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A fuzzy simulation-based optimization approach (FSOA) is developed for identifying optimal
design of a benzene-contaminated groundwater remediation system under uncertainty. FSOA
integrates remediation processes (i.e., biodegradation and pump-and-treat), fuzzy simulation,
and fuzzy-mean-value-based optimization technique into a general management framework. This
approach offers the advantages of (1) considering an integrated remediation alternative, (2)
handling simulation and optimization problems under uncertainty, and (3) providing a direct
linkage between remediation strategies and remediation performance through proxy models. The
results demonstrate that optimal remediation alternatives can be obtained to mitigate benzene
concentration to satisfy environmental standards with a minimum system cost.

1. Introduction

Contaminated groundwater due to the spill and leakage of petroleum hydrocarbons may
pose significant threats to local environment and human health. This provides an adequate
reason for a great effort to remediate such contamination. Previously, many remediation
methods (i.e., pump and treat, bioremediation, surfactant-enhanced aquifer remediation,
etc.)were applied to mitigate groundwater contamination. However, many process variables
in a groundwater remediation system, such as well location, pumping rate, oxygen-addition
rate, and additive-addition rate, have significant impacts on the performance of remediation
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systems. The deficiency in understanding processes controlling the fate of contaminants may
lead to a large inflation of expenses [1]. Simulation and optimization models were therefore
developed in order to improve remediation efficiency [2].

Previously, many simulation and optimization methods were undertaken to identify
effective groundwater remediation strategies [3–5]. Ahmad et al. [6] applied a response
surface approach to a palm oil mill effluent treatment system for mitigating membrane
fouling problems. Huang et al. [7] proposed an integrated numerical and physical modeling
system to tackle natural attenuation and biodegradation processes for site remediation.
He et al. [8] provided a coupled simulation-optimization approach for optimal design
pumping rates of a pump-and-treat (PAT) system. However, most of previous simulation
and optimization methods tended to focus on one fixed remediation technique, leading
to relatively low efficiencies or high costs. For example, bioremediation via anaerobic
dechlorination would not be an instantaneous process, which required time to develop the
appropriate environmental conditions and to grow a microbial population (i.e., the capable
degradation time may be several months to years) [9]; PATmight require significant costs for
continuous pumping and extraction, as well as system maintenance; in detail, the operation
cost of PAT would be 3 times higher than bioremediation [10]. Therefore, it is essential
to develop simulation and optimization system for integrated remediation alternatives to
enhance the remediation efficiency and reduce system cost.

Due to the difficulties in incorporating the complicated numerical simulation model
within an optimization framework [11], a series of effective surrogates were applied to
replace complex simulation equations [12–14]. Moreover, uncertainties may extensively exist
in process forecasting (i.e., measurement and/or estimation errors related to hydrogeological
and physicochemical parameters), which may significantly increase the complexity related
to remediation design [15]. In the past decades, many stochastic theories were applied
to optimal groundwater remediation design under uncertainty [16–19]. However, high
computational cost and amounts of data requirement in stochastic analysis may constrict
its application to some practical groundwater remediation problems. Consequently, fuzzy
set theory has been used as an supplementary tool for many groundwater remediation
optimization problems [20]. Guan and Aral [21] used fuzzy sets and optimization algorithms
to optimize design of a PAT system under uncertainty. Nasiri et al. [22] developed
a decision support system for the prioritization of remediation options based on the
estimated compatibility index. The system combined fuzzy sets theory, environmental risk
assessment with compatibility analysis procedure, which can be used to find a better
remediation technology. Kerachian et al. [23] proposed a fuzzy game theoretic approach for
groundwater resources management, which combined groundwater simulation models with
the optimization model. Nonetheless, there are few considerations for identifying integrated
groundwater remediation strategies (such as using PAT and bioremediation simultaneously)
under uncertainty.

In this paper, a fuzzy simulation-based optimization approach (FSOA) is developed
for identifying optimal remedial strategies for a petroleum-contaminated site. The objective
entails the following tasks: (i) providing a fuzzy simulation model for biodegradation
and PAT remediation processes, (ii) carrying out the model for generating a number of
statistical samples, (iii) developing a fuzzy-mean-value-based optimization technique, and
(iv) applying the proposed method to a petroleum-contaminated site for demonstration.



Mathematical Problems in Engineering 3

Subsurface modeling

Scenarios design and fuzzy simulation

Obtain mean values of fuzzy
contaminant concentration

Regression analysis

Integrated
simulation and
optimization

Fuzzy-mean-
value-based
optimization

Optimal control of remediation
processes

Figure 1: Integrated simulation and optimization framework for remediation-process control.

2. Methodology

FSOA consists of two major components: (2.1) fuzzy simulation and (2.2) fuzzy-mean-value-
based optimization. The framework of FSOA is shown in Figure 1. The fuzzy simulation
component is used to predict contaminant transport under various remediation scenarios.
The obtained contaminant concentrations are presented as fuzzy sets. Then the mean
values of these fuzzy contaminant concentrations are obtained and applied to establish a
set of surrogates for providing a bridge between remediation strategies (pumping rates
at the wells) and contaminant concentrations. Finally a nonlinear optimization method is
advanced by incorporating the surrogates into an optimization framework to identify optimal
remediation strategies. The detailed procedures are described in the following sections.

2.1. Stimulation Model

2.1.1. Stimulation of Contaminant Transport Process

In this study, BIOPLUME III is used to simulate organic contaminants transport processes
in groundwater, which has been used in many studies [10, 24, 25]. The mass transport
equations are solved to calculate the spatial variation of the contaminant concentration [26].
In biodegradation processes, the aerobic biodegradation using oxygen as electron acceptors
is simulated as an instantaneous reaction. The general equations are as follows [27]:
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where P is the concentration of oxygen [M/L3]; P ′ is the concentration of oxygen in source
or sink fluid [M/L3]; Q is the pumping rate [L3/T]; x(r) is the coordinates of the well;
ΔHSO is the loss of the contaminant concentration due to aerobic biodegradation; ΔPOS is
the concentration loss of the electron acceptor; FO is the stoichiometric ratio for oxygen; Ω is
the study domain; Γ1 is the first boundary condition.

2.1.2. Fuzzy Simulation

In the past decades, the increasing awareness for uncertainties of porous media led to an
improved understanding of contaminant transport in subsurface [14]. Fuzzy set theory is
widely used for addressing uncertainties derived from vagueness in input parameters of
subsurface models [28, 29]. The primary procedures of fuzzy simulation are as follows [24]:
(1) discretize the range of membership grade [0, 1] into a number of α-cut levels; (2) select
an alpha-cut level for fuzzy inputs and generate 2m combinatorial arrays for the input vector
through fuzzy vertex analysis, wherem is the number of fuzzy parameters; (3) use the 2m new
vectors as inputs for the simulation model and generate 2m outputs; (4) assign the smallest
and largest values of outputs to the lower and upper limits, respectively; and (5) return to
process 2 to assign other α-cut levels and repeat processes 3 and 4. The fuzzy sets of the
predicted items are finally approximated based on the obtained lower and upper boundaries
of simulation outputs under various α-cut levels.

2.2. Optimization Model

2.2.1. Fuzzy Regression Analysis

In this subsection, regression analysis is used for studying the relationships between the
response (y) (i.e., contaminants concentrations) and a number of input variables (xi) (i.e.,
pump and injection rates). Considering the uncertainty of the outputs from the simulation
model, a fuzzy regression analysis method is proposed to build relationships between
contaminants concentrations and control variables. Then these relationships are used as
constraints in the optimization framework.

Fuzzy regression analysis method consists of four stages, including (i) generating
solutions through fuzzy simulation model, (ii) obtaining the mean values of the outputs,
based on the method proposed by Fortemps and Roubens [30], (iii) fitting the inputs and
outputs through a general polynomial regression analysis, and (iv) testing the predicting
performance of the surrogates. If the surrogates have satisfactory performances, they can be
used for substituting the numerical simulation model in further optimization framework.
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2.2.2. Fuzzy-Mean-Value-Based Optimization

In a groundwater remediation system, the installation cost can be generally neglected
since it would be significantly less than well operation cost [31]. In addition, most costs
for a remediation system are mainly functions of well pumping rates. Therefore, in this
paper, the total pumping rate is used as decision variables of the optimization model,
which will be minimized subject to environmental and economical constraints in order to
obtain a minimum cost for the groundwater remediation system. The constraints of the
optimization model include (i) contaminant concentrations at some locations, which should
be less than or equal to a regulated environmental standard; (ii) the injection and extraction
rates, which would be limited within a desired range; and (iii) water balance constraint,
meaning that the sum of pumping rates at all extraction wells should be equal to the sum of
injection rates at all injection wells. So, the optimization model can be formulated as follows
[8]:

Minimize f = A ×
I∑
i=1

QIn
i + B ×

J∑
j=1

QEx
j

subject to Ck

(
QIn

i , Q
Ex
j

)
≤ Cmax, k = 1, 2, . . . , K,

I∑
i=1

QIn
i =

J∑
j=1

QEx
j ,

0≤ QIn
i ≤ QIn

i,max, i = 1, 2, . . . , I,

0≤ QEx
j ≤ QEx

j,max, j = 1, 2, . . . , J,

(2.2)

where f is the total pumping/extraction cost; A and B are the unit injection and extraction
cost, respectively; QIn

i and QEx
j are the pumping rates for the ith injection well and jth

extraction well, respectively; QIn
i,max and QEx

j,max are the maximum pumping rates for the
ith injection well and jth extraction well; Cmax is the maximum acceptable contaminant
concentration; Ck is the expected contaminant concentration of kth monitoring well after
remediation. Ck can be regarded as a polynomial function of injection/extraction rates
(Q1, Q2, . . . , Qn). The surrogate can be formulated as follows:
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where β0,k is an intercept term of surrogate k;
∑n

i=1 βi,kQi are linear terms of surrogate k;∑n
i=1

∑n
j=1 βij,kQiQj (i /= j) are interaction terms of surrogate k; n is the number of explanatory

variables.



6 Mathematical Problems in Engineering

Table 1: Parameters of the simulation model.

Input parameter Values
Grid size 20 × 20
Cell size 100 × 100 ft
Hydraulic conductivity 6.56 × 10−4 ft/sec
Hydraulic gradient 0.005
Retardation factor 1.0
Anisotropy factor 1.0
Background concentration of oxygen 1ppm
Storage coefficient 0.2
Longitudinal dispersivity Support = (11, 19), Core = 15
Transverse dispersivity Support = (1.1, 1.9), Core = 1.5
Effective porosity Support = (0.2, 0.4), Core = 0.3

3. Case Study

3.1. Overview of the Study Site

The developed FSOAmodel is applied to a hypothetical petroleum-contaminated aquifer (see
Figure 2). The contaminated plume is assumed to be produced by a leaking underground
storage tank (UST). The aquifer system of the site is unconfined, homogeneous, and
anisotropy. The stratigraphy consists of sand with the depth varied within 13 and 20 ft from
the surface. The base of the aquifer ranges in elevation from about −3 to −7 ft, and the
groundwater flow direction is northeastwards with a gradient of approximate 0.005. The
horizontal hydraulic conductivity across the entire grid is 6.56 × 10−4 ft/sec, and the storage
coefficient is about 0.2. Table 1 shows parts of parameters. The previous UST was at the
up gradient location of the site where the benzene concentration (approximate 16mg/L)
in groundwater is higher than the regulated environmental guideline (0.005mg/L) [32].
Thus, this site may pose impacts on surrounding communities and environment; remediation
actions are desired for cleaning up contaminated groundwater.

The integration of PAT and biodegradation for remediating contaminated groundwa-
ter can be more efficient and cost-effective in comparison to simple PAT or biodegradation
(as stated before). So, 2 injection (biodegradation), 4 (pump and treat) extraction, and
3 monitoring wells are constructed to inject nutrients for microorganism, install a PAT
system, and monitor benzene concentrations, respectively. It is suggested that effective
number of wells and their behaviors can improve remediation efficiency [33]. A simulation–
optimization model is therefore an attractive tool for identifying optimal alternatives on
these design components. However, since fuzzy uncertainty (as stated before) may exist in
groundwater remediation design, fuzzy simulation-based optimization approach (FSOA) is
desired for generating effective solution to address this issue.

3.2. Results Analysis

The simulation model is firstly run m times to generate m samples for further surrogates
construction. In this study, 6 explanatory variables (pumping rates of the injection and
extraction wells) and 3 response variables (expected contaminant concentrations at the
monitoring wells M1 to M3) are interpreted by the surrogates. Within the range of pumping
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Figure 2: Simulation domain and well location.

rate between 0.0 and 0.08 ft3/sec, 51 scenarios of operation conditions (b1, b2, p1, p2, p3, and
p4) are randomly generated (as listed in Table 2). Since some parameters of the system (e.g.,
porosity, dispersivity) are presented as fuzzy sets, a fuzzy simulation model is applied to
deal with these uncertain parameters and generate contaminant concentrations under various
operation scenarios. The outputs of the fuzzy simulation model are also presented as fuzzy
sets. Therefore, a fuzzy regression method is applied to establish the surrogates between
contaminant concentrations and operation variables.

Biodegradation injection rates (b1 and b2) in injection wells B1 and B2 and extraction
rates (p1, p2, p3, and p4) in extraction wells P1, P2, P3, and P4 are selected as control variables
to produce a series of operation scenarios. The benzene concentrations in monitoring wells
are simulated during a 2-year remediation period under each operation condition. Figure 3
shows the results of expected benzene concentrations of wells M1, M2, and M3. It appears
that different results are generated under different scenarios. Thus, it is worthwhile to identify
the interactive relations between system operation patterns and contaminant concentrations,
such that the trade-off between system cost and remediation efficiency can be analyzed.

Figure 4 presents the comparison of the results from fuzzy regression analysis and
the mean value of benzene concentrations from numerical simulation. It is indicated that the
fuzzy regression models can generally reflect the variation of benzene concentration under
different operation scenarios. The peak values in three monitoring wells can be well caught.
The RSME values of three models are 0.03114, 0.102, and 0.0532, respectively. These results
demonstrate that the established surrogates have satisfactory prediction accuracy.

A nonlinear optimization model is then developed to identify the optimal operating
conditions. When the maximum concentration standard is set as 0.001mg/L, the injection
rates in wells b1 and b2 are 0.0 and 0.0499 ft3/s, respectively; the extraction rates are
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Table 2: Scenarios of flow rates in injection and extraction wells (ft3/sec).

Scenario p1 b1 p2 b2 p3 p4
1 0.01 0.020 0.01 0.02 0.01 0.010
2 0.015 0.030 0.015 0.03 0.015 0.015
3 0.012 0.025 0.014 0.025 0.008 0.016
4 0.009 0.010 0.021 0.058 0.018 0.020
5 0.013 0.037 0.006 0.01 0.02 0.008
6 0.02 0.049 0.018 0.036 0.029 0.018
7 0.03 0.052 0.025 0.04 0.025 0.012
8 0.006 0.044 0.028 0.016 0.021 0.005
9 0.025 0.032 0.008 0.033 0.006 0.026
10 0.029 0.042 0.017 0.045 0.032 0.009
11 0.005 0.029 0.009 0.028 0.012 0.031
12 0.007 0.035 0.013 0.038 0.021 0.032
13 0.018 0.002 0.012 0.048 0.009 0.011
14 0.026 0.057 0.018 0.018 0.011 0.020
15 0.016 0.040 0.026 0.022 0.013 0.007
16 0.021 0.042 0.019 0.029 0.017 0.014
17 0.014 0.026 0.011 0.012 0.005 0.008
18 0.019 0.034 0.007 0.019 0.014 0.013
19 0.022 0.038 0.02 0.024 0.016 0.004
20 0.024 0.008 0.005 0.032 0.007 0.004
21 0.005 0.038 0.033 0 0 0.000
22 0.033 0.031 0 0.021 0.019 0.000
23 0.023 0.087 0.022 0 0.023 0.019
24 0 0.008 0.016 0.06 0.035 0.017
25 0.008 0.059 0.029 0.006 0.022 0.006
26 0.004 0.003 0.021 0.08 0.03 0.028
27 0.012 0.029 0.023 0.029 0.013 0.010
28 0.02 0.041 0.016 0.031 0.021 0.015
29 0.017 0.033 0.006 0.02 0.019 0.011
30 0.008 0.026 0.011 0.025 0.011 0.021
31 0.011 0.028 0.007 0.015 0.024 0.001
32 0.016 0.055 0.021 0.032 0.038 0.012
33 0.020 0.074 0.016 0.006 0.012 0.033
34 0.029 0.072 0.028 0.060 0.036 0.039
35 0.012 0.000 0.022 0.039 0.004 0.001
36 0.004 0.024 0.007 0.022 0.003 0.033
37 0.018 0.039 0.013 0.026 0.009 0.025
38 0.019 0.023 0.005 0.061 0.037 0.022
39 0.001 0.016 0.029 0.026 0.003 0.010
40 0.027 0.076 0.011 0.005 0.011 0.033
41 0.029 0.074 0.001 0.014 0.040 0.018
42 0.011 0.072 0.023 0.003 0.008 0.033
43 0.010 0.047 0.027 0.040 0.020 0.030
44 0.028 0.056 0.009 0.009 0.012 0.016
45 0.031 0.057 0.008 0.037 0.027 0.028
46 0.022 0.038 0.028 0.078 0.038 0.028
47 0.019 0.029 0.004 0.054 0.031 0.030
48 0.036 0.080 0.028 0.026 0.027 0.016
49 0.018 0.016 0.021 0.058 0.005 0.029
50 0.032 0.033 0.025 0.043 0.004 0.015
51 0.000 0.014 0.000 0.000 0.000 0.000
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Figure 3: Expected benzene concentrations under 51 operation scenarios (on day 730).

p1 = 0.027 ft3/s, p2 = 0.0 ft3/s, p3 = 0.0065 ft3/s, and p4 = 0.0164 ft3/s. Under this standard,
wells B2 and P1 would play more important role while wells P3 and P4 would have less
contributions to contaminant reduction. When the maximum concentration standard is set as
0.004mg/L, the injection rates are b1 = 0.0 ft3/s and b2 = 0.0492 ft3/s; the extraction rates
are p1 = 0.0267 ft3/s, p2 = 0.0 ft3/s, p3 = 0.0072 ft3/s, and p4 = 0.0153 ft3/s. Comparing
results between these two scenarios, the system is sensitive to variations of the maximum
concentration standard. Under stricter standard, the remediation system should conduct
larger pumping rates, which would enhance the remediation efficiency but accordingly cause
the growth of remediation cost. Conversely, looser standard would lead to less pumping
rates, which corresponds to low remediation cost and efficiency. Therefore, the developed
method can help decisionmaker make a trade-off for the operation condition between system
cost and efficiency under uncertainty.

3.3. Discussions

In this study, we consider parameters of soil porosity, longitudinal dispersivity, and
transverse dispersivity as fuzzy sets due to insufficient data for specifying related probability
density functions. Actually, fuzzy simulation can handle more fuzzy parameters. One should
know that the uncertainty in output concentration increases as the number of uncertain
parameters increases [24]. In addition to the performance of fuzzy simulation, the accuracy
of optimization results also depends upon the surrogates used to represent the relationships
between expected concentrations and pumping rates. A major concern is that approximation
errors of surrogates may lead to large deviations of solutions. On one hand, this concern
can be mitigated by using higher-order regression analysis based on large volumes of testing
samples. On the other hand, the approximation accuracy may benefit from improvement of
pretreatment method for uncertain outputs such as fuzzy expected value models [34, 35].

For comparison, if uncertain parameters are defuzzified to generate related repre-
sentative deterministic values before conducting simulation, the procedures of defuzzified
simulation-based optimization approach (DSOA) can be obtained and generalized as follows:
step 1, defuzzify parameters; step 2, generate a number of remediation scenarios; step
3, compute the contaminant concentrations under the defuzzified parameters through the
simulator; step 4, establish a set of surrogates for providing bridges between remediation
strategies and contaminant concentrations; step 5, incorporate the surrogates into the
optimization framework; and step 6, solve the optimization model.
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Figure 4: Regression analysis versus direct simulation in benzene concentrations.

Figure 5 presents mean values of benzene concentration obtained from FSOA versus
DSOA at different monitoringwells. Bothmethods used triangular possibility distributions to
present uncertainty. The results from DSOA and FSOA are similar with each other. However,
to some extent, DSOA may take an obvious role in reduction of peak value. For example,
the mean values of benzene concentrations obtained by DSOA may be 0.254, 0.456, and
0.138mg/L at wells M1, M2, andM3, respectively (shown as red remarked). These values are
lower than those obtained by FSOA (0.3072, 0.7115, 0.2329). This indicates that DSOA may
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Figure 5: Simulation results by DSOA versus FSOA in benzene concentrations.

not well represent system uncertainty and may be too idealistic for the effect of remediation.
In addition, defuzzification before simulation cannot well reflect the impact of uncertainty to
the simulation model system.

4. Conclusion

In this paper, a fuzzy simulation-based optimization approach (FSOA) has been developed
for supporting process control of remediation at petroleum-contaminated sites. FSOA
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integrated fuzzy simulation and fuzzy regression analysis method into a nonlinear op-
timization framework for generating desired operation conditions. The developed method
was applied to a hypothetical petroleum-contaminated case study. FSOA can address the
uncertainty of modeling parameters in simulating flow and transport of contaminants in
groundwater and then generate optimal remediation strategies. The results can provide bases
for guiding remediation performances. They are also useful for decision makers to analyze
trade-offs between system cost and treatment efficiency.
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