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In this paper, the problem of robust state observation is tackled. A high-gain observer is
employed to carry out the state estimation of a continuous time uncertain nonlinear
system subject to external perturbations of stochastic nature. Unmodelled dynamics is
assumed to be deterministic and belonging to an a priori known class of uncertainties.
The control input is constructed based on the state estimates supplied by this observer.
An upper bound for the estimation error and the states of this closed-loop system is
derived. It is shown to be a linear combination of all a priori given uncertainty levels
and turns out to be “tight” (reachable). The proposed scheme is applied to a robot
manipulator with unknown friction and inaccessible angular velocities.
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1 INTRODUCTION

In the presence of any sort of external disturbances (noises or output
perturbations) or internal uncertainties (unmodelled dynamics or
model uncertainties), the exact and complete knowledge of the current
states is impossible and the use of any state estimator (observer) is
compulsory to supply any feedback controller with reliable on-line
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information to realize a successful closed-loop control. An important
problem to be considered is the problem of the global stability of a
nonlinear plant-observer control scheme subject to plant uncertainties
as well as to stochastic disturbances.

In the situation where the model of the plant is incomplete or
uncertain, the implementation of high-gain observers seems to be
convenient [4,5,13,20]. Most of the known results, dealing with this
technique, assume that the system neither contains any external
disturbances nor has internal unmodelled dynamics [9,10]. In [6] the
Lyapunov analysis is performed to prove the stability of the estimation
error of a nonlinear system with dynamics perturbed by stochastic
noises and whose measured output has no noise. The corresponding
output-feedback controller is robust with respect to disturbances (the
standard Brownian Motion process), but the output effects of any
model uncertainties as well as unmodelled dynamics are not consid-
ered. The authors design an output feedback (observer-based) back-
stepping control law for nonlinear stochastic SISO systems of a very
special structure and prove the global asymptotic stability (in prob-
ability) for such closed-loop system. Anyway, this work has several
drawbacks. One of them is that it considers a very specific structure of
the SISO system (as opposite to our case where a broad class of MIMO
nonlinear systems is considered). Another disadvantage is that the
complete knowledge of the nonlinear plant is assumed and, lastly, the
fact that it considers the use of a quartic Lyapunov function to perform
the study of the scheme. This makes the analysis very cumbersome due
to the size of the resulting mathematical expressions involved.

In the current paper, in order to analyze the stability of the closed-
loop system containing an observer as a part of the feedback, an
extended system is considered, involving the models of the MIMO plant
and the observer. The assumptions on this new system are adopted with
the aim of assuring the existence of the solution to the plant and
observer stochastic differential equations. The stability analysis is
based on a Lyapunov approach where satisfaction of two algebraic
Riccati equations, constructed artificially for technical reasons, is
required to assure boundness (in some probabilistic sense [18]) of the
state error, that is, assuring the boundness of both the state and its
estimate. The class of systems considered is a broad family of nonlinear
stochastic continuous time models with and the class of feedback
nonlinear controls employed. The family of controllers may include
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a wide class of commonly used controllers such as PID, Sliding Mode
type, HJ (Hamilton-Jacobi) type, Locally Optimal, etc. The control
scheme proposed in this paper extends ideas from the previous work by
Martinez-Guerra, Poznyak and Gortcheva (see for example [9—-11] and
uses a high-gain observer. The idea of employing a high-gain observer
is to make the dynamics of the observer part of the proposed scheme
less dependent on the dynamics of the plant containing uncertainties in
it. The Lyapunov analysis for stochastic systems has an antecedent in
the works of Poznyak, Taksar, Osorio and Iparraguirre (see [7,14,16,
19]). We believe that the technique, used in these papers, is a novelty for
the treatment of such sort of problems. Summarizing, this paper pres-
ents a closed-loop plant-observer scheme for a broad class of nonlinear
plants subject to stochastic disturbances of the Brownian Motion type
as well as to unstructured plant uncertainties. The resulting scheme is
shown to be robust against these uncertainties and perturbations.

The paper is organized as follows. In Section 2 the class of plants
treated is introduced along with the structure of the high-gain observer
employed. The basic assumptions about the system are also presented.
The main properties of the robust high-gain observer in the closed-loop
scheme are presented in Section 3. Section 4 deals with the applications
example of the manipulator robot with an uncertainty in the friction
description. Finally, conclusions and bibliography are presented.

2 STOCHASTIC SYSTEMS WITH INCOMPLETE
INFORMATION AND HIGH-GAIN OBSERVERS

Let (Q, F, {F:},0, P) be a given filtered probability space, that is,

— the probability space (2, F, P) is complete,
— the sigma-algebra F contains all the P-null sets in F,
— the filtration {F,} >0 is right continuous: F,; := Ny Fs = F.

On this probability space an m-dimensional standard Brownian
motion is defined, i.e., (W(2), t>0) (with W(0)=0) is an {F} -
adapted R?-valued process such that

E{W(t)— W(s)|Fs} =0 P-as.
E{([W()-W($)|[W(t) — W) | Fs} = (1 =) P-as.
P{we Q:W(0) =0} =1.
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21 Stochastic Process with Incomplete Information

Consider the stochastic process x,/(w) (we) defined on (,F,
{F t}tzo’ P) and given by

dxt = [Fo(x,) + F] (xt)ut + AF([, xt)] dt + el)tth
Xo — is a given random vector (1)
d}’t = Cdx, + 92,lth

where

x; € R" is the state or signal process,

y: € R™ is the output or observable process,

u, € R™ is the input process (control function or simply control)
subject to

utGB,

B, is a set of Borel functions measurable with respect to the o-algebra
&(ys, s < t) generated by the process y;),

Fy : R" — R"is a vector field describing the dynamics of the system,

F, : R* — R"%*" is a vector field describing the way the input signal
enters the system,

AF:R*! — R" is a vector field describing the internal unmodelled
dynamic part of the system (or the uncertainty on the model),

6, €R™,0,, € R**9, C € R™*" are real valued deterministic
matrix functions defined for any ¢ > 0.

2.2 High-Gain Observer

Consider the high-gain observer constructed based only on the avail-
able information and described as

ds, = (I+ KC) ™ ([Fo(%:) + Fi(%:)u] dt + Kdy,)
Xo — fixed (may be, random) (2)

where the matrix K € R™" satisfies

det(I+ KC) # 0 (3)
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According to [9,10], in the case when VT Fy(0)#0, the gain-matrix K
can be selected as

K=-5;'c"

where the matrix Sy should be the positive solution of the following
algebraic equation

ET(S9+gI) + (So+gI)E= CcTc
E := (I+KC)™'VTFy(0)

The positive parameter § determines the desired convergence rate
for the estimation error. Under some certain technical assumptions
(locally Lipschitz condition), it follows that S;!' ~ O(1/6) and this
nonlinear observer is shown to provide an arbitrary exponential
estimation error decay if no uncertainties and random noises at all.

2.3 Classof Nonlinear Controllers

Throughout this paper the nonlinear stochastic systems described
by (1) will be considered. The feedback control policy is constructed
based on the information available up to the time z.

DEFINITION 1 The function u, (T €0, t]) is said to be an admissible
control policy if

(1) for each time t € R* the Borel function u, is B,-measurable (does not
depend on the future),

(2) it guarantees the existence of the solution to the system and observer
stochastic differential equations (1) and (2) within any time interval
[0, 7].

DEFINITION 2 An admissible control policy u, (7 €[0,1]) is called
a nonlinear (may be, nonstationary) feed-back control if

u = u(t, %) (4)
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2.4 Extended System
Let us define the extended random vector
z = (x],y;, %) € R

In view of this definition we can rewrite the given stochastic differ-
ential equations (1) and (2) as follows

dZt = H(t,Zt) dt""Etth (5)
where

H(t,z;) =
Fo(x,) + Fy(x;)u, + AF(t, x,)
ClFo(x:) + Fi(x:)us + AF(t, x,)]

(I+ KC) ™ ([Fo(%:) + Fi (% )ur] + KC[Fo(x,) + Fy (xe)u + AF(2, x,))
O1,

;= C@Lt + @2,,
(I+KC)'K[CO:, + 6]

(1]

In order to assure the existence and the uniqueness of the solution to
this system of differential stochastic equations (1) and (2) with a fixed
nonlinear feedback control (4) for all ¢ € R, the functional matrices
H(t,z) and E, defined above are required to satisfy the following
conditions [7]

(a) H(, z)and =, are measurable with respect to ¢ and z for all t € R™;
(b) there exist constants K, and Ky such that for all € Rt and
z,z' € R¥" the following properties hold:

)
1H(2,2) — H(t, 2")|| < Kollz - 2|
(ii)
[H (2, 2)|| < Ku(1 +||2])

sup ||=| < oo
t€[0,00)
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Under these conditions, it can be proved [3,7] that there is the solu-
tion z, to (5) defined on [0, co) which is continuous with probability 1
and pathwise unique, that is, if z and z’ are two solutions to (5), then

P(w €Q: sup ||z(w) — 2/ ()| = o) =1

t€[0,00)
and such that for any finite 7'< oo

sup E{[lz/]*} < oo.
t€(0,T]

2.5 Basic Assumptions

For technical convenience and taking into account the necessary and
sufficient conditions for the existence and uniqueness of the solution
to the differential equation (5) just presented, the following assump-
tions should be done.

A.1: there exists a stable matrix 4 and a strictly positive definite
matrix Ag such that

[Fo(x + A) — Fo(x) — AA|3, < Lol|All3,
VA, x€R", Ly € (0,00)

with the matrix
A:=[I+KC]'4

also being stable and the matrix K satisfying (3).
A.2: for any x € R" the vector field Fy(x) satisfies the following
condition

[Fo(x)|* < ko + kal|x||, ko,ky >0
A.3: the vector field F;(x) is bounded, i.e., for any x € R"

IR ()]l < Fi" < o0
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A.4: the unmodelled dynamics AF due to parametric uncertainties, is
bounded as

|AF(t, x)|* < po + p [l
V>0, VxeR", po,u €J[0,00)

A.5: the feedback control law is of the nonstationary feedback type,
nonlinear dependent on the current state estimate X, and satisfies

llut, %)|> < Co+ Cill%|> V>0

A.6: the noise matrices ©; , and ©,, are bounded, that is,

6y := sup ||O1,] < o0
t€[0,T)

6, := sup ||©z| < oo.
t€(0,T]

3 BASIC PROPERTIES OF ROBUST HIGH-GAIN
OBSERVERS IN CLOSED-LOOP SYSTEMS

Define the estimation error as
A .
At =Xt — Xt (6)

According to (1) and (2), the dynamic equation describing the
behavior of the estimation error is given by

dA; = d%; — dx, = [Fo(R(w)) + F1(%:(w))us] dt + K [dy, — C(£)%(w))]
— [Fo(x:(w)) + Fi(x¢(w))u,] dt + AFdt + ©1, dw;

Substituting £,(w) = x;(w) + A, in the last equation and rearranging
terms, we finally get

dA, = [T+ KC]|  [Fo(x:(w) + Ar) — Fo(xi(w))
+ [F1(x(w) + Ar) = Fi(x(w))]u, + AF] dt
+ [T+ KC]'[KOy, + ©1,] dw, (7)
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Define the Lyapunov function as

Vo(A) £ ATPA
AER", 0<P=PT€R"X"

Differentiating it over the trajectories of (7) and taking into account
the 1t6’s formula [7], it follows that

dVo(A,) 2 (2PA,,dA,) + I(1) dt (8)

where the operator (-, -) denotes the scalar product and Z(¢) is the Itd’s
term given by

Z(r) = w{Of P(Of)"}
and

Ok & I+ KC]"'[KO,, + O]
O, := KC[I+ KC]|"'[K©,, + ©1,] + KO»,

that, in view of (8), implies
dVo(A,) £ (2PA,dA)) + tr{0XP(©X)T} dr 9)

An extra technical assumption is needed.

A.7: There exist the positive solutions P and P to the matrix Riccati
equations [21]

L2 P41+ AP+ PRP+Q =0
R £ 2A;1 + Ay
A —-1)2 —1)2 1
Q1 = LollI+KC) |y, - I+ I+ KC] |lj,m(l+n7") - 1
+ Lo||KC(I + KC)7"|*Ao

+ AT[KC(I+ KC) T A [KC(I + KC) ™14 + Qa
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and
Ly:=PA+ AP+ PRP+ 0, =0
Ry =3I+ A" + AR + A3
02 £ [l + Fi(C1 + 4I|KCIPCy) + I KCIR, 11+ KT,
+C+ T+ KCT R (T +07")
+4(FPI+KO) R, 1+ 0

The following three lemmas present the basic properties of the
considered stochastic processes.

3.1 Property1

LEMMA 3 The assumptions A.1-A.7 imply that with probability one
the following inequality holds:

[ 18, + 15, or

a.s.= t
< ST+ rWg+ 1! /_0 gk (w) dW,(w) (10)

where
ST = 4(F ||+ KC)7Y|3,Co + po
+ (IK1162 + 63)*|| Plltr{[ + KC]~'[I+ KC] ™"}
+ (|KCI + KCT'([IIK1|62 + 61] + (| K [162)*tr { P}
+ ko + F(Co + 4l|KC*Co) + || KCI[3, 1o
g(xn A1) :=2(0K)TPA + [0F — 6,,](KC)T P%,
Vo(A) 2ATPA, V(%) 2 5TB%, V.= Vo(A)Vi(%)

and Qna, Qs, P, P are positive defined (n X n)-matrices.

Proof What we will do now is to look for the upper bound for the
regular term (2PA,, dA)) in the last Eq. (9). The use of (7) leads to the
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following:
(1) For the term
2(PA, [T+ KC  [Fo(x, + Ar) — Fo(x:(w))])
it follows that
2(PAL [T+ KC ' [Fo(x, + A)) — Fo(x:(w))])
=2(PA, AA,) + 2(PA, [T+ KC]™!
x [Fo(x: + &) — Fo(x(w)) — AAY])
< AT(ATP + PA)A, + ATPAS'PA,
I+ KCT |3, 1 Fo(x: + Ar) — Fo(xi(w)) — AA|I3,
< AT[(A"P + PA) + PAG' P+ Lo||[I + KC] |3, 71A (11)
(2) For the term

2(PA, [+ KC) ' [Fy(x: + Ar) — Fi(%(w))]uy)

it follows that
2(PA, [T+ KC) 7' [Fi (% + Ar) — Fi (3 (w))]ur)
< ATPAG'PA, + [T+ KC] 7' [Fy (3 + A) — Fi(xu(w))]ull,
< ATPAG'PA, +4(F ||+ KC 713, Co
+4(F?IT+ KCT 3, Gl (12)
(3) The term (2PA,, AF) can be estimated as
(2PA, [I+ KC]'AF)
< ATPAL'PA, + ATF([I+ KC) ) AA[I+ KC|'AF
< ATPAR'PA, + [T+ KC 7'}, (1o + mllx|1?)

< ATPAR'PA + ||[T+ KCT YA, (ko + mll%e — Adl%)
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Applying the inequality
lla+8]* < (1 +n)llal* + (1 + 775
valid for any n > 0, we get
(2PA,, [+ KC]'AF)
< ATPAZ'PA, + |1+ KCTI3,
x (o + p[(L+mlI%AP + (1L + 77 1A
< ATPAR'P + |7+ KCT 3 (1 +07)1A,
+ |7+ KCTMIR, (o + p[(1 + )1 %]%]) (13)
Substituting (11)—(13) into (9), we conclude that
dVo(A,) < {AJ[(A"P + PA) + P(2A;" + AP
+ (LolllT + KCT 3,1 + [T+ KCTH I3, (1 + 17 DA,
+4(F)I + KCT}, Co+ I + KCT I3, 1o
+ 4E I+ KSR, G
7+ KCT Ry (140 D12} e
+ Z(¢) dt + 2(PA, ©K dw,)

Consider also the other quadratic form defined as
\ A The
Vi(%:) = %7 P%,
Differentiating it in a similar way to the function Vy(4,), we get
dvi (%) & 25T P dg, + tr{6,POT} d

The substitution dx, from the differential observer equation in the
expression above implies

AV (%) = 2%T P(Fo(%:) + F1 (%)) dt
- 2’%TPKC[I+ KC]_I(FO(x, + A;) = Fo(x,)u,) dt
— 28T BKC(Fi (%, + A,) — Fy (x,))udt — 25T PKCAF dt
— 2% PO, dw, — 2%T PKC KO, dw, + tr{©,POT } dt
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Next, we bound from above each of the terms of the previous
expression:

)
23T PFy(%,) < XTPP%, + | Fo(%)|I* < 2T (PP + kil )% + ko (14)
@

28T PFy (%)u; < XTPP %, + || F1 (%)
< EN(BP+ (F{)’C)x + (FF)PCo  (19)

3)
— 28T PKC[Fi (A + x;) — Fi(%:)ui]
< %] PP3 + || KC(Fy(x: + Ar) — Fi (x:))uf|
< X/ (PP|KC|>CiT+4(F{')))2 + 4(FYIKC|*Co - (16)
@)

—25TPKC[I+ KC] N (Fo(A + x;) — Fo(x;) — AD)
< XTPP%, + ||KCI + KC] ™! (Fo(A + x,) — Fo(x:) — AA)|3,

< ZTPAG B3, + ||KC[I + KC) '[P Lol A}, (17)
&)
—2(£T, PKC[I + KC] ' 4A)
< &TPAS'Px, + ATAT[KC[T+ KCTT')T
x A[KC[I + KC]™'4A (18)
Q)]

—2%T PKCAF < 2T PAL' P, + AFT(KC)"AAKCAF
< % PARPs, + | KCI, (no + mi (%))

For the joint quadratic form V defined by
Vt = VO(A) + V] ()AC,)
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the following expression holds:
dV, = dvy(A) + dVi (%)
< ATLIAdt + 2T Ly%,dt + ¢, dt + g(%,, A, 1) dw,
— ATQAAdr — 5T Q3% dt (19)
with
g0 1= 4(F (I + KC) ' [13,Co + 17+ KCT I}, 1o
+tr{[I+ KC]"'[KOy, + ©,,]P[KO,, + ©,] [+ KC] "}
+tr{@OF PO,} + ko + F{2(Co + 4| KC|*Co)
+ | KCI3, 1T+ KC] [}, o < ST = const < o0

In view of (19) and taking into account the assumptions of this
theorem, it follows

Li=L,=0

and

a.s.
dV, < ST dt+g" (&, A, ) AWt — [ATQAA, + 27 Q3%/) dt

The integration on ¢ both sides of this inequality leads to
t

as.
Vi—Vi=o < S+-t+/

=0

t
gaw, — [ (161G, + 5] ¢r

where

1 /T;O[HAT(w)HzQA + ll’e’”(“’)”zgf]dt

a.s.

t
< ST -1V, = Vio) +t—1/ gl (w) dW, (w)
7=0
t
<S8+ +t‘1V,=o+t‘1/ gl (w) dW, (w)

7=0

lemma is proved.
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3.2 Property2
LEmMMA 4 If

/w;E{” 2} dt < oo
=0 (¢ + 1)2 &

then

t
s,érl/ gldw, 250
=0

n—oo

45

(20)

Proof This proof follows the ideas given in [15]. Let us introduce the

following random sequence {S,,} defined as

1 n
S, = —/ gl dw,
nJ;

This can be represented in an iterative form as follows:

S, = n—1 [/n_lgTdW +/n gTdW:|
"Tnn=1) [ Jimo 77 ! t=n-1 !

=(lwn_1)Sn_1+n_1/ grdw,

n—1

Calculating the conditional expectation of its square, it follows

E{Sp%/]:n—l}

n n
‘f—f'(l—n“)253_,+n‘2E{ / 1 / 1(gfdWT)(gIdWT)/Tn—l}
n—1Jn—

+2(1 —n“)n"sn_lE{ / g,Tsz/fn-l}
n—1

Q

n
sk, - 2tst et [ gl ar

n—1

Here we take into account that

E{/ g,TdW,/J-',,_l} =)
n—-1

([ [ @awatawyza e [0 jerta

(1)

(22)

(23)
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In view of the law estimate

[ur v edyaz 3 [7 a4 ) 2 Bgl o

00 n—1
>3+ [ E(ledy

n=0

from the assumption (20) of this lemma it follows that

0 1 n—1
Y [ sl dr<oo

~(n+1)Jn

The Skorohod lemma [15] leads to
S lsiart
-5 o0
n=1 n2 t=n—1 !
and the Robins—Siegmund lemma [12,17] with
Xp =87, &:=2n"'S,
Qni=n"2, B,:= n_2/ llg:||* de
n—1
implies
as. >\ 1 5 as.
Sy — 8*(w) and ;;Sn_l < 00

From the last property, taking into account that

it follows that there exists a subsequence {n;} satisfying

a.s.
. -
Ing : Sy, i 0
and, hence,

S*(w) =0

(24)
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Below, the behavior of the Borel function S, within the interval
[n, n+ 1] will be studied and its boundness will be proved. To do that
consider the random sequence {7,} defined as

Nni= sup |S;— Sy

te[n,n+1]

From above it follows:

1 n+1 1 1 t
Tn = Sup —/ g dw, + <———)/ grdw,
tefnn+1]|11 J1=n t n) J=o
1 n+1 1 t T
< sup —/ g:|+ sup ——/ g, dW,
telnn+1]11 J1=n t tefnn+1] |1+ 1 n||Jr=0 !
So,
1 t 1 t
N < sup —/ g dW,|+= sup / g AW,
tefnn+1)I1M Jn % tenn+1]1J =0

The Chebyshev’s inequality (for any £ > 0) implies

1
P{m > €} < E{n}}

2
< 2 lE su / t Taw,
g2 \n? te[n,ng-l] n & '

1 ‘ 2
—E Tdw,

n+1
<ot [ / T +1 1)2E{ngfnz}dr + %] = 1y

sup
tefn,n+1)

Since
(oY o0
D Pl&2e} <) yn<oo
n=1 n=1
then by the Borel-Cantelli lemma it follows

> a.s.
> x{m > e} < o0
n=1
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and we can conclude that for almost all random realization w € Q) there
exists a random (but finite) number rny(w) < oo such that 7, < € for any
consecutive numbers # > ng(w). This means that 7, n‘%‘no. And finally,
from this fact and in view of (24), it follows that

a.s.
St — 0
t—o0

lemma is proved.

3.3 Property3

LEMMA 5 If the initial states of the considered stochastic process X
as well as the initial states of the suggested high-gain observer %, are
quadratically integrable, then for any T € R™ the following estimate
holds:

[ (t+ 1) E{ .|} dt

T
<const- T ! 4+ ZConst/ (t+ 1)—2 dt < const < 0o
0

Proof From (10) and from the properties (23), it follows:

/ ’OE{MAT(w)nzA @G de

t

< ST t+ E{Vieo} + E{/ gI(w)dWT(w)}

=St t+ E{Vi}
The definition of g;(A,, %4, t) provides the property
leell* < CIAN + [1%:17) (25)

Hence,

T
AT) = / Ellled}dr

T
<c / EQIAJ? + %%} dt < aT+b
=0
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where a, b are positive constants. Integrating by parts, we get:

T
|+ D Bl

- /T (t + 12 dF(t) = F(T)(T + 1)—2+2/TF(t)(z+ 1) dr
t=0 0

The application of the expectation operator E{-} to the Eq. (25)
implies
T -2 2
| @+ 0By ar

aT+b 2/Ta-z+b
(T+1* " Jo (t+1)°

< max{a; b} [(T+ 1)~ +2/T(z+ 1)2 dt}
0
< max{a; b} [1 +2/oo(t+ )72 dt] < const < 00
0

lemma is proved.

COROLLARY 6 In view of the Lemmas 1, 2 and 3 it follows that

t
%/ grdw, =50

n—o0
=0

3.4 Main Result
Now we are ready to formulate our main contribution of this paper.

THEOREM 7 (Main Result) The assumptions A.1-A.7 imply that for
any quadratically integrable initial states of the process and the observer
the performance index L, defined as

Lo= %/T:()(nar(w)na + & @llg,) dr
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possesses the following properties:

(1) for any random trajectory w €

. as
limsup L, < S*

t—00

(2) speaking in the average sense,

limsup E{L,} < S*

t—00

Proof 1t follows directly from the statements of Lemmas 1, 2 and 3.

3.5 Upper Bound Tightness and Stochastic Stability

We show next that the upper bound for the performance index
obtained above is reachable.

In the case of no internal uncertainties and no stochastic nonmea-
surable perturbations in the given system, that is, when

po=p1 =0
0p=0,=0

and for the nonlinear fields satisfying the “cone” condition

k0=0 =>F0(x=0)=0
Co=0= u(t,x,=0)=0, V>0

from the main theorem it follows that
St:=0

In other words, the obtained upper bound S is “tight” (reachable).
This leads to the stochastic stability property

— in the “with probability one” sense:

18- @)lIg, + 1% @), =2 0

n—o00
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— and in the “mean square” sense:

E{|A:()ll5, } + E{I% (@)1, } n5% 0

4 APPLICATION TO A ROBOT MANIPULATOR WITH THE
FRICTION UNCERTAINTY

41 Robotic Model

In this section the dynamic model for a Robot Manipulator with two
degrees of freedom containing an internal uncertainty connected with
an unknown friction parameter is considered.

4.2 Dynamic Equations

The corresponding Lagrange dynamic equation can be expressed as
follows [8]:

M(0)0 + W (9,6) = u(8,u € R?) (26)

where M(6) represents the positive definite inertia matrix

M) = MT(6) = [%; AMIZ] >0 27)

with the elements
My = (my + my)a} + mas + 2myaraxcy
My = myas + myayazcs, M = myaj
My = M12, a; = l,', ¢; = COS 0,-, S = sin 0,'
Clp = COS(H] + 92)

Here m,,[; (i=1,2) are the masses and lengths of the corresponding
links and W/(6,6) is the Coriolis matrix representing the centrifugal
and frictional effects (with the uncertain parameters). It can be
described as follows:

w(6,6) = w1(6,6) + W»(6) (28)
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where W) (6‘, 9) corresponds to the Coriolis and centrifugal com-
ponents:

w1(6,6) = (322)

Wia = —mlalaz(Zéléz -+ 0%)& + (m1 + mz)gal ¢ +mygascyn

Wi = mzalazéfsz + magascin
and W, (0) corresponds to the friction component:

W, (0) =Ky

v k& 0 O ; PO ] ion O
(35 2 2) - s 6 s

To represent this system in the standard form, introduce the
extended vector

xT = (61,62 61,6,)

and, in view of this definition, the dynamic equation (26) can be
rewritten as follows:

X1 X3
%= sz _ X4
T x| T | (M)W (x) = M (x)kv(x) + M7 (x)u),
X4 (=M ' (X)W1 (x) — M7 (x)sv(x) + M1 (x)u),
(29)
4.3 Uncertainty Description
Assume that the matrix & is presented in the following form
K= ko + Ak, (30)
where the internal uncertainty Ax satisfies
Vt: AkIAk, <A (31)

Here the matrix A is a priori known.
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In view of the notations accepted above, the system (29) can be
represented in the following standard form:

dx, = [Fo(x,, t) + AF(X,, t) “+‘ F] (x,, t)u,] dt + @leW, (32)

where

X3 0
Fo(x, 8) = ( X4 ) = Ex; + Fo(x1, 1), AF(x,,1) = ( 0 )
fo

(%) Af(x,)
0 0
F](x,,t)z (0 0)
B(x)

fo(x;) := —M 1 (x,)[W1(x:) + Kov(x,)] € R?

and

Af(x,) == —M 7 (x,;) Ak, - v(x;) € R?, B(x;) = M7 '(x,) € R**?

0 I —_— 0
E:( 20 w), FoGnd=| o0 (33)
02x2 022 fo(x:)

Taking into account the restrictions (31), the corresponding nonlinear
term, containing the uncertainty mentioned above, can be estimated as
follows:

|AF(x,, )13, = AFT(xs, 1) AoAF(x,, 1) = AT (x,) Aga Af(x,)

= vT(x,)An,TM_I (x,)Aon"1 (%) Akev(x;)

< Amax (S(x) )T (%) AT Akv(x,) < (34)
where

Ly = )\max(S(x,))vT(x,)Av(x,) (35)
S(x;) := M~ (x)AaM "' (x,) (36)
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and A, is the weight matrix selected for the simplicity in the block-
diagonal form:

_ A O 4x4
Ay = [ 0 Aoz] €R

Sure, such friction structure covers only Coulomb and Viscous fric-
tions. Any other phenomena in friction such as Stribeck’s effect and
hysteresis [2] are outlined in.

Consider the robotic system with noise components, that is, we have
for any ¢ >0:

©1, =ew, - 1€ R4, ey, = const > 0 (37)

4.4 Measurable Output

In this context it is assumed that only the angular positions can be
measured:

dy, = Cdx, + ©,,dW, € R? (38)
where
1 0 00
€= [0 10 0]
and
62, = ew, - 1 € R?*%, ey, = const >0 (39)

In other words, the angular positions are measurable with observation
noises.

4.5 Simulation Results

A number of simulations have been performed for a two link
manipulator with the friction parameter k given by (30) with

o (035 125 0 0
"=\ o 0 035 125
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and the time-varying uncertainty satisfying

Ak — 0.5wsin(w?) 0.9wcos(wt) 0 0
e 0 0 0.2wsin(wt) 0.6wcos(wt)

(40)

with w=35.
The control input u, was selected as in [8]:

() = —FF (%) [Fo(fc,) —fr ) + V2T P (3, — x;)]

= fy ) = (5, — i —xi, — ) x = (1,1,0,0)7

where F;" (%) is the pseudoinverse (in Moore—Penrose sense, see [1])
matrix of Fy(%,).

The tracking trajectory x} is equivalent to the following harmonic
oscillations

x; = (sin(z + ¢1), cos(z + ¢2), cos(t + ¢1), — sin(z + $2))"

¢ = arc sin(1), ¢, = arc cos(1)

The performance index of the corresponding estimation process was
calculated as

1 ! 2
Lo=rrogar ), 185, dr Q=1 (@1)

or, in the differential form,

1 2
L=~ —ggor "~ 18], Jo=0 (42)

The simulation results, presented in Figs. 1-5, have been carried out
with the help of MATLAB 5.3 Software with SIMULINK 3.0 as
toolbox.
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FIGURE 1 The state x; and its estimate X;.

2 rad anguiar posion

¥ [P K ——

g G

I —

o
—_
N b-------
w

Time (second)

FIGURE 2 The state x, and its estimate X».

The Figs. 1-4 show the convergence of the state estimates to the real
states in the presence of parametric uncertainties given by (40) and the
external noise perturbations satisfying (37) and (39) with ey, =1,
ew, = 0.02 (the noise in the system output) and §=0.01 (the small
parameter in the high-gain observer). The initial conditions of the
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FIGURE 3 The state x3 and its estimate X3.
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FIGURE 4 The state x4 and its estimate X4.

system and the observer were taken as
X1=2, JC2=—1, x3=1, JC4=1

and

57



58 AS. POZNYAK et al.

1500 Performance index

1000 - -\ -+

leccccacaadacaccean-d

500 f--- -\~

Nb--f------

Time (second)

FIGURE 5 Performance index L,.

Finally, Fig. 5 shows that the quadratic estimation error is bounded
on average (the performance index) in z.

5 CONCLUSION

In this paper we present an observer-plant scheme where a nonlinear,
continuous time, uncertain model for the plant is considered. External
perturbations of the Brownian Motion type were also considered. The
analysis of the proposed scheme is based on the Lyapunov approach
which allows to assure the boundness of the estimation error of the
states of the plant in a closed-loop configuration. As the main result, it
is shown that this closed-loop uncertain stochastic system is stable and
the performance index attains the value, shown in Theorem 3.5, both
in the trajectory sense and in an average sense.

Among the advantages, mentioned about, the suggested scheme
serves for the broad class of nonlinear plants closed by the feedback
controllers. The considered feedback control laws may be of the
nonstationary feedback type, dependent in a nonlinear way on the
current state estimate and with the property satisfying the “sector
condition”. The robustness properties of this scheme with respect to
plant uncertainties and with respect to stochastic perturbations in the
dynamics of the plant as well as in its output, are reinforced by the use
of a high-gain observer that makes the scheme less dependent on the
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dynamics of the uncertain plant. The high-gain observer provides the
state estimates bounded on average.

Finally, the performance of the closed-loop system in the applica-
tions example is shown. The simulation results, concerning the robot
manipulator, illustrate the effectiveness of the technique in the case of
the incomplete information about the friction and the noises presence
at the output of the system.
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