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In Ref. [6] the authors constructed analytical solutions including one arbitrary
function for the problem of nonlinear, unsteady, supersonic flow analysis concerning
slender bodies of revolution due to small amplitude oscillations. An application
describing a flow past a right circular cone was presented and the constructed solu-
tions were given in the form of infinite series through a set of convenient boundary
and initial conditions in accordance with the physical problem. In the present paper
we develop an appropriate convergence analysis concerning the before mentioned
series solutions for the specific geometry of a rigid right circular cone. We succeed in
estimating the limiting values of the series producing velocity and acceleration
resultants of the problem under consideration. Several graphics for the velocity and
acceleration flow fields are presented. We must underline here that the proposed
convergence technique is unique and can be applied to any other geometry of the
considered body of revolution.
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MAIN NOTATION

(x,r,0) =nondimensional cylindrical co-ordinates, nor-
malized by the true body length;
U = freestream velocity;
T = true time;
t=TU/L, nondimensional time;
w=true angular frequency;
k=wL/U, reduced frequency;
Q, & =total and perturbed potentials, both normalized
by (UL)™;
e =maximum body radius/L, the body thickness
ratio;
M = freestream Mach number;
~=ratio of specific heats (= 1.40);
a=distance of the nonlifting position, normalized
by LY
6 = oscillation amplitude;
u, v, w=nondimensional velocities, normalized by the
freestream velocity U,
du/dt; dv/dt; dw/dt = nondimensional accelerations.

1 INTRODUCTION

In Ref. [6] (Part I) the authors constructed analytical solutions for
the velocity potential of the problem of nonlinear supersonic flow
past slender bodies of revolution. The bodies undergo small ampli-
tude pitching oscillations around their nonlifting positions. The
analysis was based on the small perturbation theory related with the
unsteady transonic nonlinear PDE, as well as on the possibility of
splitting this equation in a pure steady and a pure unsteady part.
Several approximate methods and techniques were developed in
constructing analytical solutions of the resulting new equations. We
mention the well-known “parabolic method” [4,5], as well as the
“local linearization method” [10], which succeeded in giving analyt-
ical solutions for convenient approximate forms of the above dif-
ferential equations. Also, the “integral method” was often combined
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with the before mentioned techniques leading to satisfactory solutions
of the problem under consideration [2,4,5,8,9]. Especially in Ref. [6],
by means of the Monge method in combination with a convenient
“ad hoc” assumption related to the steady nonlinear PDE, as well as
by the separation of variables technique concerning the unsteady
PDE, we succeeded in obtaining analytical solutions of the pre-
scribed problem for Mach number M, > 1 (supersonic flow). These
solutions were expressed including one arbitrary function and several
infinite series. The velocity potential was analytically defined for a
specific geometry of the body (right circular cone).

In the present paper we continue the research of Ref. [6] firstly by
presenting the analytical solutions of the velocity and acceleration
unsteady supersonic flow fields related to a right circular cone
performing small amplitude oscillations around its nonlifting posi-
tion. Since the above solutions are expressed in the form of infinite
series of various arguments, an appropriate convergence analysis is
developed in order to evaluate the limiting values of the series. Thus,
we focus on the “destabilization” points and the corresponding
“destabilization” terms of the series expressions defining simulta-
neously the “convergence” terms included in these formulae. In the
sequel, through a numerical analysis of some “ideal” sequences being
constructed by the before mentioned terms, we finally prove the
convergence of the original series. As an application we present
several graphics concerning the velocity and acceleration flow fields
for various values of the parameters being introduced in the solution
of the problem under consideration. We must underline here that the
developed convergence technique is unique and can be applied to
any other geometry of the considered body of revolution.

2 MATHEMATICAL FORMULATION

Consider a rigid pointed body of revolution exposed to a steady
uniform transonic flow U. The body performs harmonic, small
amplitude pitching oscillations around its nonlifting position M,
while it is assumed to be smooth and sufficiently slender so that the
small disturbance concept can be applied. For the description of the
problem we consider a space-fixed cartesian co-ordinate system
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M(xs, ys, 2), the axis xg of which coincides with the central axis of the
body in its steady position (Fig. 1). The small amplitude oscillations
occur in the xg, ys-plane and so a body-fixed cartesian co-ordinate
system M(x,y,z) is necessary to be introduced for our analysis.
Finally, we consider a body-fixed cylindrical co-ordinate system
(x,r,6), where r is parallel to the yz-plane as Fig. 1 shows. The total
velocity potential Q(x,r,0,7) can be related to a perturbed velocity
potential ®(x,r, 0, t) by the equation [7]

Q(x,r,0,1) = xcosd+ rsindcosd + ®(x,r,0,1), (2.1)

in which 6 = §pexp(ikt); do is the oscillation amplitude and k denotes
the reduced frequency of the pitching motion. Using Eq. (2.1) one
extracts the cylindrical velocity components [6] by the relations

u Qy 1+ ®,
Vi cylindrical = | V | = Q, = bo cos kt.cos 0+ o, ,
w (1/r)Qy —b8pcosktsind + (1/r)®y

(2.2)

in which we have already introduced the expression for 8, while
considering small amplitude oscillations (6,< 1) we have already

FIGURE 1 Geometry and sign convention of a rigid body of revolution under uniform
flow.
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retained only the real part of this expression. Also, subscript index
denotes partial differentiation with respect to this index. Taking into
account that the perturbed potential ® satisfies the dimensionless
equation [3]

1 1
ﬂq)xx + @, +ﬁ Dy "'qu)tt - 2M2q)xt + ;CI), - (’Y + l)Mz(Dx(I)xx =0,
(2.3)

one writes ® as the sum of the following two terms [5]
D(x,r,0,1) = o(x,r) +¥(x,r,0,1). (2.4)

In Egs. (2.3) and (2.4) M denotes the freestream Mach number,
while 3=1— M?; ~ represents the ratio of the specific heats which is
often taken equal to 1.40, while ¢ is the steady axisymmetric
potential and 1 the oscillatory potential. Conveniently differentiating
Eq. (2.4) and introducing the results into (2.3), we obtain

1 1
,8((/7 +¢)xx + (§0+w)rr +ﬁ1/)99 - Mzrlrbtt - 2M22/JXI +;((P +¢)r

-(r+ I)Mzwx(poxx —(v+ I)Mz((waxx + Pxx¥x)
- (7 + 1)M2¢x1/}xx =0.
(2.5)
Because of the small amplitude oscillations one may neglect the term
(y+ DM *papy, in (2.5) and thus, one may split the resulting new

equation into a nonlinear PDE corresponding to the steady flow and
into one linear PDE corresponding to the unsteady flow, namely

1
,BQOXX + @ + ;(Pr = (’Y + 1)M280x(Pxx; (263)

1 1
Brbex + e + —5 00 — My = 2M s + ),
= ('7 + I)Mz(‘Pxx'QZ’x + @xﬂ’xx)- (2'6b)
In Ref. [6] (Part I — Theory) a solution technique was developed in

constructing analytical solutions for both previous PDEs. The
obtained expressions for the potentials ¢ and ¢ also include a one
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time—distance dependent arbitrary function concerning supersonic
flow. The use of convenient boundary and initial conditions resulted
in giving the following expression for the total perturbed potential
D(x,r,0,1)

@(x,r,0,1) :GTII)W)C + A(e)lnr + B+ bpe(x — t + a)
1 1 Hi Hi
i iarae” (€ ’>] ot

2.7)

in which
& = pi(x —t+a); (2.8a)
H(&) = J1(&) — & Jo(&) (2.8b)

and

1 1
Ae) = 6(1 +_—_('y+ l)MZ) exp [_52[1 o l)MZ]]' (2.8¢)

In these equations yu; (i=1,2,...) represent an infinite number of
positive eigenvalues of the transcendental equation

(2.9a)

in which
2 1
HG2) = 71 (0) — pdo(w); Alw) = (ﬁ - 1)11 (1) = i) (290)

The already introduced functions J; and J, are the Bessel functions
of the first kind of integer order. Finally, ¢ is the maximum thickness
of the slender body of revolution, while a is the distance of the
nonlifting position M from the origin O (Fig. 1). By now, making
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use of the well-known recurrence formulae of Bessel’s functions [1],
we obtain the relations

i) =-HO, gy - 1=2D0E)

z z

(2.10)

where dot means differentiation with respect to z. Thus, partially
differentiating relation (2.7) with respect to x;r; 6, using Egs. (2.10),
and introducing the results into the matrix equation (2.2), we deduce
the following analytical expressions for the dimensionless velocity
components u, v and w:

1
(y+1)M?

+oe Z[IJF ﬂ’/e))zH(l )(1+( H(é,J)’(&)>Jl(E )cos(:Mt)]cose;
(6)

u=1+

v=6pcosktcosf +—

(x t+a)2[ T —%H(’:’)cos(;;lt)}cose;

w = —6&y cosktsin

——50—5 —t+a)§:
-1

() cos(;Tfl,)} ine.
(2.11)

Furthermore, differentiating (2.11) with respect to time ¢ and using
Egs. (2.10), one derives analytically the dimensionless acceleration
components du/dz; dv/d¢; and dw/d¢, that is

du (506 > 1 Hi
A (1 G ( )

9 H(f;z ;121()6{;(6) <1 (I- Jl (& )
|

1—g  2EN(&) (& 212 (&)
Y HE) T H3(g,

X cos(;j;lt) jilH(]{,) ( (g;;l( )> sin(th)] ;
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dv ) Spe & 1 i
— = —bpksinktcos +—» —  H{—r
dr r ;(lJr(ui/E))2 (5 )

_ g2 : ;
X [H(lg,») (1 + a 13,(2;;1(5 )) cos(—él;—dt)
+ b 1 sin(—'u—it)] cosf;

eMH(E) \eM
& 50ksinktsin9+‘5"7‘€gmh (5r)
T (#1581 )
+5_§\Z—I4IH(I§,‘) sin (sﬁlﬂ t)} sin 6. (2.12)

3 CONVERGENCE ANALYSIS

3.1 Relative Order betweenTwo Sequences
— “Destabilization” Points

If & becomes equal to a root of the equation
H(x) = Ji(x) — xJo(x) =0, (3.1)

then the series included in the expressions (2.11) and (2.12) diverge.
Furthermore, in case & lies inside a small area of a root of the above
equation, then H(;) becomes very small and the series in (2.11) and
(2.12) are destabilized. Thus, one should study the relative order
between the terms of the sequences &; and s, as i;r — oo. Here s,
(r=1,2,...) represent the negative eigenvalues of the equation
H(s)=0. We note that in Eq. (2.8a), which expresses the quantity &,
w; is a positive root of the Eq. (2.9a). Since (x —t+a)e(—t, —t+1],
& can take negative values. On the other hand, the terms of the
sequences p; and |s;] have the same period, which is approximately
constant as i — oo. More specifically, this period takes values in the
interval [3.141, 3.142], varying slightly and periodically but at the
same rate for the two sequences. Furthermore, comparing Egs. (2.9a)
and (3.1) one concludes that, u; #|s;|, i=1,2,... Thus, we deduce
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that, for i— oo the distance between p; and |s;| remains constant.
Note that |s,| are also roots of equation H(s)=0, because for s >0
it is valid

Ji(=s) = —=Ji(s), Jo(=s) = Jo(s) = H(=s)=—H(s).

As an example, we write here a number of the roots of the above
two equations:

Wi ,...,522.2878, 525.4294, 528.571, 531.7126, 534.8542, .. .,
1452.2, 1455.342, 1458.484, 1461.625, 1464.767, 1467.908, ...,

Isi: ,...,523.8589, 527.0005, 530.1421, 533.2837, ..., 1453.771,
1456.913, 1460.055, 1463.196, 1466.338, 1469.479, ...

Consequently, as &; increases absolutely with step (x — ¢+ a) x period,
its values periodically approach those of the eigenvalues s,. These
values, which will be called “destabilization” points or d-points, con-
stitute a subsequence &; . One writes that & € (s, — d,s, + d) where
d=0(1073).

3.2 “Destabilization” Terms — “Convergence” Terms

In order to investigate the convergence of the formulae (2.11) and
(2.12) expressing the flow fields, we must focus on the “destabiliza-
tion” terms or d-terms of the series being introduced. In other words,
we must investigate the terms which destabilize the series at the
d-points &, . For this purpose we shall try to obtain simpler approxi-
mate expressions of the before mentioned formulae.

One easily observes that the following inequalities hold true:

7

1< €2, 2<€2 (3.2b)
1€, J1(&i)| > 10(Ei,)|- (3.2¢)

The inequality (3.2c) results from the different phase between the
Bessel functions J; and Jy shown in Fig. 2, in combination with the
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FIGURE 2 Different phase of the Bessel functions J; and Jy.

form of the function H given in (2.8b). Note that the value §;, neither
coincides with a root of the function J; or Jy, nor belongs to a very
small area of a root of the function J;.

Taking into account the inequalities (3.2a)—(3.2¢c), the expressions
(2.11) and (2.12) concerning the velocity and acceleration components
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become:
0 J i i i
¥, = —fped(x — 1+ a)2 ; [le(él)) Ji (%r) cos(—g—lfﬂt)] cosf;
(3.3a)
S e boe (X—t+(13§:[ G(/J't )COS(HI )]g(o)
e r el 3((3) eM ’
(3.3b)

Yau = —b0e>(x —t+a g{‘]] (—r) [51 [2-]15:3)(2)]2(5:)] cos (:](4[)

511\/12121((5&)) s1n(€Mt)] } cosf; (3.4a)

x—t+a)& ; ;
o 2 B S5 (1) [ 8 cos (L)

+5LM£,~HI(§,)Sn(5M )]}g(G), (3.4b)

where with ¥,; %, ,; ¥q,; Xay.aw We symbolize the series terms of the
before mentioned components. Also, G denotes one of the functions
H; J,, while g one of the functions (cos); (sin), if we refer to the series
3., L, and Xg4,; X4, respectively. In relations (3.3a,b) and (3.4a,b) the
d-terms are the quantities H=2(&;,); H™'(¢;,) and & H3(&,); H2(&,,),
respectively. These terms are reduced significantly because they are
multiplied by the Bessel functions with arguments &;, and (p;,r/¢)(&;, =
wi,(x — t + a)). The convergence or divergence of the above products
will be investigated in our further analysis. Thus, referring to the Bessel
functions with argument &; , we may consider as “convergence” terms,
or c-terms, the following expressions:

CVA(&,) = f{(]z(éi:)); n=12... (3.5)
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corresponding to the resultants u; dv/d¢; dw/dt,

1

CVW(,)=—=——; n=12,... 3.6
)=, (30
corresponding to the resultants v; w, and
Ea12J7 (&) + 5 ()]
CAX(&,) = ;o o n=1,2,..., 3.7
(&) e (3.7)

corresponding to the resultant du/d¢.

3.3 “Ideal” Sequences — Convergence of the Series

Since the relations (3.5)—(3.7) represent a combination of d-terms
with their “dumper” (Bessel functions), one concludes that the limit-
ing values of the sequences constructed by c-terms, namely the limiting
values of the sequences

CVA(,), CVW(,), CAX(E,); n=12,...,

are decisive for the convergence of the series (3.3a)—(3.4b). More
especially, the main variation of the values of these series occur at
the d-points ¢;,, as these points have been already determined in
Section 3.1. The above variations are insignificant for any other
value of the sequence &;. Furthermore, the “convergence” terms
(3.5)—(3.7) affect the values of the before mentioned series at the
particular points &,. We are now able to formulate the following
propositions.

PROPOSITION | “A necessary and sufficient condition for the conver-
gence of the series (3.3a)—(3.4Db) is that the sequences (3.5)—(3.7) must
have limiting value equal to zero.”

Since the series (3.3a)—(3.4b) are approximate expressions of the
flow field components (2.11) and (2.12), it is well understood that
their convergence secure the correct evaluation of the above com-
ponents. The study of the limiting values of the sequences (3.5)—(3.7)
can be achieved if the argument ¢;, is replaced by the corresponding
p, such that

pr€lsr—e0,s); r=1,2,...; g €(0,1079]. (3.8)
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Here s, denote the roots of the equation
H(S) = J] (S‘) — SJ()(S) =0.

The introduction of p, as a new argument in the “convergence”
terms (3.5)—(3.7) is necessary because the distance of the d-points &;,
from the real roots s, varies inside an interval (0,d], where d=
0(107%). Thus, since the above distance is not constant, the study of
the ¢; -sequences does not provide an “absolute” criterion for the
convergence of the c-terms (3.5)—(3.7). On the contrary, the distance
between the points p, and the roots s, is approximately constant and
always very small, lying inside an interval of our choice, for example
(0,107°]. We call the sequences CVA(p,), CVW(p,), CAX(p,), r=
1,2,... being constructed from the expressions (3.5)—(3.7) if & is
replaced by p,, “ideal” sequences or i-sequences. They play the role
of an “ideal” criterion as the following proposition reads.

PROPOSITION 2 “The convergence of the “ideal” sequences towards
zero, is a sufficient condition for the convergence of the c-terms (3.5)—
(3.7) to zero.”

Considering now that §;,, n=1,2,..., increases absolutely, that is
for any real function f(x) the limit lim,_,., f(&;) = S reads

Ve >0 3¢, € R™: ¥, with |6, > &, = |f(&,) — Bl <e,

then, the sequence p,, r=1,2,..., increases absolutely and we are
able to state the following proposition.

PROPOSITION 3 “The i-sequences CVA(p,), CVW(p,) and CAX(p,),
r=1,2,..., converge towards zero as r — oo, namely

Ve >0 Héva,fvw,éax ER,

such that:

Vo |pel > & = |CVA(P)| <,
Vo, o > & = |CVIW(p,)| <e,
Vpr:  |pr| > € = |CAX(py)| < e.

Computational study can prove the validity of the above proposi-
tion. The kind of this convergence is an oscillation of the absolute
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values of the sequences CVA(p,), CVW(p,) and CAX(p,) about a
center, the distance of which decreases absolutely towards zero.
Taking the positive number & = 107> one evaluates

Eax > &a > & > 0;
£a 2 1.2 % 10%; &, 2 O(10%); &4, > 107,

Combining the before mentioned propositions 1-3 one asserts that
the points &,4, &, Eux are the “stabilization” points of the series
(3.3a)—(3.4b). In other words, the c-terms (3.5)—(3.7) with |&;,| > &
or |&,| > &, or, finally, |, | > &, do not vary the values of the
series obtained so far; namely, for the value e =107 the variations
of the series (3.3a)—(3.4b) tend to zero as n— oo.

4 RESULTS

By means of the main notations we consider the true time t=TU/L
and the reduced frequency k =wL/U and we derive

p :pL/U’ pP= 27T/k’
where p represents the true period of the body oscillation and p the
nondimensional one. For the right circular cone shown in Fig. 3 we

evaluate the results presented in Table 1. Making use of the well-
known formula resulting from the small perturbation theory

1 _M12oc ~ 1 _M2 - (1 +7)Mozo(90x+¢x),

in which M, is the local Mach number on the body, and intro-
ducing the expression

o =1/(1+7)M>

for the supersonic case [6], we deduce

Ml%)c =1+ M2[1 + (1 +'Y)7»Z)x]'
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FIGURE 3 Geometry and sign convention of a right circular one.

TABLE I Basic parameters for a rigid body of revolution

Mo UG ULan pO(, 0. )y 3k) 26 (5= 1or)
1.00 1224 68 3.08 0.92 0.46
1.60 1958 136 1.54 0.46 0.23

Here, the quantity 1, can be evaluated by the series term of the
expression (2.7), so that one can estimate the local Mach number
M. Furthermore, combining the asymptotic expansions of the
Bessel functions for large values of their arguments given in the
APPENDIX with the values of £5x (> 107) according to Proposition
3, and taking into account the demanded accuracy in the numerical
evaluation of the J; and J, functions, we derive the following
statement: “It is not possible to obtain numerical results for the axial
acceleration du/d¢, except in case when the convergence occurs at
values &, < 4 x 10° (Figs. 6 and 7)”.

Figure 4(a) depicts the variation of the dimensionless velocity u
and the local Mach number M), versus the dimensionless distance
(x+a). Figures 4(b)—(e) show the variation of the dimensionless
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FIGURE 4(a)-(e) Variations of the dimensionless velocities, the local Mach number
and the accelerations versus the dimensionless distance (x + a).

velocities v; w and accelerations dv/dz; dw/d¢ versus (x + a) from the
top to the base of the right circular cone of Fig. 3. The parameters
being introduced are a=0.60; ¢ =0.067; 6,=0.07; 0 =7/4; k=0.20;
M=1.6; t=20.50p and p=10xr.

Figures 5(a)—(d) depict the variation of the dimensionless cylin-
drical velocity component w versus (x + @), at a time step equal to p/4
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FIGURE 5(a)—-(d) Variations of the dimensionless cylindrical velocity component w
versus (x +a) at a time step equal to p/4 (=20.235s).

(220.23s) for the cone shown in Fig. 3. The parameters being intro-
duced are a=0.50; £¢=0.67;, 6=0.07;, §=n/4; k=0.10; M =1.00;
t=20p; 20.25p; 20.50p; 20.75p and p =20mr.

Figure 6(a) shows the variation of the dimensionless velocity u
and the local Mach number M, versus the normalized cone thick-
ness ratio ¢ with a=0.60; k=0.03; M =1.60; 6,=0.07; x=—0.30;
0=m/4; t=10p and p=66.67x. Figures 6(b)—(f) depict the variations
of the dimensionless velocities v; w and the accelerations du/dz; dv/dt
and dw/d¢ versus the cone thickness ratio e, where the introduced
parameters are the same as in Fig. 6(a).

Figure 7(a) and Figs. 7(b)—(f) show the variations of u; M, and
v;w; du/dt; dv/dt and dw/dt versus the Mach number M, for the
same parameters as in Fig. 6, if instead of the Mach number M, the
cone thickness ratio € =0.067 is introduced.

From the above graphics one observes the rapid variations of the
flow characteristics, namely of the velocity and the acceleration
components, denoting the unstable and dynamic character of the
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FIGURE 6(a)—(f) Variations of the dimensionless velocities, the local Mach number
and the accelerations versus the cone thickness ratio €.

problem under consideration. Especially, in Fig. 5 one can see a
disturbance wave with a specific shape, which is removed with time
towards the base of the cone, while in Figs. 6 and 7 a strong
variation versus the cone thickness ratio € and the Mach number M
appear during the supersonic flow.
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FIGURE 7(a)-(f) Variations of the dimensionless velocities, the local Mach number
and the accelerations versus the Mach number M.
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APPENDIX

In order to estimate the Bessel functions for large arguments one can
make use of several asymptotic expansions. Many tests of various
formulae concerning the convergence of the above expansions and a
comparison with the results presented in Ref. [1] (Tables 9.1 to 9.4)
lead to the conclusion that the Hankel formulae are the more
accurate for our problem under consideration.

Thus, for large values of the argument, one may write ([1], p. 364,
types 9.2.5; 9.2.6; 9.2.9, and 9.2.10):

Jy(x) = \/%[P(v, x)cos X — Q(v, x) sin X|
and

Y,(x) = \/—%[P(v, x)sin X + Q(v, x) cos X,
where X = x—(vr/2)—(n/4) and

= o lp— A +1)?
P(y,x) =1 +k2=; (-1 = O(Qk)!(gx)% ]
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with p=4v2.

As x increases, the convergence of the above types occurs faster,
but the accuracy of the results decreases. More specifically these
asymptotic types do not give the variation of the Bessel functions
J,, Y, for very large values of the variable x. On the contrary, the
types furnish the same values for the functions J,, Y, for an interval
of the variable x with amplitude dy. This amplitude increases as | x|
increases. In particular we estimate the following values:

for x >42x10% dy=0.5
and

for x > 8.4 x 105, dy=1.



