estimator is described
as follows.

4.1. Unscented Kalman Filter

The basic premise behind the Unscented Kalman Filter (UKF) is that it is easier to
approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear function.
Instead of linearizing to first order using Jacobian matrices, the UKF uses a rational
deterministic sampling approach to capture the mean and covariance estimates with a
minimal set of sample points. The nonlinear function is applied to each point, in turn, to yield
a cloud of transformed points. The statistics of the transformed points can then be calculated
to form an estimate of the nonlinearly transformed mean and covariance. We present an
algorithmic description of the UKF omitting some theoretical considerations, left to [7, 8].

Consider the system model given by

ẋk+1 = f(xk, k) +Gkwk,

yk = h(xk, k) + νk,
(4.1)

where xk is the n × 1 state vector and yk is them × 1 measurement vector. We assume that the
process noise wk and measurement-error noise νk are zero-mean Gaussian noise processes
with covariances given by Qk and Rk, respectively. In this work the state vector at time k is
defined by the Euler angles and gyro biases:

x̂k =
[
φ, θ, ψ, εx, εy, εz

]T
. (4.2)

Performing the necessary simplifications (small Euler angles) in the set of (2.2), the
attitude angles and gyro angular velocity biases are modelled as follows:

φ̇(t) = ω0 sin ψ̂ + ω̂x + θ̂ω̂z,

θ̇(t) = ω0 cos ψ̂ + ω̂y + φ̂ω̂z,

ψ̇(t) = ω0

(
θ̂ sin ψ̂ − φ̂ cos ψ̂

)
+ ω̂z + φ̂ω̂y,

�̇ε(t) = 0.

(4.3)

Given the state vector at step k − 1, we compute a collection of sigma-points, stored in
the columns of the n × (2n + 1) sigma point matrix χk−1, where n is the dimension of the state
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vector. In our case, n = 6, so χk−1 is a 6 × 13 matrix. The columns of χk−1 are computed by

(
χk−1

)
0 = x̂k−1,

(
χk−1

)
i = x̂k−1 +

(√
(n + λ)Pk−1

)

i
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(
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)
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(√
(n + λ)Pk−1

)

i−n
, i = n + 1, . . . , 2n,

(4.4)

in which λεR, (
√
(n + λ)Pk−1)i is the ith column of the matrix square root of (n + λ)Pk−1.

Once χk−1 computed, we perform the prediction step by first predicting each column
of χk−1 through time by Δt using

(
χk
)
i = f

((
χk−1

)
i

)
, i = 0, . . . , 2n, (4.5)

where f is differential equation defined in (2.2) or (4.3). In our formulation, we perform a
numerical Runge-Kutta integration.

With (χk)i being calculated, the a priori state estimate is

x̂−
k =

2n∑
i=0

Wm
i

(
χk
)
i, (4.6)

whereWm
i are weights defined by

Wm
0 =

λ

(n + λ)
,
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i =

1
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(4.7)

As the last part of the prediction step, we calculate the a priori error covariance with

P−
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2n∑
i=0
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i
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χk
)
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k

][(
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)
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k
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where Qk is the process error covariance matrix, and the weights are defined by

Wc
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λ

(n + λ)
+
(
1 − α2 + β2

)
,
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i =

1
2(n + λ)

i = 1, . . . , 2n,
(4.9)

where α is a scaling parameter which determines the spread of the sigma points and β is a
parameter used to incorporate any prior knowledge about the distribution of x [9].
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To compute the correction step, we first must transform the columns of χk through the
measurement function to Yk. In this way

(Yk)i = h
((
χk
)
i

)
, i = 0, . . . , 2n,

ŷ−
k =

2n∑
i=0

Wm
i (Yk)i.

(4.10)

With themeanmeasurement vector ŷ−
k
, we compute the a posteriori state estimate using

x̂k = x̂−
k +Kk

(
yk − ŷ−

k

)
, (4.11)

where Kk is the Kalman gain. In the UKF formulation, Kk is defined by

Kk = Px̂k,ŷkP
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ŷk ,ŷk

, (4.12)

where
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,

(4.13)

where Rk represents the measurement error covariance matrix.
Finally, the last calculation in the correction step is to compute the a posteriori estimate

of the error covariance given by

Pk = P−
k −KkPŷk,ŷkK

T
k . (4.14)

5. Results

Here, the results and the analysis from the algorithm developed to estimate the attitude are
presented. To validate and to analyze the performance of the estimators, real sensors data
from the CBERS-2 satellite were used (see [10, 11]). The CBERS-2 satellite was launched
on October 21, 2003. The measurements are for the month of April 2006, available to the
ground system at a sampling rate of about 8.56 sec. The algorithm was implemented through
MATLAB software. To check the performance the UKF, their results were compared with the
estimated attitude by the more conventional EKF (Extended Kalman Filter), considering the
following set of initial conditions:

(i) initial attitude: φ = θ = ψ = 0 deg;

(ii) initial bias of gyro: εx = 5.56 deg/hour, and εy = 0.87 deg/hour, εz = 6.12 deg/hour;

(iii) initial covariance (P): σ2
φ,θ,ψ

= (0.5 deg)2 (error related to the attitude), and σ2
bg

=
(1deg/hour)2 (error related to the drift of gyro);
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Figure 1: Real measurements supplied by attitude sensors.

(iv) observation noise covariance (R): σ2
DSS = (0.3 deg)2 (sun sensor), are σ2

IRES =
(0.03 deg)2 (earth sensor);

(v) dynamic noise covariance (Q): σ2
att = (0.1 deg)2 (noise related to the attitude),

σ2
Dbgx

= σ2
Dbgy

= (0.01 deg/hour)2, and σ2
Dbgz

= (0.005 deg/hour)2 (noise related to
the drifting of gyro).

The real measurements obtained by the attitude sensors (digital sun sensors, infrared
Earth sensors, and gyroscopes) are shown in Figure 1.

In Figures 2 and 3 are observed the behavior of attitude and the biases of gyro during
the period analyzed. The average estimated values for the axes of roll and pitch, considering
the Unscented Kalman Filter, are in the order of −0.47 deg and −0.45 deg, respectively, and
their standard deviations are about 0.02 deg. For the yaw axis the estimate seems not to behave
randomly and its average estimated value is about −1.47 deg with standard deviation 0.3 deg.
The attitude estimated by the extended Kalman filter had their values for the axes roll and
pitch in the order of about −0.49 deg and −0.43 deg with standard deviation about 0.05 deg.
For the axis pitch, its average value is −1.42 deg and standard deviation is 0.36 deg.
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Figure 2: Attitude estimated by the Unscented Kalman filter end Extended Kalman filter.
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Figure 3: Bias estimated by the Unscented Kalman filter end Extended Kalman filter.
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Figure 5: Bias errors (Standard Deviation) estimated.
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Figure 6: Residuals related to DSS attitude sensors.
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Figure 7: Residuals related to IRES attitude sensors.

Figures 4 and 5 present the standard deviations for both estimators for the attitude
and the bias of the gyro. It is observed that the attitude standard deviations and the standard
deviations of the gyro bias decrease with a tendency to stabilize around a value for both
filters. However, the graphs show the superiority of UKF, because in most cases it works
within a range of protection better than the EKF.

In Figures 6 and 7, we can see that the residues of sun sensors and Earth sensors have
the same behavior for both estimators. For the Earth sensors, the residuals obtained by the
both estimators are smaller and show a tendency to zero mean. However, the residues of
UKF are still lower, being at about −0.009 deg for IRES1 and 0.004 deg for IRES2. Already
the residues of the EKF are approximately 0.01 deg and −0.027 deg for IRES1 and IRES2,
respectively.

These results seem consistent because in this case it is not possible to compare the
estimated values with true values, since these values are not known.

6. Final Comments

In this paper, the Unscented Kalman Filter estimator applied in nonlinear systems was
presented for use in real-time attitude estimation. The main objective was to estimate the
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attitude of a CBERS-2 like satellite, using real data provided by sensors that are on board
of the satellite. To verify the consistency of the estimator, the attitude was estimated by two
different methods. The usage of real data from on-board attitude sensors poses difficulties
like mismodelling, mismatch of sizes, misalignments, unforeseen systematic errors, and
postlaunch calibration errors. However, it is observed that, although the EKF and UKF have
roughly the same accuracy, the UKF leads to a convergence of the state vector faster than the
EKF. This fact was expected, since the UKF prevents the linearizations needed for EKF, when
the system has some nonlinearity in their equations.
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