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Chebyshev polynomials are utilized to obtain solutions of a set of pth order linear differential equations with
periodic coefficients. For this purpose, the operational matrix of differentiation associated with the shifted
Chebyshev polynomials of the first kind is derived. Utilizing the properties of this matrix, the solution of a
system of differential equations can be found by solving a set of linear algebraic equations without constructing
the equivalent integral equations. The Floquet Transition Matrix (FTM) can then be computed and its
eigenvalues (Floquet multipliers) subsequently analyzed for stability. Two straightforward methods, the
‘differential state space formulation’ and the ‘differential direct formulation’, are presented and the results are
compared with those obtained from other available techniques. The well-known Mathieu equation and a higher
order system are used as illustrative examples.
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1. INTRODUCTION

The study of systems governed by a set of ordinary differential equations with periodic
coefficients is of great importance in diverse branches of science and engineering. The
stability and response under various excitations are the key issues discussed in the vast
amount of classical literature available on this subject. Numerous practical applications
can be found in the areas of quantum mechanics, dynamic stability of stuctures, circuit
theory, systems and control, and dynamics of rotating systems, among others.

In the past, several methods have been used to study the stability of systems with
periodic coefficients. These include Hill’s method [1,2], the perturbation method [3], the
averaging approach [4], and Floquet theory with numerical integration [5]. It is well
known that both Hill’s method and Floquet theory with numerical integration can only be
used to determine the stability boundaries as they do not yield closed form solutions for
all time. In addition, the former is not computationally convenient for large order systems.
The perturbation and averaging methods have their own limitations due to the fact that

they can only be applied to systems where the periodic coefficients can be expressed in
terms of a small parameter.
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A number of authors [6,7,8] have tried to determine the stability and response from an
approximate system of equations, which are usually obtained by replacing the elements of
the periodic coefficients matrix by piecewise constants or linear functions. In practical
application, one can approximate the periodic matrix at most by a series of step functions
and compute the transition matrix during one period, which then yields the stability
conditions, etc. Such a technique was developed by Hsu [6] and employed by Friedmann
et al. [9] for a numerical evaluation of the transition matrix. Although the approach is
straightforward, it is only a second-order algorithm at the most. For more accurate
solutions, it is necessary to apply higher order numerical schemes such as the Runge-
Kutta-Gill method or similar algorithms, and utilize Floquet theory to establish stability
conditions. This approach has been adopted by several authors [9,10] in a variety of
stability and response problems, and it has been shown by Gaonkar et al. [10] that the use
of Hamming’s fourth-order predictor-corrector method in a single-pass scheme is very
likely the most economical approach.

Recently several studies (e.g. [11-14]) have been reported where the solutions of both
constant-coefficient and time-varying systems are expressed in terms of Chebyshev
polynomials. However, the first applications of orthogonal polynomials to differential
equations with periodic coefficients were reported by Sinha and Chou [8] and Sinha et al.
[7]. These applications were limited to second-order scalar equations only. In a later study
by Sinha and Wu [15], a general scheme for the stability analysis of a system of
second-order equations was presented. The approach was based on the idea that the state
vector and the periodic matrix of the system can be expanded in terms of Chebyshev
polynomials over the principal period. Such an expansion reduces the original problem to
a set of linear algebraic equations, from which the solution in the interval of one period
can be obtained. Furthermore, the technique was combined with Floquet theory to yield
the transition matrix at the end of one period and provide the stability conditions via an
eigen-analysis procedure in addition to providing the solution for all time. Two
formulations, one applicable to a set of equations written in state space form and the other
suitable for direct application to a set of second-order equations, were presented. In both
formulations, the original system of differential equations was converted to a set of
integral equations. An error analysis concluded that the suggested schemes not only
provide accurate results with rapid convergence, but are also computationally very
efficient. In particular, the direct formulation was found to be several times faster than the
standard Runge-Kutta type codes.

This procedure was further developed and applied to a large-scale rotorcraft problem
[16,17], a boundary value problem in the stability analysis of slender rods [18], and to the
optimal control problem of mechanical systems subjected to periodic loadings [19]. In
particular, it was found by Sinha and Joseph [20] and Sinha ez al. [21] that the well-known
Liapunov-Floquet (L-F) transformation may be employed which converts the original
time-periodic system into an equivalent time-invariant one suitable for the application of
standard time-invariant methods of control theory. More recently, this approach has been
extended by Sinha and Pandiyan [22], Sinha et al. [23], and Pandiyan et al. [24] to
nonhomogeneous and quasilinear systems, in which the time-periodic linear part becomes
completely time-invariant through the application of the L-F transformation and the
well-known methods of normal forms or averaging can be applied after the transformation
to yield more accurate results.
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All these developments in Chebyshev polynomial approach, as described above, were
basically extensions of the technique originally suggested by Sinha and Wu [15]. The
differential equations were first rewritten in their equivalent integral forms and the
solutions were then obtained by utilizing properties of the operational matrix of
integration associated with the shifted Chebyshev polynomials of the first kind. Further,
the ‘direct approach’ of Sinha and Wu [15] is limited to a set of second order equations
only. Although the ‘direct approach’ is much more efficient as compared with the
‘state-space method’, it involves lengthy manipulations through integration by parts.
Further, the solution of sets of larger order equations requires more integrations by parts,
and the formula for the algebraic equations quickly becomes unreasonably long. In this
paper, a new method is presented which, for the first time, utilizes Chebyshev polynomials
to solve a system of pth order linear differential equations with periodic coefficients, where
p is an arbitrary positive integer. For this purpose, first the operational matrix of
differentiation associated with the shifted Chebyshev polynomials of the first kind is
derived. Utilizing the properties of this matrix, it is possible to obtain solutions of a set of
pth order equations without constructing the equivalent integral equations. This ‘dif-
ferential formulation’ is much more straightforward and efficient when the order of
equations is large. Although the initial conditions do not enter as an integration constant
as in the ‘integral formulation’, they may be incorporated into the algebraic equations by
taking into account the properties of the differentiation operational matrix. Two methods
are presented: one applicable to a set of pth order equations rewritten in state space (first
order) form, and the other directly applicable to the orginal set of pth order equations. It
is shown that fewer algebraic equations must be solved in the ‘direct method’, thus making
this approach much more efficient when either n (the number of equations) or m (the
number of Chebyshev terms used) is large. The Mathieu equation and a higher order
system of two coupled Mathieu equations (which arises when two coupled pendulums
have independent vertically oscillating supports) are used as illustrative examples.

2. PROPERTIES OF CHEBYSHEV POLYNOMIALS

2.1. Properties of Shifted Chebyshev Polynomials

The Chebyshev polynomials of the first kind are defined by the expression [25,26]

(-7 1 d

r 1
= : — 2 [ —_ 2yr—3 =
T =G (=I5 =73 r=0,123. .. )

and are orthogonal over the interval [—1,1] with respect to the weight function

wi)=(1—tH 12 )

These polynomials can also be obtained by the formula

T() =cos(r9); t=cos@@), —-1=t=1, r=0,1,2,3. .. 3)
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The shifted Chebyshev polynomials of the first kind are defined in terms of the
Chebyshev polynomials of the first kind by using the change of variable,
t*r=0q+1)2, 0=rr=<1. )]
Thus, the shifted Chebyshev polynomials of the first kind are given by
T.)=TQ2t—1), 0=<t=<1. 5)
All properties of T ,(#) can be deduced from those of T,(2¢ — 1). By identifying the first

few successive terms, it is also possible to express small powers of ¢ in terms of the shifted
Chebyshev polynomials of the first kind as

To® = 1,
Ti(®)=2t—1, t= %(T;(r) + T (),
T,)=8>*—8+1, 1*= %(3T;(t) + 4T () + T5@), (6)

Ty =32t — 482+ 18— 1, . . .

The recurrence relation of the shifted Chebyshev polynomials of the first kind can be
generated from equation (5) as

Tyt =2Qt — DT () — T, () o)

while the orthogonality relationships are given by

0, r#k
f O‘T’;(t)T;(t)w(t)dz = g r=k#0 ®)
m, r=k=0
where
wt) = (t —t?) 12 )

is the weight function of the shifted Chebyshev polynomials of the first kind. Generally,
an arbitrary continuous time function f{z) can be expanded into a shifted Chebyshev series
over the interval [0,1] as [27]

=3 al () 0=st=1 (10)

r=0

The Chebyshev coefficients a, can be obtained from

1 *
ar = gfl w(T)ﬂT)Tr(T)dT ; r= 0, 1’ 2’ 3' M (11)
0
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where w(T) is the appropriate weight function and

d3=142 12

Any continuous function can also be expanded in terms of shifted Chebyshev polynomials
of the first kind in the arbitrary interval [¢,,z,], if so desired. This is shown in Appendix
A.l.

2.2, Operational Matrix of Differentiation

The general recursive formula for differentiation of the shifted Chebyshev polynomials of
the first kind can be written as

r2
4 T () =4r 2 Ty () =4r(T(®) + T30 +. . .+ T,_,(1), r=0.24,. .. 13)

dt i=1

(r—-12

d * * * * * *
5710 =2r+4r 3 T30 = 2THNTO+T O+ . +T @), r=135,. . . .
j=1

This may be written in vector form as

d .
o T*@) = DT (1) (14)

where D is the m X m differentiation operational matrix given by

0 0 0 0 0 0 0 o0

2 0 0 0 0 0 0 0

0 8 0 0 0 0 0 0

6 0 12 0 0 0 0 0

D= 0 16 0 16 0 0 0 0
10 0 20 0 20 0 0 o0

0 4m-2) 0 4m-2) 0 4m—2)--- 0 O

2m—1) 0 4m-1) O 4m—-1) 0 ---4m—-10

s)
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and T*(t) = (To®T(®). . .T,_,®) 7 is an m X 1 column vector of the polynomials.
From the differentiation property of Chebyshev vectors, it can also be shown that

k k
T T*(f) = D*T*(») or % ™7 =T*"(nID ") * (16)

where ()" denotes the transpose of the quantity ( ). The differentiation operational matrix
of shifted Chebyshev polynomials of the first kind can also be obtained in an arbitrary
interval [¢,,z,] as shown in Appendix A.2.

Since the process of differentiating k times reduces the order of the polynomials by £,
the D matrix is a nilpotent matrix of rank m — 1 containing zeros on its main diagonal and
having both a zero row and a zero column. (A matrix A is nilpotent if A* = 0 for some
positive integer k. The minimum such £ is called the index of nilpotence.) To find the index
of nilpotence of D or D7, the following effect of the kth power of D (respectively D7) is
considered. The multiplication of D (respectively D7) by itself k — 1 times transforms k-1
successive subdiagonals of D (respectively superdiagonals of D7) from non-zero to zero
and thus increases the number of zero rows and columns to k and decreases the rank to
m — k. Since there are m — 1 subdiagonals of an m X m D matrix (respectively
superdiagonals of D7), the multiplication of D (respectively D7) by itself m — 1 times
removes all of the non-zero elements (i.e. D™ = [DT]™ = 0), and so the index of nilpotence
is simply m.

As discussed in references [15,25,26], the process of integrating a function which has
been expanded in m terms of shifted Chebyshev polynomials using the integration
operational matrix G (see Appendix B) results in a type of forward difference recurrence
procedure in which a loss of information occurs because the resulting expression, instead
of having m + 1 terms, is truncated after m terms in order to keep the polynomial vector
the same length. In that procedure, the initial conditions enter when the integration
constant is added, however, thus keeping the number of Chebyshev terms (and hence the
accuracy of the expansion) constant. On the other hand, due to the nilpotent nature of D
and D7, the process of differentiating a function which has been expanded in shifted
Chebyshev polynomials using the differentiation operational matrix results in a type of
backward difference recurrence procedure in which a loss of accuracy occurs because the
constant coefficient (which is usually a dominant term in the Chebyshev expansion) is lost
and the number of Chebyshev terms decreases by one for each differentiation. Hence, the
initial conditions do not enter automatically, and must be added in such a way as to keep
the resulting number of algebraic equations the same.

This property of the differentiation operational matrix can be verified easily by
successively integrating and differentiating a shifted Chebeshev polynomial vector of
length m. Such an operation without the use of operational matrices simply yields the
original vector back. However, this is not the case when the integration and differentiation
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operational matrices G and D are used. As an illustration, consider the expressions

0 0 0 - 0| 0 1 —-1-.- 17|

11 ) 010

DGT*(n=| -1 0 1 O, "¢ D"=TT)] 0 0 1
| 100 - 1| [ 00 0 - 1|

an

It is to be noted that the product of the differentiation (D) and integration (G) operational
matrices (respectively the transpose of this product) results in an (m — 1) X (m — 1)
identity matrix along with a zero row (respectively column) and extraneous column
(respectively row) rather than an m X m identity matrix. It can also be concluded that
integrating and differentiating a polynomial vector (of length m) k times with the use of
operational matrices yields a coefficient matrix which contains an (m — k) X (m — k)

identity matrix along with k zero rows (respectively columns) and extraneous columns
(respectively rows).

3. METHOD OF ANALYSIS

Consider an n dimensional linear system of pth order differential equations of the form

Loy =0;

y©0) =y°, y0) =", YOO =y @ (18)
where y(t) is an n X 1 position vector (y;(?) y,(?)... y,,(t))T and f,p(t) is the linear differential
time-periodic vector operator defined as

. P dp-l
L) =W, + 4,01 —5+ Wy + A, 5= +. -

d
+ [W, + A,(D] @ + [W, + A1 (19)

W, and A,(?), k = 0,1,...,p are n X n constant and time-periodic matrices, respectively.
Each of the time periodic matrices A,(f) can be written in the most general form as
A = Afi(®) + A¥in) + ...+ AN where the functions fi(f) = fiut +
By, = 1, . .r are periodic with period B} and the n X n constant matrices
Ai,l = 1,. . .,r, contain the coefficients of these periodic functions. Since the
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frequencies are commensurate, there exists a positive number T such that g LBL = T for
positive integers g ;. Note that the minimum value of T for which this relation holds is
known as the ‘principal period’ and is precisely the period of the entire operator L (f) =
ﬁp(t + 7). The transformation ¢ = Tt normalizes the period of the functions f ,{k-r) to

llqi and the resulting equation is

L,my( = 0;
YO =y 3@ =y ... yT @) =y*"™ (20)

The new operator Zp('r) = I—,p('r + 1) is

— — — dP — — p-1
Lp('r) = [Wp + Ap(‘r)] F + [Wp_l + Ap_l("r)] F +. ..
— — d — —
+ [W, + A,(7)] d—'r + [W, + Ay(1] 1

— 1 - - 1
with new matrices defined by W, = FW" and AT = At + 1= FAk(T),
k=0,1, . .p. In the following, the solution of equation (20) is obtained in terms of
shifted Chebyshev polynomials of the first kind by two different methods via the
differentiation operational matrix.

3.1. Differential State Space Formulation

Lettingx,(T) = y(7), (1) = ¥(1),. . ., Xx,(7) = y(""l)('r), equation (20) canbe rewritten in
the state space form as
(W, + A,(DIX() + [W, + A((DIX() =0; X(©0)=X"° (22)

where X(7) is a pn X 1 state vector (x IT('r) xg('r). . X ;'f('r)) T and the pn X pn state space
matrices are defined as

I~y
<l

W, = , A= : 23)

5 w, | u A,m)]
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0 -1 0 ]
0’ 0
W, = Rl , Ag(r) =
0 -I 0
[ Wy W, W, o W, | [ A0 A 4, @) 4, (7).

with I and 0 being n X n identity and null matrices, respectively. Since the time-varying
matrices contain the 1/g i-periodic functions f i(-r), these matrices may be written as
A (D = CMlm + C¥ir) +. . .+ C*f™(1),k = 0, 1, where p,is the largest number
of these different functions within A, (7) (p; = r, and py = max{r,},k = 0,...,p — 1) and
the pn X pn constant matrices CX, A = 1,...,p, contain the coefficients of the periodic
functions contained in A (7). Again, there exists positive integers g such that g\ =
1 for each function fX(1).

At this stage the 1/q ;-periodic functions fA(t), k = 0, 1, A = 1,...,p, are expanded inm

terms of shifted Chebyshev polynomials of the first kind with known coefficients d ©* and

the state vector X(7) is similarly expanded but with unknown coefficients b’, These take
the forms

m—1
i) =2 dTi@m)=T*Tmd"™, x=0,1,A=1,. . .p,
i=0

m—1
X =2 biT@®=T*"p’, j=1, . .pn
i=0
T (1) = T @) T1(@). . .T,(7) 24)
d* =@y dpr. . A2 )T
b/ =@} bi. . b _HT
where T;-'('r) (0 = 7 = 1) are the shifted Chebyshev polynomials of the first kind and X;(1)
are the elements of the state vector X(7). Substituting equation (24) into equation (22)
yields
TL@W, + 01D} B,, + T7,0W, + OolB,, = 0 25)

where
T =1,T*T(x);, W,=W.®I,, k=0,
” Pu .
0,=2C.,®0.,,x=01 D], =1,8D" (26)
A=1

B, =(@@®"Y" ®»"...0™MNHT
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and & refers to the Kronecker product as defined in Appendix C. 1,,, and I,, are pn X pn
and m X m identity matrices, respectively, and Qﬁ are product operational matrices
corresponding to the functions f ,’;('r) and are defined in Appendix D in terms of the
Chebyshev coefficient vectors d**. Since Tg,,('r) is not zero in general, equation (25)

results in a set of algebraic equations for the coefficients B, of the state vector given by

Z,B,, =0 @7

where

Z,, =W, + 0,07 + W, + 0, (28)

As a result of the zero row of D discussed in section 2.2, ﬁ;, contains pn zero rows
(from the Kronecker product operation) which are located in the imth rows where i = 1,...,
pn. The corresponding rows of Z,, and 0 may therefore be removed and replaced by the

pn initial conditions (¢f. equation (22)) expressed in terms of the Chebyshev coefficients
as

X(0) = T*(0)p’ = X}, j=1,. . .pn
where (29)
'0)=Q1 -11-1...T,_,0).

This guarantees that the initial conditions are satisfied and equation (22) is transformed to
a set of pnm nonhomogeneous linear algebraic equations for the elements of B,,, given by

5 _ %0
Z,B, =X 30)
where ipn is the modified Z,,, matrix appearing in equation (28) and

X*=@©0 . .ox%00 . .0x%..00 . .0x%)7 @31)
(m—1) (m—1) (m—1)

contains the elements of the initial condition vector X°. The above equation yields the
Chebyshev coefficients similar to the backward recurrence procedure given in reference
[25]. Finally, the state vector may be determined from

X() = TL(MB,, (32)

Since the application of the differentiation operational matrix results in the removal of one
of the Chebyshev polynomials, it is, therefore, necessary to increase the number of
polynomials used in this process by one in order to provide an equivalent accuracy with
the integral formulation [15]. It is to be noted that in this formulation, matrix inversion has
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been completely avoided as far as converting the problem to a state space form is
concerned.

It is observed from equation (30) that in the ‘differential state space formulation’, a set
of pnm equations must be solved. In the following section an alternate formulation is
presented such that the total number of algebraic equations is considerably reduced.

3.2. Differential Direct Formulation

Returning to equation (20), each of the periodic matrices appearing in equation (21) is

once againrepresentedas A, (1) = C, f }(('r) +C i ff(*r)+. .+ CHHDk=0,. ..,p
— 1

where the 7 X n matrices C } = T* A}, l1=1, . .r,contain the constant coefficients of the

periodic terms in Zk('r). The functions f i(*r), k=20, ..,pl=1, . ,r and the position
vector y(1) are expanded once again in m shifted Chebyshev polynomials of the first kind
as

m—1
fim =X dTm=T"d", k=0, . .pl=1, ..
i=0

m—1

ym =2 bT(x)=T*"(b’, j=1, . .n (33)
i=0

where y(7) are the elements of y(T). Substituting equation (33) in equation (20) and
collecting terms as before results in

ZB,=0 (34)

where

Z,=W,+ QDN+ W,  +0, IIDT” +. . + W, +01DT+ W, + Q(°3;5)

Wk=Wk®Im’ k=0,- . -’P; Qk= 262®Q§0 k=0’ * ’p’

=1

DI=1,®D", B,=@"Y" ®>»"...®"DH7,

since f‘,f(ﬂr) = I,® T* (1) is not zero in general. The definitions of various quantities are
the same as in the ‘state space formulation’ (Section 3.1).

As discussed in Section 2.2, the kth power of D7 has k zero rows and columns and a rank
of m-k. Therefore, [D ,f] * has kn zero rows (from the Kronecker product operation) which
are located in the (im-j)th rows where i = 1,...,n;j = 0,....,k — 1; and k = 1,...,p. Since
[D ,{] ? has the most zero rows (pn of them) and the lowest rank (mn-pn), the corresponding
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rows of Z,, and 0 may, therefore, be removed and replaced by the pn initial conditions (cf.
equation (20)) expressed in terms of the Chebyshev coefficients as

¥O) =T*"Op’'=(1 -1 1 —1...T,_,(0)b’ =y,
y(0) =T*"O)D b’ = (0 2 -8 18. . .T,_,(0)b’' =y,

5(0) =T+ 1%’ = (0 0 16 —96. . .T,,_,(0)b’ = 3,

(36)
YO =TOD 17 = 00 . .0T,%00). . T, O =y,
-1
j=1.. ,n.

The initial conditions are thus guaranteed to be satisfied and equation (20) is transformed
to a set of nm nonhomogeneous linear algebraic equations for the elements of B,, given by

ZB,=§° @7
where 2,, is the modified Z, matrix appearing in equation (35) and

=00 . .0y%%. .y o0 . .0yYyd..yF M . (38)
(m—p) ®) (m—p) ®)

00 . ..0y%% . ye T
(m=p) ®

contains the elements of the initial condition vectors y°, y°,..., y?~°. Equation (37) may
be solved for all of the Chebyshev coefficients B, and the position vector and its
derivatives may be determined from

ym = T1"B,
¥@ =TImDB,

’ (39)
y® V@) =TImD N 'B,

or, since T .(T) consists of p blocks of T T(7) on its main diagonal, the complete state
vector X('r) = (y (1) y (7). - (” 1)T('r)) may be obtained from equation (32) where
B, =@, ®DB)" - (D" ‘B,,> )"

Since the application of the pth power of the differentiation operational matrix results
in the loss of p Chebyshev polynomials, it is therefore necessary to increase the number
of polynomials used in this process by p in order to provide the same accuracy as in the
integral formulation, in contrast to the ‘differential state space formulation’ in which it is
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necessary to increase the number of polynomials only by one. However, this approach is
much more efficient since the ‘differential state space formulation’ requires a solution of
pnm algebraic equations in contrast to only nm equations in the ‘differential direct
formulation’. To see this, the substitution m — m + 1 is made to pnm and the substitution
m — m + p is made to nm. Since these have the effect of adding pn equations in both
cases, the difference remains the same, i.e. (p-1)nm more equations must be solved in the
‘differential state space formulation’ than in the ‘differential direct formulation.’

3.3. Computation of the Floquet Transition Matrix

Floquet theory is the most significant tool in the analysis of stability and response for
linear differential equations with periodic coefficients. In this section we briefly sum-
marize some main results and show how the Floquet transition matrix (FTM) can be
computed using the aforementioned methods.

Consider a set of linear ordinary differential equations of the form

x(1) = A@®x(®) (40)

where x(t) is an n vector and A(z) is an n X n periodic matrix having a principle period
T, such that A(z + T) = A(t). Based on the Floquet theorem [5], the fundamental matrix
®(#) can be represented as ®(f) = P(t)exp(Z?), where P(t) = P(t + T) is a periodic matrix,
and Z is a constant matrix. In general, ®(#) is a solution of equation (40); i.e., a
nonsingular matrix each of whose columns is a solution of equation (40) such that ®(0)
= I, the identity matrix. Therefore d®/dt = A(t)®(r), ®(t + T) = ®(?)F, and in particular,
®(T) = exp(ZT) = F where F is a constant matrix called the Floquet transition matrix
(FTM). Once the fundamental matrix is known, the solution of equation (40) can be
written as x(f) = [®(?)]x(0) = P(t)exp(Zf)x(0) where x(0) is the initial state vector.
Moreover, for times greater than one period, the solution is obtained as x(t + kT) = (¢
+ kDx(0) = ®(1)[®(D]*x(0).

The knowledge of F = ®(T) is significant in the study of periodic differential equations
since it provides necessary and sufficient conditions for the stability of linear periodically
time-varying systems. The eigenvalues &, of ®(T) are called the Floquet multipliers and,
in general, they are complex (§, = &g + i&;). We can also define the characteristic
exponents as oy = iy, where oy, = (1/D)Inl§, | and p, = (1/Ttan~ ' (§,/&R). The stability
criteria are related to the characteristic exponents and Floquet multipliers and may be
summarized as in the following:

(1) The knowledge of @(7) at the end of one period is sufficient to predict the stability of
the system. The stability criteria for the system can be stated in terms the real part of
characteristic exponent o, or in terms of the modulus of the Floquet multiplier. A system
is stable if all o < 0 or if all 1§ | < 1 for k = 1,2...,n. If at least one o, > O (or at least
one 1§ | > 1), it is unstable;

(ii) Once the fundamental matrix ®(¢) is known in the interval [0,T], the solution for all
t > T can simply be obtained from the semigroup property as stated above. The details can
be found in reference [28].

The computation of the Floquet transition matrix ®(T) associated with the pth order
linear system via the ‘differential state space formulation’ proceeds as follows. From
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equation (30) a set of pn B ;,,,’s are obtained for the pn initial conditions X'(0) = (1,0,0..0),
(0,1,0..0),..., (0,0,0...,1), i = 1,...,pn. It is to be noted that all Bl’,,,’s can be determined
simultaneously by defining the right hand side of equation (30) in matrix form, i.e.

n —yo
piBpn = X 41
where B,, = [B.,B2. - B andX® = [X9XJ. . XC,). Then the FTM is given by

®(1) = T7,(1)B,,. 2)

Similarly for the ‘differential direct formulation,’ a set of pn B'’s are obtained for the pn
initial conditions by defining equation (37) in matrix form as

iB,=Y° 43)
where B, = [BLB2- - -B” and Y° = [§0§3 - -§C,]. Then the pn X pn FTM is
computed according to equation (42) where B, = (B r 1)) 'B)T. . (D neripyHT.

The solution for the state vector in both the ‘differential state space formulation’ and the
‘differential direct formulation’ is given by equation (32). This is valid in the interval ¢ €

[0,T] or 7 € [0,1]. As pointed out previously, the solution can be easily extended for ¢ > T
(7 > 1) by utilizing the formula

X(r) = ®(n) [®(1)] “X(0) 44)

wherer =k + n,me[0,1},k=1,2,....

4. APPLICATIONS
4.1 MATHIEU’S EQUATION

We first consider the well-known problem of the Mathieu equation,

() + (a + b cos(Q))y(®) = 0, t>0 (45)

2
which has period T = E'n' and parameters a and b. Note that n = 1 and p = 2 in this

problem. Transforming to state space form and normalizing with ¢t = T yields equation
(22) with W, = I, A,(1) = 0,

0 -1 0 0

W, = 411'2a o | A= 4112b o | cos@m. (46)
0? a?
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4n?
Note that the entire equation has been multiplied by T = o Following the procedure

outlined in Section 4.1, it can be shown that the problem reduces to equation (27), where

DT |

Z2,=2Z,=| 4n* , 47
m= BT Gr@ b DT “n

Q is the product operational matrix associated with cos(2r), and D”, I, and Q are all of
dimension m X m due to m number of polynomials used in the Chebyshev expansion. The
zero mth and 2mth rows of D 7 5 correspond with the rows of Z, and 0 that are replaced with
the 2 initial conditions as in equation (29). The resulting system of 2m algebraic equations
is of the form of equation (30) and may be solved for the Chebyshev coefficients B, to
obtain the solution.

The ‘differential direct formulation’ (¢f. section 3.2) reduces to equation (34) with

Z,=Z,=[D")? + (aI + bQ) (48)

where all matrices are defined as in equation (47) and we have again multiplied through

4
by Eﬂf The initial conditions (equation (36)) replace the (m — 1)th and mth rows of Z,

and 0 and the resulting system of m algebraic equations in B, is of the form of equation
(37), which can also be solved to obtain the solution.

The numerical results for the case of a = 1, b = —0.32, and ) = 3 were computed via
both the ‘differential state space’ and ‘differential direct’ methods over one period and
compared with the results obtained previously by Sinha and Wu [15] for the ‘integral
formulation’ and a Runge-Kutta (DVERK) routine in the IMSL library. For expansions of
10 and 12 terms, the results using the ‘differential state space formulation’ agree precisely
up to 6 significant figures with those of the ‘integral formulation’ for 10 and 12 term
expansions, respectively, and with the Runge-Kutta routine up to five significant figures.
As expected, the ‘differential direct formulation’ needed 11 and 13 terms, respectively, for
an equivalent accuracy. The familiar stability diagram is presented in Figure 1, where ()
= 2ar and 67,200 different points in the two-dimensional (a,b) parameter space have been
analyzed for stability by computing the eigenvalues of the FTM found by equation (42).
Here, the dark regions represent unstable zones (when one eigenvalue is outside the unit
circle in the complex plane) and the white regions the neutrally stable ones (when both
eigenvalues lie on the unit circle). Since there is no damping present, all of the unstable
‘Arnold tongues’ [29] intersect the b = 0 line at a = (q1'r)2, g = 1,2,...in this Hamiltonian
system; however, the finite resolution does not show this for the one farthest right. It is to
be observed that the boundaries between the zones exactly coincide with those reported in
[30] and [31] where the b = O intersections are at g>/4, ¢ = 1,2,...(for Q = 1) and that
the route of destabilization is specific for each tongue, alternating between tangent or
saddle-node (when the eigenvalues of the FTM meet and split at +1) and period doubling
(when they meet and split at —1). Because the FTM for a Hamiltonian system is a
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symplectic mapping whose eigenvalues must lie symmetrically opposite both the real axis
and the unit circle in the complex plane, these are the only possible routes of
destabilization (bifurcations in the corresponding nonlinear equation) for a single
degree-of-freedom system with two eigenvalues [32].

4.2 A Higher Order System

We next consider the problem of two coupled Mathieu equations of the form

F1®) + (a, + by cos(Q)y, () + c1y,(5) = 0
o) + (ay + b, cos(Q)y,(8) + coy,(8) = 0 (49)

2
each of which has period T = Eﬁ and parameters a;, b;, and c;, i = 1,2. This is the model

for the linearized system of two coupled pendulums with vertically oscillating supports
where a; = g/l; + k/m;, b; = A, O/, and ¢; = —kl..;/m];, i = 1,2 are defined in terms
of the spring constant (k), pendulum lengths (/;), masses (m;,), gravitational acceleration
(g), and amplitudes (4;) and frequency ({2) of the supports. Note that n = p = 2 in this
problem.

100.0

80.0

40.0

20.0

0‘926.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0

Figure 1. Neutrally stable (white) and unstable (dark) regions on the (a,b) parameter plane for the Mathieu
equation where ) = 27. The routes of destabilization consist of tangent and period doubling.
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The ‘differential state space formulation’ reduces to equation (27) with

DT 0 -10
0 DT 0 -1
z,=2,= . . . (50)

al+bQ c¢iI DT o
c;I a+b,0 0 DT

4r? 4 4r?

. 4n’
wherea ; = o2 b; Y b,, F ¢; (from multiplying through by 7° = %) Qis

the product operational matrix assoc1ated w1th cos(21'r'r), and all submatrices are of
dimension m X m. The zero imth rows of D | #» 1 = 1,...,4, correspond with the rows of Z,
and 0 that are replaced with the four initial condltions (cf. equation (29)), and the resulting
system of 4m algebraic equations may be solved to obtain the solution. The ‘differential
direct formulation’ reduces to equation (34) with

z,=2

T2 * * *I
2=[[D] +all+b]0 ¢ ] 1)

c D712+ a)+b5Q

in which the four initial conditions (equation (36)) are inserted intoAthe imth and (im-1)th
rows of Z, and 0, i = 1,2, which correspond to the zero rows of [D 1. This results in a
system of 2m equations which may be solved to obtain the solution. Of course, this
approach becomes more efficient than the ‘differential state space formulation’ as the
number m of Chebyshev terms is increased due to the reduced number of equations to be
solved.

However, this problem can be solved in a much more efficient way for large m by
rewriting equations (49) as a single fourth order equation (in which pn = 4 is kept
constant) and applying the ‘differential direct formulation’ which then yields only a set of
m algebraic equations. From equations (49), the equivalent fourth-order equation is
obtained as

¥ + (a, + Bycos(Qe))y + ysin(Qe)y + (o + Bcos(Qe)) + dcos(2Q))y = 0 (52)

bb
Where 0y, = ay + a,, Bz = bl + b2, Y= _2b Q Qg = a4, + _12-2‘ C,Cy, BO a1b2

2 bb, . . .
+ ayb; — b, ()%, and d = - Since n = 1 and p = 4, the ‘direct formulation’ reduces

to equation (34) with
8w
z,=2,=D7"+ 27 a7 "l + 9D + 3T s 07 +

16m*
a (ool + BoQp + 3Q5) (53)
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Figure 2. Neutrally stable (dark) and unstable (white) regions on the (b,,b,) parameter plane for the system of
coupled Mathieu equations where a, = a, = 11.81, ¢; = ¢, = —2.0, and £} = 3. Destabilization occurs via the

tangent route.

where Qg, Q., and Q5 are the product operational matrices associated with cos(2mT),
sin(27r7), and cos(4mT), respectively, and the equation has been multiplied through by

16m*

T = o The four initial conditions from equation (36) are inserted in the (m-i)th rows

of Z, and 0, i = 0,...,3 corresponding to the zero rows of [D7]* and the resulting system
of m algebraic equations may be solved to obtain the solution. It is to be noted that, unlike
the transformation to state space form which preserves the original initial conditions, a
correct solution to equation (49) requires a transformation of initial conditions when using
the fourth-order form (equation (52)). However, although the FTM’s for equations (49)
and (52) may be different, their eigenvalues which determine the stability are the same.

For the parameter set g = 9.81 m/s?, k = 2 N/m, [, = 1 m, m; = 1 kg, (a = 11.81 and
¢; = —2.0) and A; = 0 (no support oscillation, making the system time-invariant), the
eigenvalues of the system are *+1.50*i and +0.277*i and the system is neutrally stable.
The motion was then analyzed for different values of the two amplitudes of support
oscillation in the range A; = —1.11m to 1.11m corresponding to b, = —10.0 to 10.0 and
with a frequency of ) = 3 rad/s. For each pair of amplitudes, the FTM’s for equations (49)
and (52) were computed via equation (42) and their eigenvalues subsequently analyzed for
stability. The results are presented in Figure 2, where 53,972 points in the (b;,b,)
parameter plane have been analyzed for stability. Here, the dark region represents the
neutrally stable zone (when all four eigenvalues of the FTM lie on the unit circle in the
complex plane) and the white region the unstable one (when at least one eigenvalue is
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Figure 3. Neutrally stable (white) and unstable (dark) regions on the (a,,b;) parameter plane for the system of
coupled Mathieu equations where a, = 11.81, b, = 2.7, ¢; = ¢, = —2.0, and 0 = 3. The routes of
destabilization consist of tangent, period doubling, and Krein collision.

outside the unit circle) in which destabilization occurs via the tangent route. The range on
the two axes is slightly different in order to demonstrate that the oval-shaped stable region
is symmetric with respect to the two 45 degree lines through the origin. This is expected
since the coupled equations themselves are symmetric with identical parameter values and
since, as is well known from plots similar to Figure 1 (c¢f. [30] and [31]), the stability of
a set of parameters is invariant to changing the sign of the periodic stiffness term.
Physically this just means that the support amplitudes can always be taken as positive
quantities.

In Figure 3, A, is fixed at 0.3m (b, = 2.7) and the stability of 360,000 points in the
(a;,b;) parameter plane is plotted where the dark regions represent the unstable zones as
in Figure 1. It is observed that the Arnold tongues which destabilize via the tangent and
period doubling routes intersect the b; = 0 line (which the finite resolution does not show
for some of them as in Figure 1) near a; = (gm/T)? = 9q2/4, q = 1,2,...where T = 2m/3
(from normalizing the 3 = 3 frequency to 2m) which correspond to the b = 0
intersections in the single Mathieu equation. The coupling causes these points to be
slightly shifted for small g, and the largest change occurs for ¢ = 2 in which the coupling
shifts the b; = 0 intersection from a; = 9.0 to a; = 10.4. However, the amount of shift
quickly becomes insignificant as g increases. In addition, another route of destabilization
(due to b, being nonzero) in which two pairs of eigenvalues of the FTM meet on the unit
circle of the complex plane (but not on the real axis) and then split is exhibited in every
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Figure 4. Neutrally stable (dark) and unstable (white) regions on the (b,,b,) parameter plane for the system of
coupled Mathieu equations where a;, = 33.0, a, = 11.81, ¢, = ¢, = —2.0, and Q = 3. The routes of
destabilization consist of period doubling and Krein collision.

third tongue. This destabilization route, called a Krein collision, requires at least four
eigenvalues and is therefore found only in Hamiltonian systems with at least two
degrees-of-freedom. Together with tangent and period doubling, these are the only three
possible routes of destabilization for a linear symplectic mapping (e.g. the FTM for a
linear periodic Hamiltonian system) [32]. Increasing b; from 0 at a; = 11.81 in this figure
corresponds to increasing b, from 0 at b, = 2.7 in Figure 2. In either case, one travels from
a stable zone to an unstable zone (due to tangent destabilization) at b, = 5.63. In Figure
4, a, is fixed at 33.0 (a, is still 11.81, making the system asymmetric) and 21,600 points
in the (b,,b,) parameter plane are again analyzed for stability. Here, the dark regions are
neutrally stable and the white regions unstable as in Figure 2. A ring-like region of Krein
collision destabilization can be seen in the interior, while the outer region corresponds to
period doubling. Increasing b, from 0 at b, = 2.7 in this figure corresponds to increasing
b, from 0 at a; = 33.0 in Figure 3. In either case, one travels from a stable zone to an
unstable zone (due to Krein collision) at b, = 18.5, to another stable zone at b, = 21.5,
and finally to another unstable one (due to period doubling) at b, = 39.0.

It was found that the cpu time required for the analysis of one parameter set via the
fourth order ‘differential direct formulation’ (equation (53)) with a 14 Chebyshev
polynomial expansion was actually more (0.37 s) than that required via the second-order
‘differential direct formulation’ (0.25 s). This is because the time to perform the additional
matrix multiplications outweighed the time saved in solving 14 less algebraic equations.
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However, the cpu time required with a 50 term expansion via the fourth order form was
less (0.69 s) than that required via the second-order form (1.23 s) since the time saved in
solving 50 less equations outweighed the matrix multiplication time, where all times given
have been averaged from 10 runs each on a SUN Sparc 20 workstation. It is expected that
increasing the number n of equations would have a similar effect, and that the ‘differential
direct formulation’ used in equivalent higher order equations (keeping pn constant) would
be the fastest even for small m if the number n of equations was large. It was reported in
references [15,16] that the ‘integral formulation’ (especially the direct approach) was
several times faster than single-pass Runge-Kutta, Adams-Moulton, and Gear methods in
computing the characteristic exponents of a large-order system. It is therefore to be
anticipated that the ‘differential formulation’ would also achieve good efficiency although
in the present approach pn additional linear equations are needed to be solved for an
equivalent accuracy (¢f. section 3.2). For example, if 15 terms are used for a set of ten
second-order differential equations, then in the ‘differential direct formulation’ one needs
to solve a set of 170 algebraic equations as opposed to 150 required for the ‘integral direct
formulation.” The difference is undetectable in the low-order examples used in this study
since a large portion of the cpu times reported above was spent in performing matrix
multiplications; however, the difference would be more evident for larger systems. The
initial memory overhead is exactly the same as in the ‘integral formulation’ since in both
formulations storage of the differentiation or integration and product operational matrices
is required.

5. CONCLUSIONS

It has been demonstrated that a set of pth order linear differential equations with periodic
coefficients may be solved and analyzed for stability by expanding the periodic matrices
and the solution vector in terms of shifted Chebyshev polynomials of the first kind. The
use of the differentiation and product operational matrices leads to the reduction of the
original set of differential equations to a set of algebraic equations in terms of the
Chebyshev coefficients for the solution vector. The Floquet Transition Matrix (FTM) may
then be computed and its eigenvalues (the Floquet multipliers) or the associated
characteristic exponents analyzed for stability. Two methods were given for computing the
solution vector and its derivatives. In the first, the original equations are rewritten in state
space (first order) form in such a way as to completely avoid matrix inversions. The
‘differential state space formulation’ may then be employed which converts the problem
to solving pnm linear algebraic equations in which p is the order of the equations, 7 is the
number of equations, and m is the number of Chebyshev terms used in the expansion. The
‘differential direct formulation’, on the other hand, applies directly to the orginal set of
differential equations and leads to solving a set of nm linear algebraic equations in terms
of the unknown coefficients for the solution vector. It was shown that this approach is
more efficient when either m or n is large. Unlike the similar ‘integral direct formulation’
used previously [15-18], it was shown that ‘differential direct formulation’ eliminates the
need for repeated integration by parts and is much more straightforward. In both
differential formulations, the special properties of the differentiation operational matrix



186 S. C. SINHA

allow the initial conditions to be included without adding additional algebraic equations.
Both formulations were used in the analysis of a single Mathieu equation and of a pair of
coupled Mathieu equations and stability diagrams for certain parameter sets were
constructed in which unstable zones were labeled with the type of destabilization occuring
in these zones. The coupled equations were also analyzed as one fourth-order equation
where the ‘differential direct formulation’ yielded the most efficient (for large m) method
of analysis.
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APPENDICES

Appendix A.1. Expansion of a Function in an Arbitrary Interval [15]

Any function which is analytic in the interval [z,,¢,] may be expanded in a series of shifted
Chebyshev polynomials of the first kind by means of a linear transformation

t—tl
r=——L =Bty (A1)

where B = ¢, — t;. Thus a new set of polynomials is obtained as

* * (t - tl)
T,(t*) = T, —B— . (A2)

A function analytic in [¢,,¢,] then has the representation

£ =2 aT (% (A3)

r=0
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where

1
a, = f wEAB + )T . (t¥)de*, r=123, ...,
0

[~

w(t*) = (¢x — x2) "1

{«/2, r+0
9=

A4
w, r=0. (Ad)

Appendix A.2. The Differentiation Matrix in an Arbitratry Interval

A differentiation operational matrix in an arbitrary interval [¢,,¢,] can be obtained by
means of the linear transformation shown above. From equation (A1), since dt*/dt = 1/B,
we have

iT*z —liT* * A5
& ,()—Bdt* At%). (AS)

From Section 2.2 we can obtain the operational matrix of differentiation of shifted
Chebyshev polynomials of the first kind as

% T*@) = %DT*(t), te[0,1] (A6)

where T*(t) = (To(t) T (&) T5(@) ... T o () 7.

Appendix B. The Operational Matrix of Integration [19]

The general recursive formula for integration of the shifted Chebyshev polynomials of the
first kind may be written in vector form as

[raa=6ro . [T @a=1]6 ®1)
0 0

where G is the m X m integration operational matrix given by
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1 1
3 5 0 0 O 0
1 1
-3 0 3 0 0 0
1 1 1
_ 1 1 1 :
G= T 0 ~3 0 e (B2)
1 1 .
-—— 0 0-—0 - 0
30 12 )
1
. S 4(m— 1)
_=n" 0 0 ... 0__1__ 0
2m(m — 2) 4m — 2)

and where T*(t) is the column vector of the polynomials T*(f) =
TOTH*O. . .Tp "

Appendix C. The Kronecker Product

Consider a 2 X 2 square matrix A and an n X m matrix B. The Kronecker product is

(&3))

a,B a,,B
A®B=[ nb ap ]

a,B a,,B
The resulting matrix is of size 2n X 2m.

Appendix D. The Operational Matrices of Products [33]

The cross-product of two vectors of shifted Chebyshev polynomials of the first kind can
be expressed as

o) T(t) TYH - - - T: @
rie 0T TiO+T0 .
2 2
. T+ Tai) To@d+ Tt
TOr'ay= | T i > © T > AU 1)
T;;l(t)w . . .. ,Ta(t) + T;(m—l)(t)

2 2
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m—1 m—1
Hence, forinstance, if (1) = >, a,T,(t) and g(t) = >, b,T (), then
r=0 r=0
fgt) = (aga, a, ... a,_)T*T*"(by b, b, ... b,_)T (D2)

where a, and b, are Chebyshev coefficients of the functions f{z) and g(t), respectively.
Using equation (D1), we can rewrite equation (D2) as

fogt) = T*T(HQb (D3)

where Q is the product operational matrix of shifted Chebyshev polynomials of the first
kind given by

a, a, a1
a — — . o . —
0 2 2 2
+ a, 1 +a) 1
% % 2 E(al s 2(a,,_, + a,)
= 1 a . D4
Q a2 E(al + a3) ao + 34 ¢ . ( )
1 am—1)
am—l 5(am_z + am) PO PN aO 2

andb = (by by b, ... b,,_,)".



