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In this work, serial production lines with finished goods buffers operating in the pull
regime are considered. The machines are assumed to obey Bernoulli reliability model. The
problem of satisfying customers demand is addressed. The level of demand satisfaction is
quantified by the due-time performance (DTP), which is defined as the probability to
ship to the customer a required number of parts during a fixed time interval. Within this
scenario, the definitions of DTP bottlenecks are introduced and a method for their iden-
tification is developed.
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1 INTRODUCTION

Serial production lines are sets of machines and buffers arranged
in a consecutive order as shown in Fig. 1. Here the circles represent
the machines (m;, i=1,...,M) and rectangles are the buffers
(By, ..., Bas_; are referred to as in-process buffers and B, is called the
finished goods buffer — FGB). In practice, the machines are not abso-
lutely reliable and experience random breakdowns. In this situation,
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FIGURE 1 Pull serial production line.

the number of parts produced by the last machine during a fixed
interval of time is a random variable. Its distribution characterizes
both production volume (throughput or production rate — PR) and
production variability. The throughput has been studied in production
systems literature for a long period of time (see [1-5] for thorough
reviews and exposition). In contrast, the production variability has
been addressed in just a few relatively recent publications, [6—11].
Most of them study the issue of production variance. Although quite
useful, this variability measure is not of immediate practical impor-
tance since it does not directly characterize the variability measure of
interest — the due-time performance (DTP). This measure is defined
in [12] as the probability to meet the customer demand, i.e., to ship a
required number of parts during a fixed time interval. Several results
concerning DTP have been described in [12-15].

Current manufacturing literature classifies production systems as
operating in one of two regimes — push or pull [5,16—19]. Although a
number of interpretations of these terms is available, the present work
views push (respectively, pull) systems as those operating so as to maxi-
mize the throughput (respectively, DTP). The emphasis of this paper is
on the pull serial production lines.

In any regime, push or pull, improving performance is an important
task of production line management and control. In practice, it is
often accomplished by identifying the bottleneck machine (BN-M) and
improving its operation. In push production system, the bottleneck is
often understood as the machine with the worst throughput in isola-
tion, [20,21]. However, as it was shown in [22], such a machine is not
necessarily the most impeding, as far the system throughput is con-
cerned: Relatively good machines, or even the best one, may be the
bottleneck. Based on this observation, Kuo et al. [23] introduced a
definition for the production rate bottleneck (PR-BN) as the machine,
to the performance of which the system throughput has the largest
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sensitivity. In Ref. [23-26] a method for PR-BN identification is
developed and a number of applications is reported.

The problem of bottleneck machine identification in pull production
systems does not seem to have been addressed in the literature. The
goal of this paper is to present several results concerning this problem.
Specifically, in Section 2, we formulate the model of the pull serial
production line under consideration and formally introduce the DTP
measure. The notions of DTP bottleneck machine (DTP-BN-M) and
DTP bottleneck buffer (DTP-BN-B) are introduced in Section 3.
Sections 4—6 present a method for their identification. Finally, Section 7
formulates the conclusions.

2 SYSTEM MODEL

The following model of a pull serial production line is considered
throughout this work.

Machines

(i) Each machine, m;, i=1,..., M, requires a fixed unit of time to
process a part. This unit is referred to as the cycle time. All machines
have identical cycle time. The time axis is slotted with the slot duration
equal to the cycle time.

Remark 2.1 The assumption of the fixed processing time is appro-
priate for many production systems in large volume manufacturing
environment. On the other hand, the assumption of identical cycle time
may or may not hold, depending on the nature of the production
system. Typically, in systems with automated material handling, this
assumption is satisfied.

(ii) During a cycle time, each machine can be in one of two states:
“up” or “down”. When up, the machine could process a part. When
down, no processing can take place.

(iii) The status of the machines, i.e., up or down, is determined by
the process of Bernoulli trials. In other words, it is assumed that dur-
ing each slot, machine m;, i=1,..., M, is up with probability p; and
down with probability 1 — p;; the status of the machine is determined
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at the beginning of each cycle, independent of the status of this machine
in the previous cycle.

Remark 2.2 Assumption (iii) defines the Bernoulli statistics of
machine breakdowns. The Bernoulli model is appropriate for mod-
ular production lines where operators use the push-buttons and
stop a module of the operational conveyor in order to accomplish the
operation with the highest possible quality. The duration of this
“breakdown” is short and of the order of the cycle time and, therefore,
the probability to produce a part during a cycle time arises naturally.
Another frequent perturbation is pallet jams on the operational con-
veyor; to correct for this problem also a short period of time is required.
In many car and engine assembly lines these are the predominant per-
turbations. In these situations, the Bernoulli reliability model is appro-
priate. The literature offers another model of machines reliability — the
Markovian model, [1-11]. The Markovian model is appropriate for
machining operations where the downtime is typically due to machine
breakdowns and the repair time is much larger than the cycle time. We
study here only the Bernoulli case and plan to analyze the Markovian
model in the future work.

Buffers

(iv) Each buffer B;, i=1,..., M, has capacity ] <N;<o0,i=1,..., M.
Buffers By,..., By, are called in-process buffers. Buffer B), is the
FGB. With a slight abuse of notations, the capacity of the FGB will be
always denoted as Nz, even when M is specified.

Starvation Rule

W) If B;, i=1,...,M—1, is empty at the beginning of the time slot,
then m;,1, i=1,...,M —1, is starved during this time slot. The first
machine is never starved.

Blockage Rule

(vi) If B;, i=1,..., M, is full at the beginning of a time slot and m;, 4,
i=1,..., M does not take a part from B; at the beginning of this slot,
thenm,, i=1,..., M, is blocked during this time slot.



BOTTLENECKS IN PRODUCTION LINES 483

Remark 2.3 Assumptions (iii), (v) and (vi) are formulated in terms of
time-dependent failures, i.e., machines can go down even when blocked
or starved [3,4]. Another possible model is that of operation-dependent
failures, where no breakdowns of starved or blocked machines is possi-
ble, [3,4]. Both models are practical, depending on the production sys-
tem at hand: for automated palletized material handling systems, the
time-dependent model is more applicable. In case of manual material
handling, operation-dependent failures often take place.

Demand

(vii) From the point of view of the demand, the time axis is divided into
“epochs”, each consisting of T time slots (Fig. 2).

(viii) At the end of each epoch, a shipment of D parts has to be avail-
able for the customer. If PR is the production rate of the system, then

D<T-PR. @2.1)

Remark 2.4 A method for calculating the production rate in the sys-
tem defined by (i)—(vi) without FGB has been developed in [22]. Thus,
the upper bound of D is readily available.

Demand Satisfaction Policy

(ix) At the beginning of epoch i, parts are removed from the FGB
in the amount of min(H(i— 1), D), where H(i — 1) is the number of
parts in the FGB at the end of (i — 1)th epoch. If H(i— 1) > D, the
shipment is complete; if H(i — 1) < D, the balance of the shipment, i.e.,
D — H(i— 1) parts, is to be produced by m,,. Parts produced are imme-
diately removed from the FGB and prepared for shipment, until the
shipment is complete, i.e., D parts are available. If the shipment is
complete before the end of the epoch, the system continues operating,
but with the parts being accumulated in the FGB, either until the end
of the epoch or until the last machine, m,, is blocked, whatever occurs

‘lfl...!!Tllﬁ!...L'LTlfl...!'E

Epoch i-1 Epoch i Epoch i+1

FIGURE 2 Epochs.
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first. If the shipment is not complete by the end of the epoch, an
incomplete shipment is sent to the customer. No backlog is allowed.

Remark 2.5 In the make-to-order pull production systems literature,
[17,18], the demand is random and has to be satisfied immediately,
otherwise it is backordered.

Assumptions (i)—(ix) define the system under consideration. In an
appropriately defined state space, the system (i)—(ix) is a stationary
ergodic Markov process. Only the steady state of this chain (i.e., the
invariant measure or the stationary distribution) is analyzed in this
work. We refer to this steady state as the “normal system operation”.
Let 7; be the number of parts produced by machine m,, during epoch i.
Then the DTP can be defined as the probability that 7; plus the number
of parts left in the buffer at the end of epoch (i — 1), H(i — 1), is greater
than the shipment size, D, i.e.,

DTP = Pr(H(i — 1) + 7; > D). (2.2)

In the framework of (i)—(ix), DTP is a function of all system param-
eters. In other words,

DTP = DTP(p,N, Ny, D, T), (2.3)
where N, T, and D are defined in (iv), (vii), and (viii), respectively,
p and N are vectors of the machines and in-process buffers parameters,

p:[p17""pM]’ N:[Nla"-’NM——l]-

A method for analyzing function (2.3) is presented in [14,15]. This
function constitutes the basis for the analysis described in this work.

3 DEFINITIONS AND PROBLEM FORMULATION

Using (2.3), we define DTP bottlenecks as follows:

DEFINITION 3.1 Machine m; is the due-time performance bottleneck
machine (DTP-BN-M) if Vj#1,

8DTP(p1,...,pM,N1,...,NM_],NM,D, T)
Opi
> 6DTP(p],. ..,pM,N],. ..,NM_l,NM,D, T) .
Op;
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DEFINITION 3.2 Buffer B; is the due-time performance bottleneck
buffer (DTP-BN-B) if Vj#1,

DTP(p1,...,pM,N1,...,Ni+ 1,...,NM_1,NM,D, T)

> DTP(pl,...,pM,N],...,]Vj+ 1,...,NM_1,NM,D,T).

The goal of this work is to derive a tool for identification of these
bottlenecks. Unfortunately, direct identification, using Definitions 3.1
and 3.2, is impossible since the sensitivities involved cannot be either
calculated in a closed form or measured on the factory floor during the
normal system of operation. Therefore, the tool sought has to be an
indirect one. More specifically, we are seeking a DTP-BN identi-
fication tool that is based on real time data, which can be measured on
the factory floor. We refer to this tool as DTP-bottleneck indicator.
The problem, then, addressed in this paper is: Given a production
system, defined by (i)—(ix), derive bottleneck indicators for DTP-
BN-M and DTP-BN-B identification, which are based on real time
measurements.

As it will be shown below, the DTP-BN indicators derived in this
work depend heavily on the notions of manufacturing blockage and
manufacturing starvation. They are defined as follows:

DEFINITION 3.3 Machine m;, i=1,..., M — 1, is said to be blocked in
the manufacturing sense during a time slot if it is up during this time
slot, B; is full at the beginning of this time slot, and m;, fails to take a
part from B; at the beginning of this time slot.

DEFINITION 3.4 Machine myy is said to be blocked in the manufactur-
ing sense during a time slot if it is up during this time slot and By is full
at the beginning of this time slot.

DEFINITION 3.5 Machine m;, i=2,..., M, is said to be starved in the
manufacturing sense during a time slot if it is up during this time slot
and B;_, is empty at the beginning of this time slot.
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Let mb; and ms; denote the probabilities of manufacturing blockage
and starvation, respectively. Then, according to Definitions 3.3-3.5,

mb; = Prob({m; is up during a time slot} N {B; is full at the
beginning of this slot} N {m;y; fails to take a part from
B; at the beginning of this slot}), i=1,...,M —1,
mbys = Prob({myy is up during a time slot}
N {Byy is full at the beginning of this slot}),
ms; = Prob({m; is up during a time slot}
N {B;; is empty at the beginning of this slot}), i=2,..., M.

Remark 3.1 Definitions 3.3 and 3.5 are identical to those introduced
in [23] for push production lines (i.e. for lines without FGB). However,
since FGB may cause blockage of the last machine, m,,, numerical
values of ms; (i=2,...,M) and mb; (i=1,...,M —1) for lines with
and without FGB, but otherwise identical, may be quite different.

4 DTP-BN IDENTIFICATION: GENERAL CONSIDERATIONS

In the case of serial production lines without finished goods buffers,
the problem of PR-BN identification has been analyzed in [23] (for
Bernoulli machines) and in [24-26] (for Markovian machines). For the
case of Bernoulli machines, it was shown analytically that the PR-BN,
defined through partial derivatives of the production rate with respect
to machine parameters p;, i=1, ..., M, can be identified by measuring
ms; and mb;. More specifically, it was shown that if mb; > ms;,,, the
PR-BN is downstream of machine m;; if mb,_; < ms;, the PR-BN is
upstream of m;. It turned out that the same indicator may be used
for identification of the so-called c-BNs in production lines with
Markovian machines [26].

Unfortunately, analytical derivation of similar indicators for DTP-
BNs, starting from Definitions 3.1 and 3.2, is unmanageable. There-
fore, a heuristic approach is used. Below we outline the rationale for
using data, other than ms; and mb,, to identify DTP-BNs. Based on
these heuristics, two subsequent sections formulate BN indicators and
justify them numerically.
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The rationale for the heuristics used in this work is as follows:

(a) As it was pointed out above, in two-machine lines without FGB,
inequality mb, > ms, (respectively, mb; < ms,) implies that machine m,
(respectively, m;) is the PR-BN [23]. Unfortunately, in two-machine
lines with FGB, numerical experiments indicate that these inequalities
do not identify the DTP-BN; a large number of counterexamples have
been found. Thus, unlike PR-BNs, relative values of ms; and mb; do
not identify DTP-BN-M, and new quantities for its identification must
be found.

(b) In two-machine lines without the FGB, inequality p; < p, implies
that machine m, is the PR-BN [23]. In two machine lines with FGB,
this inequality does not necessarily mean that m; is the DTP-BN. This
is true due to the fact that m, may be blocked by the FGB and,
therefore, “effective p,” is p, — mb,. Thus, even if p, > p;, machine m,
may still be the DTP-BN. (Figures 4 and 7 explained below, exemplify
this situation.)

(c) On the other hand, it is reasonable to assume that inequality
Pp1> D> implies that m;, is indeed the DTP-BN in a two-machine line.
This follows from the fact that in both cases, with and without the
FGB, m; can only be blocked and cannot be starved. Thus, inequality
p1> p> may be considered as a candidate for indicating that m, is the
DTP-BN.

(d) Inequality p; > p, can be re-formulated equivalently, in terms of
mb’s, ms’s and p’s, as follows:

PROPOSITION 4.1  Assume that p, > p,. Then, under assumptions (i)—(ix),
qimby > (q2 + mba)mss, (4.1)

where q;=1—p;, i=1,2.
Proof See the Appendix.

(e) Since, as it follows from the above proposition and argument (c),
qimb; > (g2 + mby)ms, indicates that m, is the DTP-BN, the inverse of
this inequality, i.e., g;mb, < (g, + mb,)ms,, may indicate that m, is the
DTP-BN. This is verified in Section 5 below.
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To extend the above argument to the M-machine case, we “symme-
trize” (4.1) as follows:

(qi + msi)mb; > (qir1 + mbip)msipr, i=1,...,.M—1, (4.2)

keeping in mind that ms;=0 for i=1. In analogy with the PR-BN, we
expect that this inequality would imply that DTP-BN is downstream
of m;; otherwise it is upstream of m; ;. This is verified in Section 6.

Note that all quantities involved in (4.2), i.e., g;=1— p;, ms;, and
mb;, can be measured on the factory floor during the normal system
operation.

Remark 4.1 1In the case of each particular machine, inequalities

(g; + ms;))mb; > (q; + mby)ms;, i=1,..., M,
(qi + msi)mb,- < (qi + mb;)msi, i=1,...,.M, (43)

imply, respectively, that

mb; >ms;, i=1,...,M,
mb;<ms;, i=1,...,M. (4.4)

Thus, for each particular machine, (4.4) can be used instead of (4.3).
This will be utilized below for DTP-BN-B identification.

5 DTP-BN IDENTIFICATION: TWO-MACHINE CASE

DTP-BOTTLENECK INDICATOR 5.1 Under assumptions (i)—(ix) with
M =2, machine m, is the DTP-BN-M and B, is the DTP-BN-B if

qimb < (g2 + mby)ms;.
If
qimby > (q2 + mby)ms,,

my is the DTP-BN-M. If, in addition, ms, <mb,, the FGB is DTP-
BN-B; otherwise DTP-BN-B is B;.
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Numerical Justification The above indicator has been justified using
discrete event simulations. The simulation approach used here and
throughout this paper is as follows: In each run of the corresponding
discrete event model, zero initial conditions for all buffers have been
assumed and a 10,0007 time slots of warm up period has been carried
out, where, as before, T is the length of the epoch. The next 100,0007
slots of stationary regime have been used to statistically evaluate the
quantities of interest. Fifty simulation runs were performed to deter-
mine the confidence interval. The 95% confidence intervals for all sta-
tistical estimates have been evaluated according to methodology of [27].
Using this approach, we simulated a large number of two-machine
systems defined by assumptions (i)—(ix). Three typical examples are
shown in Figs. 3-5. In each of these figures, the four rows of numbers
show the values of (g;+mb)ms; and (q;+ ms;))mb;, ODTP/Op; and
DTP(N;+ 1), along with 95% confidence intervals. The values of
ODTP/Op; have been evaluated using finite differences ADTP/Ap;, Vi,
with the step Ap;=0.0001. In Figs. 3 and 5, T=4, D=3, in Fig. 4,
T=3, D=2. The bottlenecks identified by Indicator 5.1 are supported
by the values of dDTP/dp; and DTP(N;+ 1). Thus, the DTP-BN-Ms
and DTP-BN-Bs in Figs. 3—5, respectively, are machines m,, m; and
my and buffers By, By and B,. (Note, for instance, that in Figs. 3 and 5
the largest buffer and the best machine are bottlenecks, respectively.)

m,
Sos8)
O,
(q, +mb; )msl, : oto 0.0091:+ 0.0003
(q,+ms; )mb; : 0.0148+ 0.0003 0.0089+ 0.0002
2 DTP
. 0.8567+ 0.0012 1.2046% 0.0013
i
DTP(N+1): 0.939010.0011 0.93880.0010

FIGURE 3 DTP-BN identification in two-machine case: Example 1.
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BN-M_ BN-B_
i m H Bl 5 B2
: 10 : my
(08} —— 1 —{08) 1
PN N
, + X to.
(g; +mb; )ms,. 0% 0 / 0.0329% 0.0003
(q;+ms;Jmb; : 0.0317+0.0003 0.0119+ 0.0003
2DTP
0.7219+ 0.0011 0.6952+ 0.0011
api
DTP(N+1): 0.9823+ 0.0009 0.9658% 0.0010

FIGURE 4 DTP-BN identification in two-machine case: Example 2.

BN-M BN-B

(g +mb; )ms.. ot ¢ 0.0098+ 0.0003
(q,+ms;)mb; : 0.0129% 0.0003 0.0114%0.0003
2DTP
op 0.7538+ 0.0014 0.9000% 0.00012
i
DTP(N:+1): 0.96621+0.0011 0.968110.0010

FIGURE 5 DTP-BN identification in two-machine case: Example 3.

In most systems analyzed, Indicator 5.1 resulted in correct BN
identification. However, several counter examples have also been
discovered. One of them is shown in Fig. 6. Here Indicator 5.1 resulted
in my, whereas ODTP/dp; gave m;, as the bottleneck. To illustrate
further the region where Indicator 5.1 does not work, we vary
parameter p, of m,, keeping all other parameters constant. The result
is shown in Fig. 7. When p, changes from 0.6-0.8, the bottleneck
machine shifts from m;, to m;. As it follows from this figure, the range
of p, where Indicator 5.1 does not work is quite small (from 0.718 to
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m, = m2|B_2\
e9—3 1|

( qi+mbi )msi: oto 0.0243+ 0.0004
(q+ms;)mb.:  0.02491 0.0004 0.0247 % 0.0004
2DTP
YRk 0.9128+ 0.0015 0.9065+ 0.0015
i
DTP (N, +1): 0.908910.0010 0.938110.0011

FIGURE 6 Counterexample for DTP-Bottleneck Indicator 5.1.

p,=0.66, N=[3, 1], T=5, D=3

3 .
: by indicator
——————— : by partial derivative
g2 -
= |
[$]
© |
E |
=z
o 1} L
0.718 0.722
0 4
0.6 0.65 0.7 0.75 0.8
Py

FIGURE 7 Comparison of DTP-Bottleneck Indicator 5.1 with max(60DTP/dp;).

0.722). Therefore, we conclude that Indicator 5.1 can be used as a tool
for DTP-BN identification for most values of system parameters.

Bottleneck Indicator 5.1 can be given a graphical interpretation
similar to that of [23-26]. Specifically, arranging thin arrows as shown
in Figs. 3—5 (from the larger number to the smaller), we observe that a
machine, which has no emanating thin arrows, is the DTP-BN-M. In
addition, placing a thick arrow under the BN-M, pointing down if the
BN-M is more often blocked than starved and pointing up otherwise,
we obtain, using Remark 4.1 and Indicator 5.1, that the BN-B is in
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front of the BN-M if the thick arrow points up and after the BN-M if
it points down. This rule is used in Section 6 for DTP-BNs identifica-
tion in M-machine lines.

Remark 5.1 In two-machine lines, with p; = p,, both machines are
“equally” PR-BNs [23]. As it follows from (A.4) of the Appendix and
Indicator 5.1, if p; = p,, machine m;, is the DTP-BN. (See Fig. 3 for an
example.) This implies that a ramp, rather than a bowl-type, distri-
bution of p;s is optimal in pull production systems. In addition, this
implies that, unlike the push case, the pull systems do not possess the
property of reversibility [12].

6 DTP-BN IDENTIFICATION: A/-MACHINE CASE

Consider a production line shown in Fig. 8. Assume that its operation
satisfies assumptions (i)—(ix) and that p;, ms;, and mb,, i=1,..., M are
measured during the normal system operation. Calculate quantities
(g;+ ms)mb; and (g, + mb;)ms;; 1, Where g;=1—p; i=1,..., M —1,
and place them under each machine, as shown in Fig. 8. Using these
data, assign arrows according to the following

Rule 6.1 If
(gi + ms;)mb; > (qiy1 + mbi)msi, i=1,...,M—1,
the arrow is directed from machine m; to machine m,, ;. If
(qi=1 + msi_1)mbi_1 < (q; + mb;)ms;, i=2,...,M,

the arrows is directed from machine m; to machine m;_;. In addition,
under each machine with no emanating arrows, place a thick arrow

BN-B  BN-M
m, 21 m, 22 my 2 m, |'§*A']
Canlciall
(qi+'”b! )ms‘.; ot o 0.0119+ 0.0004 0.0154 + 00004 00|4|i 0.0004
(q;+ms Jmb;: 0.0164 0.0003 0.0149F 0.0004 0.0160* 0.0005 0.0111% 0.0003
5 0.0005 0.0019

FIGURE 8 Illustration of DTP-BN identification in M-machine line.
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pointing down if for this machine mb is larger than ms; otherwise,
place a thick arrow pointing up.

Introduce the numbers S; defined as follows:

S1 = (g2 + mby)ms; — qimby,
S; = min{(gi— + msi_1)mb,_1 — (g; + mb;)ms;,
(iv1 + mbi1)msiy — (g; + ms;)mb;}, i=2,...,M—1.
Sm = (qm-1 + msy—_1)mby—1 — (qar + mbar)msyy.

(6.1)

We refer to these numbers as the bottleneck severity.

DTP-BOTTLENECK INDICATOR 6.1 Consider a serial production line
with arrows assigned according to Rule 6.1. Then, if there is a single
machine with no arrows emanating from it, this machine is the DT P-BN-
M. If there are multiple machines with no emanating arrows, the machine
with the largest severity is the DTP-BN-M. The DTP-BN-B is the buffer
immediately after the DTP-BN-M if the thick arrow under this machine
points down; otherwise it is the buffer immediately in front of this machine.

Thus, according to this indicator, machine m,4 and buffer B3 are the
DTP-BNs of the system shown in Fig. 8.

Numerical Justification We simulated a large number of M-machine
systems defined by assumptions (i)—(ix). Three typical examples
are shown in Figs. 9-11. In Figs. 9 and 10, T=3, D=2, in Fig. 11,

(q+mb)ms..  0%0 0.0151F 0.0003 0.0318% 0.0004
1 i \U/
(q+ms mb;: 0.0300t0.0003 0.0313+0.0004 0.0217+ 0.0004
2DTP
op 0370t 0.0013 0.6082+ 0.0014 0.5894+ 0.0013
i
DTP(N:+1): 0.97100.0011 0.9935+0.0012 0.9714% 0.0011

FIGURE 9 DTP-BN identification in M-machine case: example 1.
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(q+mb;)ms 0£0 0.0125 0.0003 0.0154t 0.0004 0.0269 0.0003

A
(q+ms )mb;: 0.029910.0003 0.02194 0.0003 0.0119% 0.0003 0.0222F 0.0004
2DTP
p ¢ 0.4322% 0.0014 09107 0.0015 1.01661 0.00016 0.3371% 0.00013
1
DTP(N+1): 0.9431+0.0011 0.9620+ 0.0012 0.9358% 0.0011 0.9300% 0.0010

FIGURE 10 DTP-BN identification in M-machine case: example 2.

( qi+mbi )msi; 0t+0 0.02711 0.0004 0.0338+ 0.0004
(qi+m‘;i Jmb;: 0.0269+0.0003 0.0367+ 0.0004 0.0342% 0.0003
S 0.0002 0.0029
2 D’TP
ap; : 0.2891+ 0.0014 0.2753% 0.0012 0.2982+ 0.0013
DTP(N+1): 0.9857+ 0.0010 0.9938% 0.0011 0.9968% 0.0011

FIGURE 11 DTP-BN identification in M-machine case: example 3.

T=S5, D=3. The bottlenecks identified by Indicator 6.1 are supported
by the values of dDTP/dp; and DTP(N;+ 1). Thus, the DTP-BN-Ms
and DTP-BN-Bs in Figs. 9—11 are machines m,, m3 and m3 and buffers
B,, B, and B;, respectively.

In most systems considered, the DTP-BNs identified using Indicator
6.1 and ODTP/dp; coincide. However, a few counterexamples have
been discovered. One of them is shown in Fig. 12, in which T'=5,
D =3. According to Indicator 6.1, the DTP-BN-M is m, whereas
according to ODTP/dp; the bottleneck is m,. However, the difference
between ODTP/0p, and ODTP/dp,; is small. The same situation was
observed in all counterexamples discovered. Therefore, we conclude
that DTP-Bottleneck Indicator 6.1 can be used for most values of
system parameters.
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B, B, B,
m, m, my
— e 2 e e —
(g;+mb;)ms;: 0% 0 0.0337+ 0.0003 0.0466% 0.0004
(q.+ms;Jmb,. 00353 0.0003 0.0461% 0.0004 0.0260% 0.0003
1} [
2DTP
Sp.©  08ssE 000w 0.8455+ 00012 08364+ 0.0012
i
DTP(N; +1): 0.8971£0.0010 0.9397+0.0011 0.9095% 0.0010

FIGURE 12 Counterexample to DTP-Bottleneck Indicator 6.1.

7 CONCLUSIONS

This paper provides a method for identification of DTP-BNs in pull
serial production lines. The advantage of the method is that it is based
on data available on the factory floor through real time measurements.
These data are machine efficiency (modeled by p;) and frequency of
machine manufacturing blockage and starvation (modeled by mb; and
ms;). The disadvantage of the method is that it is not proved
analytically and only numerical justification is obtained. Proving this
method analytically (or, more precisely, providing precise conditions
when it works) is a challenging mathematical problem. The impor-
tance of this problem, however, is justified by its practical utility. This
will be a part of future work of the authors and, hopefully, some
interested readers.
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APPENDIX

Proof of Proposition 4.1 Let

Xi(k) = Prob{k parts in buffer B;}, k=0,1,...,N;.

497

Under assumptions (i)—(ix), this probability distribution must satisfy,

in the steady state, the following equations:

X1(0) = ¢1.X1(0) + q1(p2 — mb2) X1 (1),

X1(1) = p1.X1(0) + [p1(p2 — mby) + q1(q2 + mby)] X; (1)

+ q1(p2 — mb2) X1 (2),

Xi(k) = p1(q2 + mb2) X1(k — 1)+ [p1(p2 — mb2)+q1(g2 + mb2)) X1 (k)

+qi(pp—mb)) X1 (k+1), k=2,...,N; —1,
X1 (N1) = pi(q2 + mby) X1 (Ny — 1)
+ (g2 + mby + p1(p2 — mby)| X1 (Ny).

Solving (A.1), we obtain

k

o
Xi1(k) =——Xx;(0), k=1,...,Ny,
10 = s, 11O !
where
_ pi(q2 +mby)
o0 =—.
(p2 — mby)qi
Therefore,

(A1)

(A.2)

qimby — (g2 + mby)msy = qp1(g2 + mby) X1(N1) — (g2 + mb2)p2 X1(0)

N
= b)) ——— X1 (0
P1qi(g2+m 2)q2+mb2 1(0)

— p2(q2 + mby) X1 (0)

= X1(0)[p110™ — pa(g2 + mb2)].

(A.3)
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If py > p5, then > 1. When N; =1, we have

qimby — (g2 + mby)ms; = X1(0)(pr1g10™ — pa(g2 + mby)
pi(g2 +mby)

= X1(0) | ;11 (72 —mb)ar — p2(q2 + mby)
_ (2 +mb) X,(0) ;"_’bfrzlf ©) (P2 — P2 + pamby)
> 0. (A4)
When N; > 1,
' > a,

and it follows again that
qmby — (q2 <+ mbz)m.S‘2 > 0.

Proposition 4.1 is proved.



