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This paper presents necessary and sufficient conditions for the existence of a quad-
ratically stabilizing output feedback controller which also assures H, guaranteed cost
performance on a discrete linear uncertain system where the uncertainty is of the norm
bounded type. The conditions are presented as a collection of linear matrix inequalities.
The solution, however requires a search over a scalar parameter space.
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1. PROBLEM STATEMENT

The robust control domain has experienced an exponential growth
in recent years. In this research domain, new and better tools are
developed to deal naturally with multi-input, multi-output systems,
external disturbances, system’s uncertainty and to include explicitly in
the control design other common performance specification (Anderson
and Moore [1], Barmish [2]).
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Among the robust approaches, one of the best known and
practically implemented is the Hy-or LQR-. This approach searches
for a control law that minimizes some performance index measuring
the control efforts and profile of the states evolution. In turn, the
performance may be expressed as a fictitious — commonly known as
controllable — output (Doyle et al. [5]).

This paper addresses the problem of determining the existence of a
H, controller for some discrete uncertain linear systems. The problem
will be formulated as a collection of Linear Matrix Inequalities (LMIs)
which will also imply a search over a parameter space. The derivations
are based on a recent result (Scherer ez al. [13]), where an elegant
change of controller variables — in fact matrix change of variables — is
used to obtain a linear set of matrix inequalities.

We consider uncertain discrete linear systems of the form:

X141 = (A + DFEl)x, + (B + DFEz)u, + Byw;
yi = Cx; (1)
z; = Cixy + Dy

where x,€R", u,€ R” and y,€ R? are, respectively, the state, control
and measurable output vectors. w, € R™ is the external disturbance
and z, € R™ is the controlled output. 4, B, C, B;, C;, D,, are known
constant matrices, determining the nominal system. D and E are
known constant matrices that define the structure of the uncertainty
(how it affects the system). The unknown matrix F € R" * " represents
the — norm bounded — uncertainty (Petersen [11]) and belongs to:

F={FeR™*" . FTF<I}

The problem addressed is that of finding an observer-like controller
of the form:

X141 =Acx, + By, @)

U = chct

such that when the system loop is closed with (2), the resulting system
is stable and the H, norm of transfer function from w to z is less than
or equal to some given /v > 0 for all possible F € F, i.e.,

|Tw:|} <~ VFeF
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what is normally referred to as guaranteed cost control (Esfahai and
Petersen [6]).

All results to be presented might be extended to pole placement in
discs centered in some real scalar value o and radius r. Non strictly
proper controllers might be equally considered. Without loss of gen-
erality, demonstrations are limited to systems of the form (1) and con-
trollers (2) in order to keep the derivations much simpler.

When controller (2) is applied, the closed loop system obtained is:

X141 A BC, D Xy

. = + F(E, EC.) .

Xt+1 BCC AC 0 N e’ Xt
———————— N~ z N——

v v E
A D x

+(%)m (3)

or in simpler terms:
'i'H-l = (A + DFE)X; + E1w,

Zy = Clit.

(4)

Our formulation of the problem is based on the quadratic stability
concept, which is defined as follows:

DeriniTioN 1.1 (Garcia and Bernussou [7]) System (4) is quadrati-
cally stable if there exists a positive-definite symmetric matrix P >0
such that:

(A + DFE)"P(A + DFE) — P <0 (5)
VF € F.

Remark 1.1 In general, disc stability (or d-stability) refers to the fact
that the closed loop system has all its poles located in a disc of the s or
z plane. In the case of (5) this disc is the unit disc of the z plane, i.e.,
the one that assures asymptotic stability of the discrete system.
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The H, guaranteed cost is given by:

DermNiTION 1.2 (Geromel et al. [8]) Let {4.,B.,C. be a given
quadratically stabilizing controller of system (1). Then it is a y( > 0),
H; guaranteed cost controller if:

ITw:ll; <+ VFEF
where T, is the transfer function from w to z in (4) and is given by:
T,. = C,(8 —A — DFE)™'B;, & = the advance or shift operator
Let us recall now that (Garcia and Bernussou [7]):
| Tz |2 = Trace(B| L, (F)B1)
where L,(F ), — the Observability Grammian — satisfies:
(A + DFE)TL,(F)(A + DFE) — L,(F) + C, C, = 0. (6)

The following theorem gives us certain equivalent conditions for upper
limits on the H, norm of system (4).

TueoreMm 1.1 (Garcia and Bernussou [7]) System (4) is quadratically
stable if and only if there exists a matrix P >0 and a scalar € > 0 such
that

AP —eDD ) 'A-P+ e 'E'E+C € <0 (7)
N——

Y

Remark 1.2 1In Garcia and Bernussou [7] the result is formulated
in terms of a matrix @, which may be arbitrarily chosen, and a dis-
crete Riccati equation. With an appropriate selection of Q (e.g.,
Q = 0 + any positive-definite small matrix) (7) yields.

The upper limit on the H, norm is given in terms of the solution P
of the Riccati inequality (7).
In fact, satisfaction of (7) is equivalent to (Garcia and Bernussou

[7D:

(A + DFE)"P(A + DFE) — P+ C, C; <0. 8)
By comparing (6) and (8) it can be concluded that P> L, and
therefore:

Trace (EITLO (F)By) < Trace(f?lTPE )
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In terms of Matrix Inequalities, the existence of a matrix P >0 and a
scalar € > 0 such that:

P! BI
- 9
( BlT 71) >0 ®)
and
P! + DD’ A
( . o )<0 (10)
A —P+e'EE+C Cy

implies that
|Twell3 <y VFeF

and that system (4) is quadratically stable. Now we are ready to
present our main result.

2. MAIN RESULT

This section presents necessary and sufficient conditions for the
existence of quadratic stabilizing controller with H, guaranteed cost.

To ease the presentation some elementary manipulation of previous
results are featured.

LemMmA 2.1 Inequality (10) is satisfied if and only if there exists a
positive-definite symmetric matrix S such that:

~~T ~

—S+D

S+~TD ~T~AS ~T =~ <0 (11)
SAT S+ SETES+eSCIC1S

Demonstration Pre and post multiply the left hand side of inequality
(10) by the regular symmetric matrix:

I 0
0 p')
Then, by defining S=¢~'P~!, (11) is obtained. [ ]

Observe that with this change of variables, inequality (9) becomes:

S B, (12)
. > 0.
BIT eyl
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LeEmMMA 2.2 Let T be any regular square matrix of appropriate
dimension, then inequality (11) is satisfied if and only if there exists a
positive-definite symmetric matrix S such that:

~I 0  EsTT 0 0
0 —elI CiST7 0 0

TSE" 71SC, —1ST7 TSA'TT 0 |<0 (13)
0 0 TASTT -TSTT TD
0 0 0 D17 I

Demonstration (13) is obtained by pre and post multiplying the left
hand side of (11) by the regular matrix:

T 0
0T
and its transpose respectively and then applying the Schur com-

plement equivalence (Boyd ez al. [3]) to expand the dimensions of
the matrix. |

LeMMmA 2.3 Let T be any regular square matrix of appropriate
dimension, then inequality (12) is satisfied if and only if there exists a
positive-definite symmetric matrix S such that:

TST" TB,
(BITTT 571) > 0. (14)

Demonstration (14) is obtained by pre and post multiplying the left
hand side of (12) by the regular matrix:

T O
0 I
and its transpose respectively. ]

We now present our main result:

THEOREM 2.1 System (4) is quadratically stable with ~v(>0) H,
guaranteed cost control if and only if there exist positive-definite
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symmetric matrices X and Y and matrices H, L, Z and a scalar
€>0 such that the following set of Linear Matrix Inequalities is
satisfied:

Y I VYB
1 X B |>0 (15)
BTY BT enI
and
—1 0 Ei EX+E,L 0 0 0
x —e'I ¢ CX+DiL 0 0 0
* x =Y ~I ATY + CTHT AT 0
x ox % -X Z XAT +L7BT 0 | <0
* * * * -Y -1 YD
* * * * * -X D
* * * * * * -1
(16)
furthermore, an H, guaranteed cost controller is given by:
B.=V''H
C.=LU")™ (17)

A, =V~ Y(Z" — YAX — HCX — YBL)(U")™'

where V is any regular matrix (arbitrarily chosen by the designer) and
U satisfies:

XY+uovi =1.

Observe that the left hand side of (16) being a symmetric matrix, a “x”
has been introduced to avoid a very cumbersome matrix description.

Demonstration We partition S in (13) as:

(X U\ i_, (Y V
s=(or %) s'=r= (v 7)



432 W. COLMENARES et al.

and define the regular matrix 7 of the form:

Y v
(7 %)
where it may be assumed with no loss of generality that matrix V'is a
regular matrix (Scherer et al. [13]).

We obtain the results of (15) and (16) with this choice of matrix T
on (13) and by simply defining:

H=VB,; L=C.U"; Z=(YAX + HCX + YBL + VA.U")".

It only remains to show that matrix S is positive definite. Observe
that, being T a regular matrix, S > 0 if and only if 7ST7 > 0 and then

S > 0 if and only if:
Y 1I
(, X)>o

such a condition is implicitly satisfied when either (15) or (16) is met.
This set of linear matrix inequalities then assure the H, guaranteed
cost performance of system (4). [ ]

3. SOME COMMENTS ON THE RESULT

In Theorem 2.1 the convexity of the problem is lost due to the scalar
variable . Even though there exist methods to deal with this specific
structure directly (see for instance Iwasaki and Skelton [10]), it does
seem much simpler to exploit our knowledge of the problem and the
meaning of the inequalities.

In fact, LMI (16) stands for the robust stability condition. Since it is
a necessary condition, it could be solved alone first — this is a convex
programming problem — and look for the maximum &*, for which
there exists robust stability; then — recalling (Petersen [11]) — it may
be assured that for any ¢ in the interval (0,*) there will also exist a
solution to LMI (16). No ¢ other than those in the mentioned interval
could be a solution to the robust stability problem. Furthermore, for
each e there exist a number — probably infinite — of  guaranteed cost
performance for some positive values of ~.
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Once the feasible “e-interval” is known, one could start a search of
“~-suboptimal H, controllers” solutions of (15) and (16) — again a
convex programming problem if ¢ is fixed in each iteration — and
then choose the best performance among them, i.e., v* <, for all
solutions of the second problem.

With this approach, standard LMI tools (such as those in
MATLAB) may be used. In the next section such an approach is
developed with a numerical example.

Even though it appears that the final controller is very sensitive to
the choice of V, it is not so. In fact, it is very easy to show that the
transfer function of the controller (17) is, indeed, independent of the
choice of ¥ and only depends on the solution of (15) and (16), i.e., on
X,Y,L,HZ.

4. NUMERICAL EXAMPLE

This section presents a small numerical example, from Huei and Fong
[9] slightly modified.
The system considered is:

_([-100 —1.20)+(o.1)F(1 0) +(1)
=1 010 —0.15 0.2 YT \o )™

* (0(.)3)w’ (18)
=012 —15)%x

Zy = (0 1)x,+u,

The maximum &* for which there exists a solution — readily obtained
by using MATLAB mincx instruction — is: e*=1.7679.

Figure 1 shows the evolution of best v for ¢ € (1,1.76). Smaller
values of ¢ give higher valuer of . Minimum ~* = 1.3033 is obtained at
e=1.55.

And the rest of — matrix — variables, solution of (15) and (16) for
the same ¢ are:

b

( 0.9104 —0.3122)

3.3681 —0.9385
—0.3122  0.2967

—0.9385 22.4426
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FIGURE 1 Best gamma vs. epsilon.

and

~0.0477 0.0747 21716
L=(0.3396 —0.0443); Z= (—0.3692 0.0769)’ "= (—2.2378)'

With this set of values and by simply choosing V' as the identity
matrix the controller is:

0.8053 —0.0950 2.1716
5Ct+1 = 5Ct + yt
—0.1715 —0.0147 —2.2378
u, = (—0.4664 —0.0968)%,.

Figure 2, features the closed loop pole location when the uncertain
parameter F ranges from —1 to 1.

Figure 3 includes the impulse response of the nominal system as
well as the 2 extremal systems (F= —1 and F=1), of the transfer
function from w, to z, (T,,,) in (1).

It is very easy to construct a Lyapunov matrix P for the closed loop
system, as a function of X, Y and V or U.
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FIGURE 2 Closed loop pole location. F uniformly distributed between —1 and 1.

Impulse Response
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FIGURE 3 Impulse response of 7,,. F=0, —1, 1.
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5. CONCLUSIONS

This paper presents necessary and sufficient conditions for the
existence of a H, guaranteed cost output feedback control for linear
discrete uncertain systems.

Although the conditions are presented as a set of linear matrix
inequalities, the convexity of the problem is lost due to a scalar
variable “e”. Solution of the problem implies a search over this
parameter space. The latter does not seem to be a great limitation if an
a priori search of the solution space of that parameter, as it has been
done in the example, is performed.

The results can, easily, be extended the root clustering problem in
disc regions — D(a,r) — (discs centered in (— a, 0) and radius r), from
the fact that all the eigenvalues of a given matrix A are located in
D(a,r) if and only if (4+al)/r is stable in the discrete time sense
(Chilali et al. [4]).

Finally, extension to the robust stability problem of descriptor
discrete time systems is currently under way, following the ideas in
Rehm and Allgower [12].
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