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Abstract
In this paper, we give the Hausdorff dimensions of certain sets of real numbers

described in terms of the α-Lüroth expansion.

1. Introduction

Let α := {An : n ∈ N} denote a countable partition of the unit interval U , consisting
of right-closed, left-open intervals which we always assume to be ordered from right
to left, starting from A1. Let an denote the Lebesgue measure λ(An) of the atom
An ∈ α and let tn :=

∑∞
k=n ak denote the Lebesgue measure of the n-th tail of α.

Then, for a given partition α, define the map Lα : U → U by setting

Lα(x) :=
{

(tn − x)/an for x ∈ An, n ∈ N,
0 if x = 0.

The map Lα is referred to as the α-Lüroth map.
for each partition α the map Lα gives rise to a series expansion of numbers in the

interval U , which we refer to as the α-Lüroth expansion. That is, let x ∈ U be given
and let the finite or infinite sequence (#k)k≥1 be determined by Lk−1

α (x) ∈ A"k .
Note that the sequence will be finite if at some point we have that Lk

α(x) = 0 and
also note that each finite sequence has the property that the final entry is at least
equal to 2. This sequence gives rise to an alternating series expansion of each x ∈ U ,
which is given by

x = t"1 +
∞∑

n=2

(−1)n−1

( ∏
i<n

a"i

)
t"n = t"1 − a"1t"2 + a"1a"2t"3 − . . .

Let us denote finite α-Lüroth expansions by [#1, #2, . . . , #k]α, for some k ∈ N, and
infinite ones by x = [#1, #2, #3, . . .]α. Each infinite expansion is unique.
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Remark 1. Note that this series expansion is a particular type of generalised Lüroth
series, a concept which was introduced by Barrionuevo et al. in [1] (Also see the
book by Dajani and Kraaikamp [3]).

Throughout this paper, we will make the additional assumption that the tails
of the partition α satisfy the power law tn = ψ(n) · n−θ, where ψ : N → R+ is a
slowly-varying function1. Such a partition is said to be expansive of exponent θ ≥ 0.
Also, we always assume that every partition α is eventually decreasing, that is, that
for all sufficiently large n ∈ N, we have that an < an−1. The following Proposition
appears in [8].

Proposition 2. If α is expansive of exponent θ > 0 and eventually decreasing, then
we have that

an ∼ n−1tn.

Our first main theorem concerns α-Good sets, which are defined as follows. For
each N ∈ N, let the set G(α)

N be defined by

G(α)
N := {x = [#1(x), #2(x), . . .]α ∈ U : #i(x) > N for all i ∈ N}.

Note that the name “Good” here refers to I.J. Good [7], for the similar results he
proved for continued fractions, and not to any supposed nice property of these sets.
We have the following result.

Theorem 3. We have

lim
N→∞

dimH

(
G(α)

N

)
=

1
1 + θ

.

For our second main result, let us consider the following sets. Define

F (α)
∞ :=

{
x = [#1(x), #2(x), . . .]α : lim

n→∞
#n(x) =∞ and #n(x) ≥ #n−1(x)

}

and
G(α)
∞ :=

{
x = [#1(x), #2(x), . . .]α : lim

n→∞
#n(x) =∞

}
.

It is immediately apparent that F (α)
∞ ⊂ G(α)

∞ , so that dimH

(
F (α)
∞

)
≤ dimH

(
G(α)
∞

)
.

We aim to prove the following theorem.

Theorem 4. We have

dimH

(
F (α)
∞

)
= dimH

(
G(α)
∞

)
=

1
1 + θ

.

1A measurable function f : R+ → R+ is said to be slowly-varying if limx→∞ f(xy)/f(x) = 1,
for all y > 0.
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Our final main result concerns the following situation. Fix a sequence (sn)n∈N of
natural numbers with the property that limn→∞ sn =∞. Then, let σ be given by

σ := lim inf
n→∞

log(s1 . . . sn)
(1 + θ) log(s1 . . . sn) + θ log(sn+1)

=
1

(1 + θ) + θ

(
lim sup

n→∞

log(sn+1)
log(s1...sn)

) .

Finally, let N > 3 and define the set

J(α)
σ := {x = [#1(x), #2(x), . . .]α : sn ≤ #n(x) < Nsn for all n ∈ N}.

We will prove the following theorem.

Theorem 5. We have
dimH

(
J(α)

σ

)
= σ.

Remark 6. A similar situation for continued fractions has been considered by Fan
et al. in [5].

The proofs of both Theorem 3 and Theorem 4 will be given in Section 2, while
Theorem 5 will be proved in Section 3.

For future reference, let us now define the cylinder sets associated with the map
Lα. For each k-tuple (#1, . . . , #k) of positive integers, define the α-Lüroth cylinder
set Cα(#1, . . . , #k) associated with the α-Lüroth expansion to be

Cα(#1, . . . , #k) := {[y1, y2, . . .]α : yi = #i for 1 ≤ i ≤ k}.

It is easy to see that these cylinder sets are closed intervals with endpoints given
by [#1, . . . , #k]α and [#1, . . . , (#k + 1)]α. If k is even, we have that [#1, . . . , #k]α is
the left endpoint of this interval. Likewise, if k is odd, [#1, . . . , #k]α is the right
endpoint. Directly from the values of its endpoints, for the Lebesgue measure λ of
Cα(#1, . . . , #k) we have that

λ(Cα(#1, . . . , #k)) =
k∏

i=1

a"i .

It is assumed that the reader is familiar with the definition and basic properties
of the Hausdorff dimension of a set in Rn, which we will denote by dimH . A good
reference on the subject is Falconer’s book [4]. In particular, we will repeatedly use
Frostman’s Lemma (also known as the mass distribution principle), which can be
found as Theorem 4.2 in [4].

2. Good-Type Sets

We begin this section by proving Theorem 3.
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Proof of Theorem 3. By assumption, α is expansive of exponent θ ≥ 0. Therefore,
from Proposition 2, we have that an ∼ ψ(n) · n−(1+θ), where ψ : N → R+ is a
slowly-varying function. This implies that an ) ψ(n) · n−(1+θ). Since ψ is slowly
varying, it follows that for all positive ε if n ∈ N is sufficiently large, we have that
n−ε ≤ ψ(n) ≤ nε. Thus, on combining these observations, we obtain that

n−(1+θ+ε) ≤ an ≤ n−(1+θ−ε).

Let ε > 0 be given. Then, recalling from the introduction that λ(Cα(#1, . . . , #k)) =
a"1 . . . a"k , there exists a positive integer N := N(ε) such that for each α-Lüroth
cylinder set Cα(#1, . . . , #k) with #i > N for each 1 ≤ i ≤ k, we have

1
(#1 . . . #k)1+θ+ε

≤ λ(Cα(#1, . . . , #k)) ≤ 1
(#1 . . . #k)1+θ−ε

. (1)

In order to compute the upper bound, let δ > 0 and choose k large enough that

C := {Cα(#1, . . . , #k) : #i > N for 1 ≤ i ≤ k}

is a δ-cover of G(α)
N . Let s := (1 + θ − ε)−1(1 + εN ), where εN is chosen to satisfy

the conditions that εN < 1 and −εN/ log(εN ) > 1/ log N . Then,

Hs
δ

(
G(α)

N

)
≤

∑

C
λ(Cα(#1, . . . , #k))s ≤

∑

C

((
1

#1 . . . #k

)1+θ−ε
)(1+θ−ε)−1(1+εN )

=
∑

C

(
1

#1 . . . #k

)1+εN

=

(
∑

i>N

(
1
i

)1+εN
)k

<

(∫ ∞

N
x−(1+εN ) dx

)k

=
(

1
εNN εN

)k

< 1.

Thus, as this estimate is independent of δ, we have that dimH

(
G(α)

N

)
≤ s. Letting

ε > 0 tend to zero and choosing the sequence (εN )N∈N in such a way that lim
N→∞

εN =
0, we obtain that

dimH

(
G(α)

N

)
≤ 1

1 + θ
.

In order to calculate the desired lower bound, we define a certain subset of the
set G(α)

N for each N ∈ N. First, choose M ∈ N to be such that
∑M

i=N 1/i > 1.
Denote this sum by S. Then define the set

G(α)
N,M := {x = [#1(x), #2(x), . . .]α ∈ U : N ≤ #i(x) ≤M for all i ∈ N}.

Clearly, G(α)
N,M ⊆ G(α)

N and so a lower bound for the Hausdorff dimension of the
subset G(α)

N,M is also a lower bound for the set G(α)
N . We aim to use Frostman’s
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Lemma, so, to that end, define a mass distribution ν on the set G(α)
N,M by setting

ν(Cα(#1, . . . , #k)) :=
1

Sk#1 . . . #k
.

Note that from (1), if N is large enough, we have that

ν(Cα(#1, . . . , #k)) ≤
(

1
S

)k

λ(Cα(#1, . . . , #k))1/(1+θ+ε) < λ(Cα(#1, . . . , #k))1/(1+θ+ε),

where the second inequality comes from the fact that 1/S < 1. Also note that

λ(Cα(#1, . . . , #k))
λ(Cα(#1, . . . , #k, #k+1))

=
1

ak+1
≤ #1+θ+ε

k+1 ≤M1+θ+ε.

Now, let x = [#1(x), #2(x), . . .]α ∈ G(α)
N,M , let r > 0 and further let k ∈ N be such

that we have

λ(Cα(#1(x), . . . , #k+1(x))) ≤ r < λ(Cα(#1(x), . . . , #k(x))).

It is clear that Cα(#1(x), . . . , #k(x), #k+1(x)) ⊂ B(x, r), but it is possible that B(x, r)
intersects more than one cylinder set of length k. However, since there are at most
M −N possibilities and the ν-measure of each of them is comparable, without loss
of generality we can assume that

Cα(#1(x), . . . , #k+1(x)) ⊂ B(x, r) ⊂ Cα(#1(x), . . . , #k(x)).

Then,

ν(B(x, r)) ≤ ν(Cα(#1(x), . . . , #k(x))) ≤ λ(Cα(#1(x), . . . , #k(x)))1/(1+θ+ε)

≤ Mλ(Cα(#1(x), . . . , #k+1(x)))1/(1+θ+ε) ≤Mr1/(1+θ+ε).

Hence, by Frostman’s Lemma, it follows that

dimH

(
G(α)

N,M

)
≥ 1

1 + θ + ε
.

Finally, on letting ε tend to zero, we have that

lim
N→∞

dimH

(
G(α)

N,M

)
≥ 1

1 + θ
.

Combining this with the upper bound above finishes the proof of the theorem. !

Let us now move on to the proof of Theorem 4. The proof will again be split into
the lower bound and the upper bound. We begin with the following useful lemma.
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Lemma 7. Suppose that x = [#1(x), #2(x), . . .]α ∈ F (α)
∞ . Further suppose that

λ(Cα(#1(x), . . . , #k(x), #k+1(x))) ≤ r < λ(Cα(#1(x), . . . , #k(x))).

Then, for all sufficiently large k,

B(x, r) ⊂
1⋃

i=−1

Cα(#1(x), . . . , #k(x) + i).

Proof. We consider here only the case in which k is odd, the case k even is analogous
and is left to the reader. Bearing in mind that x ∈ Cα(#1(x), . . . , #k+1(x)), it is clear
that if k is sufficiently large, then the right endpoint of B(x, r) cannot extend past
the interval Cα(#1(x), . . . , #k(x) − 1), as we are assuming that the partition α is
eventually decreasing. On the other hand, the left endpoint of B(x, r) cannot be
smaller than the point [#1(x), . . . , #k+1(x)]α−a"1(x) . . . a"k(x). But this point is equal
to
(
t"1(x) − a"1(x)t"2(x) + . . . + a"1(x) . . . a"k−1(x)t"k(x) − a"1(x) . . . a"k(x)t"k+1(x)

)
−a"1(x) . . . a"k(x)

= t"1(x)−. . .+a"1(x) . . . a"k−1(x)(t"k(x)−a"k(x))−a"1(x) . . . a"k(x)t"k+1(x)

= [#1(x), . . . , #k−1(x), #k(x)+1]α−a"1(x) . . . a"k(x)t"k+1(x).

Notice that the point [#1(x), . . . , #k−1(x), #k(x) + 1]α is the left endpoint of the the
cylinder set Cα(#1(x), . . . , #k(x)), so it only remains to prove that

a"1(x) . . . a"k−1(x)a"k(x)t"k+1(x) ≤ a"1(x) . . . a"k−1(x)a"k(x)+1 = λ(Cα(#1(x), . . . , #k(x)+1)).

In other words, we must show that

a"k(x)t"k+1(x) ≤ a"k(x)+1.

Recall that α is assumed to be expanding of exponent θ ≥ 0, so tn = n−θ ·ψ(n) and
an ) n−(1+θ) · ψ(n), where ψ : N → R+ is a slowly varying function. Also recall
that for each positive ε, if n is sufficiently large, we have that tn ≤ n−(θ−ε) and
n−(1+θ+ε) ≤ an ≤ n−(1+θ−ε). Let ε < θ/6. Then, since x ∈ F (α)

∞ , so #k(x) ≤ #k+1(x)
for all k, we have that

a"k(x)t"k+1(x) ≤ 1
#k(x)(1+θ−ε)

· 1
#k+1(x)(θ−ε)

≤ 1
#k(x)(1+2θ−2ε)

<
1

#k(x)(1+(5/3)θ)
.

On the other hand, we also have that

a"k(x)+1 ≥
1

(#k(x) + 1)(1+θ+ε)
>

1
(#k(x) + 1)(1+(7/6)θ)

.
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Therefore, in order to show that a"k(x)t"k+1(x) ≤ a"k(x)+1, it suffices to show that

1
#k(x)(1+(5/3)θ)

<
1

(#k(x) + 1)(1+(7/6)θ)
,

or, equivalently, that

1− (1/2)θ
1 + (3/5)θ

=
1 + (7/6)θ
1 + (10/6)θ

<
log(#k(x))

log(#k(x) + 1)
.

But, since the left-hand side is a fixed amount less than 1, depending only on θ, and
the right-hand side tends to 1 as #k(x) increases (that is, as k increases), it follows
that if k is large enough, this statement is true. Thus, the left endpoint of B(x, r)
lies in Cα(#1(x), . . . , #k(x) + 1) and the lemma is proved.

In the next lemma, we will establish the lower bound for the dimension of F (α)
∞ .

Lemma 8. We have
1

1 + θ
≤ dimH

(
F (α)
∞

)
.

Proof. For the proof, we will define a suitable subset of F (α)
∞ and use Frostman’s

Lemma again to obtain the lower bound. So, first let fε : N→ N be a slowly varying
function which satisfies the following properties:

• limn→∞ fε(n) =∞.

• fε(n) ≤ fε(n + 1) for all n ∈ N.

• fε(1) is large enough that if # ≥ fε(1), then a" ≥ #−(1+θ+ε).

Now, define a second function g : N → N by setting g(n) to be the least integer
such that

Sn :=
g(n)∑

i=fε(n)

1
i

> 1.

Note that the function g is also slowly varying. Indeed, for any k ∈ N, if fε(n) ∈
{2k+1, . . . , 2k+1} it follows that 2k+1 ≤ g(n) ≤ 2k+3. Hence, fε(n) < g(n) ≤ 8fε(n).
Finally, define the set

F (α)
fε,g := {x = [#1(x), #2(x), . . .]α : fε(n) ≤ #n(x) ≤ g(n) and #n(x) ≥ #n−1(x) for all n ∈ N} .

It is clear that F (α)
fε,g ⊂ F (α)

∞ . Define a mass distribution on F (α)
fε,g by setting

ν(Cα(#1(x), . . . , #k(x))) :=
1

S1 . . . Sk
· 1
#1(x) . . . #k(x)

.



INTEGERS: 11B (2011) 8

Note that due to the choice of fε and g, we have that

ν(Cα(#1(x), . . . , #k(x))) ≤ λ(Cα(#1(x), . . . , #k(x)))1/(1+θ+ε).

In addition, observe that
λ(Cα(#1(x), . . . , #k(x)))

λ(Cα(#1(x), . . . , #k+1(x)))
=

1
a"k+1(x)

≤ #k+1(x)1+θ+ε ≤ g(k + 1)1+θ+ε.

As in the proof of Theorem 3, let r > 0 and choose k such that

λ(Cα(#1(x), . . . , #k+1(x))) ≤ r < λ(Cα(#1(x), . . . , #k(x))).

Again, it is clear that Cα(#1(x), . . . , #k(x), #k+1(x)) ⊂ B(x, r), but it is possible
that B(x, r) intersects more than one interval in level k. There are no longer a fixed
finite set of possibilities, but for large enough k (that is, for small enough r), we
can apply Lemma 7 to conclude that

Cα(#1(x), . . . , #k+1(x)) ⊂ B(x, r) ⊂
1⋃

i=−1

Cα(#1(x), . . . , #k(x) + i).

Now, let δ > 0 be arbitrary. Then, recall that g is slowly varying, so that if k is
large enough, we have that g(k + 1) ≤ (k + 1)δ < (1/r)δ. Then, the proof of the
lemma follows from the following calculation.

ν(B(x, r)) + ν(Cα(#1(x), . . . , #k(x))) ≤ λ(Cα(#1(x), . . . , #k(x)))1/(1+θ+ε)

≤ g(k + 1)λ(Cα(#1(x), . . . , #k(x), #k+1(x)))1/(1+θ+ε)

+ g(k + 1) · r1/(1+θ+ε)

≤ r1/(1+θ+ε)−δ.

Since this is true for all δ > 0, an application of Frostman’s Lemma yields that
1

1 + θ + ε
≤ dimH

(
F (α)

fε,g

)
. (2)

Finally, (2) shows that for every ε > 0 we have that dimH

(
F (α)
∞

)
≥ 1/(1 + θ + ε),

so letting ε tend to zero completes the proof.

All that remains for the proof of Theorem 4 is to give the upper bound for the
dimension of G(α)

∞ . For this, first observe that if we consider the set

G(α)
N,n0

:= {x = [#1(x), #2(x), . . .]α : #n(x) > N for all n ≥ n0} ,

we can easily see that for all n0 ∈ N this set has the same dimension as the set
G(α)

N . It is also clear that for all N ∈ N there exists an n0 such that G(α)
∞ ⊂ G(α)

N,n0
.

Therefore, it follows from Theorem 3 that

dimH

(
G(α)
∞

)
≤ 1

1 + θ
.

Taking this observation together with Lemma 8, we have proved Theorem 4.



INTEGERS: 11B (2011) 9

3. Strict Jarńık Sets

In this section, we give the proof of Theorem 5. Before beginning, notice that for
each σ ∈ R+ the set J(α)

σ is contained in the set G(α)
∞ . Therefore the dimension

can be at most 1/(1 + θ). This is consistent with the result given here, since,
as we recall from the introduction, we have that σ = 1/((1 + θ) + θ · τ), where
τ := lim supn→∞ log(sn+1)/ log(s1 . . . sn) ≥ 0.
Proof of Theorem 5. Let us begin by establishing the upper bound. The set J(α)

σ

can be covered by sets of the form

C̃α(#1, . . . , #k) :=
⋃

m≥sk+1

Cα(#1, . . . , #k,m),

where si ≤ #i < Nsi for each 1 ≤ i ≤ k. We have λ(C̃α(#1, . . . , #k)) = a"1 . . . a"ktsk+1 .

Recall that since α is expansive of exponent θ and eventually decreasing, for
each positive ε, there exists k ∈ N such that #−(1+θ+ε) ≤ a" ≤ #−(1+θ−ε) for all
# ≥ k. Since the sequence (sn)n∈N tends to infinity, we may assume without loss of
generality that if x ∈ J(α)

σ , then (#n(x))−(1+θ+ε) ≤ a"(x) ≤ (#n(x))−(1+θ−ε) for all
n ∈ N. For each x ∈ J(α)

σ , these observations lead to the estimate

1
(#1(x) . . . #k(x))(1+θ+ε)(sk+1)(θ+ε)

≤ λ(C̃α(#1(x), . . . , #k(x)))

≤ 1
(#1(x) . . . #k(x))(1+θ−ε)(sk+1)(θ−ε)

.

In turn, this yields

1
(Nks1 . . . sk)(1+θ+ε)(sk+1)(θ+ε)

≤ λ(C̃α(#1(x), . . . , #k(x)))

≤ 1
(s1 . . . sk)(1+θ−ε)(sk+1)(θ−ε)

. (3)

Now, define

σε := lim inf
n→∞

log(s1 . . . sn)
(1 + θ − ε) log(s1 . . . sn) + (θ − ε) log(sn+1)

.

Directly from this definition, we have that if σ′ ∈ (σε, 3σε) and n is sufficiently
large, then

σ′ − σε

2
≤ log(s1 . . . sn)

log
(
(s1 . . . sn)(1+θ−ε)(sn+1)(θ−ε)

) .
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Thus,
(

1
(s1 . . . sn)(1+θ−ε)(sn+1)θ−ε

)σ′−σε
2

≤
(

1
(s1 . . . sn)(1+θ−ε)(sn+1)θ−ε

) log(s1...sn)

log(s1...sn)(1+θ−ε)(sn+1)(θ−ε)

=
1

s1 . . . sn
.

It follows that s1 . . . sn ≤
(
(s1 . . . sn)(1+θ−ε)(sn+1)θ−ε

)σ′−σε
2 . Since limn→∞ sn =

∞, we immediately have that limn→∞ log(sn) = ∞ and this in turn implies that
limn→∞(log(s1 . . . sn))/n = ∞. Therefore, for large enough n ∈ N we have that
log(N − 1) < log(s1 . . . sn)/n. From this, we obtain that

(N − 1)n ≤
(
(s1 . . . sn)(1+θ−ε)(sn+1)θ−ε

)σ′−σε
2

. (4)

Again from the definition of σε, there exists a sequence (nk)k∈N of positive inte-
gers such that if σ′ > σε, we have

log(s1 . . . snk)
log

(
(s1 . . . snk)(1+θ−ε)(snk+1)(θ−ε)

) ≤ σ′ + σε

2
.

Thus,

s1 . . . snk ≤
(
(s1 . . . snk)(1+θ−ε)(snk+1)θ−ε

)σ′+σε
2

. (5)

Consequently, if we neglect any terms of the sequence (nk) that are too small and
rename the sequence accordingly, by combining the estimates in (4) and (5), we
obtain for all k ≥ 1 that

(N − 1)nks1 . . . snk ≤
(
(s1 . . . snk)(1+θ−ε)(snk+1)θ−ε

)σ′

.

Thus,

Hσ′(J(α)
σ ) = lim inf

k→∞

∑

($1,...,$nk
)

si≤$i<Nsi

λ(C̃α(#1, . . . , #k))σ′

≤ (N − 1)nks1 . . . snk ·
(
(s1 . . . snk)−(1+θ−ε)(snk+1)−(θ−ε)

)σ′

≤ 1.

Hence, for all ε > 0 and all σ′ > σε, we have that dimH(J(α)
σ ) ≤ σ′ and so,

dimH(J(α)
σ ) ≤ σε. It therefore follows, on letting ε tend to zero, that

dimH(J(α)
σ ) ≤ σ.
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Let us now provide the lower bound. For this, as usual, we will use Frost-
man’s Lemma. To that end, define a mass distribution m on J(α)

σ by setting
m(Cα(#1, . . . , #k)) = 1/(#1 . . . #k). Let x ∈ J(α)

σ , r > 0 and choose k such that

λ(C̃α(#1(x), . . . , #k+1(x))) ≤ r < λ(C̃α(#1(x), . . . , #k(x))).

There are now two possibilities. Either,

λ(C̃α(#1(x), . . . , #k+1(x))) ≤ r < λ(Cα(#1(x), . . . , #k(x), #k+1(x))), (6)

or,

λ(Cα(#1(x), . . . , #k+1(x))) ≤ r < λ(C̃α(#1(x), . . . , #k(x))). (7)

Suppose we are in the situation of (6) and, for simplicity, assume that k is odd.
It is clear that if k is large enough, the left endpoint of the ball B(x, r) cannot
extend past the cylinder set Cα(#1(x), . . . , #k+1(x) − 1) (since α is assumed to be
eventually decreasing). On the other hand, the right endpoint cannot be larger than
[#1(x), . . . , #k+1, 1]α + a"1(x) . . . a"k+1(x)tsk+2 . We claim that as long as k is chosen
large enough, this point lies inside Cα(#1(x), . . . , #k+1(x) + 1). To prove this claim,
we are required to show that

a"1(x) . . . a"k+1(x)tsk+2 < a"1(x) . . . a"k+1(x)+1,

or, in other words, that
a"k+1(x)tsk+2 < a"k+1(x)+1.

Note that by choosing k sufficiently large, the value of tsk+2 can be made as small as
we like, so it is enough to show that there exists some constant K with the property
that for all large enough n ∈ N,

an

an+1
≤ K.

Since α is expansive of exponent θ, we have that

an

an+1
≤ c(n + 1)1+θψ(n)

n1+θψ(n + 1)
.

It is obvious that limn→∞((n + 1)/n)1+θ = 1, so all that remains to establish the
claim is to show that limn→∞ ψ(n)/ψ(n + 1) ≤ 1. In order to do this, suppose by
way of contradiction that

lim
n→∞

ψ(n)/ψ(n + 1) > 1.

Then, recalling that ψ is a slowly-varying function, we have that limn→∞ ψ(cn)/ψ(n) =
1 for all c > 0. Therefore, we obtain that

lim
n→∞

(
ψ(n)
ψ(2n)

· ψ(2n)
ψ(n + 1)

)
= lim

n→∞

ψ(2n)
ψ(n + 1)

> 1.



INTEGERS: 11B (2011) 12

Thus, there exists n0 ∈ N such that for all n ≥ n0, we have that

ψ(n)
ψ(n + 1)

> 1 and
ψ(2n)

ψ(n + 1)
> 1.

This implies that for n ≥ n0 we have

ψ(n) > ψ(n + 1) > ψ(n + 2) > . . . > ψ(2n− 1) > ψ(2n) > ψ(n + 1).

This contradiction finishes the proof. !

In a slight abuse of notation, let us redefine the quantity σε used above in the
following way:

σε := lim inf
n→∞

log(s1 . . . sn)
(1 + θ + ε) log(s1 . . . sn) + (θ + ε) log(sn+1)

.

We have shown that B(x, r) ⊂
⋃1

i=−1 Cα(#1(x), . . . , #k+1(x) + i). Therefore, if
we let σ′ < σε and bear in mind that r ≥ a"1(x) . . . a"k+1(x)tsk+2 , we obtain, via (3)
and the definition of σε, that

m(B(x, r)) ≤ 3m(Cα(#1(x), . . . , #k+1(x))) ≤ 3
s1 . . . sk+1

≤ 3
(

1
(s1 . . . sk+1)(1+θ+ε)(sk+2)(θ+ε)

)σ′

≤ 3rσ′ .

In this case, then, an application of Frostman’s Lemma yields that for all ε > 0
and all σ′ < σε, we have that

dimH

(
J(α)

σ

)
≥ σ′.

Let us now consider the second case, that of (7). Again, suppose for the sake of
argument that k is odd. Then, it is clear once more that if k is large enough, the
right endpoint of B(x, r) cannot extend past the cylinder set Cα(#1(x), . . . , #k(x)−1),
since α is eventually decreasing. On the other hand, the left endpoint of B(x, r) is
not less than [#1(x), . . . , #k(x)]α−2a"1(x) . . . a"k(x)tsk+1 . If k is sufficiently large, it is
clear that 2a"1(x) . . . a"k(x)tsk+1 < a"1(x) . . . a"k(x) (as tsk+1 can be made arbitrarily
small by choosing large enough k). This implies that the left endpoint of B(x, r)
is contained within the cylinder set Cα(#1(x), . . . , #k(x)) and consequently B(x, r)
can only intersect the sets C̃α(#1(x), . . . , #k(x)) and C̃α(#1(x), . . . , #k(x)− 1) in this
level.
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Also, note that the smallest size of a cylinder set in the (k + 1)-th level is
(Nk+1s1 . . . sk+1)−(1+θ+ε). Consequently, at most 2r(Nk+1s1 . . . sk+1)(1+θ+ε) of
these cylinder sets can intersect B(x, r). Taking these observations together, we
have that

m(B(x, r)) ≤ min
{
2m(C̃α(#1(x), . . . , #k(x))),

(
2r(Nk+1s1 . . . sk+1)(1+θ+ε)

)

×m (Cα(#1(x), . . . , #k+1(x)))
}

≤ min
{

2
s1 . . . sk

,
2(Nk+1s1 . . . sk+1)(1+θ+ε) · r

s1 . . . sksk+1

}

=
2

s1 . . . sk

{
1,

(
(Nk+1s1 . . . sk)(1+θ+ε)(sk+1)(θ+ε)

)
· r

}
.

Note that min{a, b} ≤ a1−sbs for all s ∈ (0, 1) and let σ′ < σε. It follows from this
that

m(B(x, r)) ≤ 2
s1 . . . sk

(
(Nk+1s1 . . . sk)(1+θ+ε)(sk+1)(θ+ε)

)σ′

rσ′ .

By definition of σε, we have for all σ′ < σε and all large enough k that

1
s1 . . . sk

≤
(
(Nk+1s1 . . . sk)(1+θ+ε)(sk+1)(θ+ε)

)σ′

.

Thus, m(B(x, r)) ≤ 2rσ′ . Therefore, as in the case of (6) described above, for all
ε > 0 and all σ′ < σε, we have that

dimH

(
J(α)

σ

)
≥ σ′.

Finally, since this holds in both cases for all σ′ < σε, we first obtain that dimH

(
J(α)

σ

)
≥

σε and then, by letting ε tend to zero, we obtain that

dimH

(
J(α)

σ

)
≥ σ.

Combining this lower bound with the upper bound given above completes the proof
of the theorem. !
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